-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtest_texture.py
123 lines (68 loc) · 3.71 KB
/
test_texture.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import numpy as np
import random
import torch
import os
import matplotlib.pyplot as plt
from torchvision import utils
import pickle
from texture_model.assets.texture_processing import add_tex
from texture_model.progan_modules import Generator, Discriminator
class my_dictionary(dict):
# __init__ function
def __init__(self):
self = dict()
# Function to add key:value
def add(self, key, value):
self[key] = value
def check_folder(path):
if not os.path.exists(path):
os.mkdir(path)
def test_texture(g_running, num_imgs=10, exp_list=[1,2], input_code_size=512, device='cuda:0', alpha=1.00, out_path='texture_results/', zid_dict_path='assets/zid_dictionary.pkl'):
step = 7
id_to_exp = ['0_neutral.jpg', '1_smile.jpg', '2_mouth_stretch.jpg', '3_anger.jpg', '4_jaw_left.jpg', '5_jaw_right.jpg', '6_jaw_forward.jpg', '7_mouth_left.jpg', '8_mouth_right.jpg', '9_dimpler.jpg', '10_chin_raiser.jpg', '11_lip_puckerer.jpg', '12_lip_funneler.jpg', '13_sadness.jpg', '14_lip_roll.jpg', '15_grin.jpg', '16_cheek_blowing.jpg', '17_eye_closed.jpg', '18_brow_raiser.jpg', '19_brow_lower.jpg']
with open(zid_dict_path, 'rb') as f:
zid_dict = pickle.load(f)
#npy_file_name = '../create_videos/results/interpolate_id/20.npy'
#zid_dict = np.load(npy_file_name)
check_folder(out_path)
for num in range(num_imgs):
id_path = os.path.join(out_path, str(num))
check_folder(id_path)
for exp in exp_list:
#for exp in [0,1,2,17]: # For specific expressions
exp_enc_test = np.zeros((1,20), dtype='int')
exp_enc_test[0,exp] = 1
exp_path = os.path.join(id_path, id_to_exp[exp].split('.')[0])
check_folder(exp_path)
for intensity in range(15):
with torch.no_grad():
# For EXTRAPOLATION use this latent code
z_noise = torch.randn(1, input_code_size)
#z_id = torch.randn(1, 20) # if random z_id
z_id = np.reshape(zid_dict[num+1], (1,20)) # if predefined z_id
z_exp = torch.from_numpy(exp_enc_test)*0.1*intensity
latent_code = torch.cat((z_noise, z_id, z_exp),1)
#For INTERPOLATION use this latent code
'''z_noise = (torch.randn(1, input_code_size)
z_id = torch.from_numpy(np.reshape(zid_dict[intensity], (1,20)))
z_exp = torch.from_numpy(exp_enc_test)
latent_code = torch.cat((z_noise, z_id, z_noise),1)'''
images = g_running(input=latent_code.to(device), step=step, alpha=alpha).data.cpu()
utils.save_image(images, os.path.join(exp_path, str(intensity)) + '.jpg', nrow=1, normalize=True, range=(0, 1))
print('Generating ID:', num, ',Exp:', exp_enc_test, end='\r')
#add_tex.add_texture_template(in_path='texture_results/', out_resolution=1024)
if __name__ == '__main__':
device = torch.device("cuda")
input_code_size = 128
channel = 256
g_running = Generator(in_channel=channel, input_code_dim=input_code_size+20+20, pixel_norm=False, tanh=False)
g_running = torch.nn.DataParallel(g_running)
os.environ["CUDA_VISIBLE_DEVICES"]="0"
g_running = g_running.to(device)
model_dir = 'checkpoints/texture_models/'
number = '142000'
g_running.load_state_dict(torch.load(model_dir + 'checkpoint/' + number + '_g.model'), strict=False)
g_running = torch.nn.DataParallel(g_running)
g_running.train(False)
test_texture(g_running, num_imgs=2, input_code_size=input_code_size, device=device, alpha=1, out_path='texture_results2/', zid_dict_path='data/zid_dictionary.pkl')
add_tex.add_texture_template(in_path='texture_results2/', base_path = 'texture_model/assets/texture_processing/base_tex.npy', out_resolution=1024)