forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpython_variable_indexing.cpp
557 lines (521 loc) · 19.1 KB
/
python_variable_indexing.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
#include <torch/csrc/autograd/python_variable_indexing.h>
#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/Export.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/autograd/utils/wrap_outputs.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/jit/frontend/tracer.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/utils/numpy_stub.h>
#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/utils/python_arg_parser.h>
#include <torch/csrc/utils/python_compat.h>
#include <torch/csrc/utils/python_numbers.h>
#include <torch/csrc/utils/python_symnode.h>
#include <torch/csrc/utils/tensor_new.h>
#include <torch/csrc/utils/tensor_numpy.h>
#include <torch/csrc/utils/tensor_types.h>
#include <ATen/DeviceGuard.h>
#include <ATen/ExpandUtils.h>
#include <ATen/Functions.h>
#include <ATen/TensorIndexing.h>
#include <ATen/TracerMode.h>
#include <ATen/core/LegacyTypeDispatch.h>
#include <c10/core/TensorOptions.h>
#include <c10/util/irange.h>
#include <c10/core/Layout.h>
using namespace at;
using namespace torch::autograd::utils;
namespace torch {
namespace autograd {
Py_ssize_t THPVariable_length(PyObject* self) {
HANDLE_TH_ERRORS
if (check_has_torch_function(self)) {
py::object ret = py::reinterpret_steal<py::object>(
handle_torch_function(self, "__len__"));
Py_ssize_t length = PyLong_AsSsize_t(ret.ptr());
if (PyErr_Occurred()) {
throw python_error();
}
return length;
}
const auto& self_ = THPVariable_Unpack(self);
if (self_.dim() == 0) {
return 0;
}
// TODO: Maybe this should return a SymInt directly?
// Add the guard to get a nice error message if/when we will hit this.
return (Py_ssize_t)self_.sym_size(0).guard_int(__FILE__, __LINE__);
END_HANDLE_TH_ERRORS_RET(-1)
}
// We allow indexing by integers, slices, ellipsis, None, Variables,
// and tuples of those types. We also handle bools as if they were a
// Variable[ByteTensor].
static inline int64_t count_specified_dimensions(PyObject* index) {
// Count the number of indexed dimensions (everything but ellipsis and None)
// -1 is a sentinel for __torch_function__
int64_t count = 0;
auto size =
PyTuple_GET_SIZE(index); // NOLINT(cppcoreguidelines-pro-type-cstyle-cast)
for (Py_ssize_t i = 0; i < size; i++) {
PyObject* obj = PyTuple_GET_ITEM(
index, i); // NOLINT(cppcoreguidelines-pro-type-cstyle-cast)
if (!THPVariable_CheckExact(obj) && check_has_torch_function(obj))
return -1;
if (THPVariable_Check(obj)) {
const auto& var = THPVariable_Unpack(obj);
const auto& var_scalar_type = var.scalar_type();
if (var_scalar_type == kByte || var_scalar_type == kBool) {
count += var.dim();
} else {
count++;
}
} else if (
obj != Py_None && obj != Py_Ellipsis && obj != Py_True &&
obj != Py_False) { // NOLINT(cppcoreguidelines-pro-type-cstyle-cast)
count++;
}
}
return count;
}
[[noreturn]] static inline void invalid_index(PyObject* obj) {
TORCH_CHECK_INDEX(
false,
"only integers, slices (`:`), ellipsis (`...`), None and long or byte "
"Variables are valid indices (got ",
Py_TYPE(obj)->tp_name,
")");
}
static inline Variable sequenceToVariable(
c10::TensorOptions options,
PyObject* seq) {
return torch::utils::indexing_tensor_from_data(
options, kLong, c10::nullopt, seq);
}
inline Variable valueToTensor(
c10::TensorOptions options,
PyObject* value,
const at::Device& device) {
if (THPVariable_Check(value)) {
return THPVariable_Unpack(value);
}
at::AutoDispatchBelowADInplaceOrView guard; // TODO: remove
at::tracer::impl::NoTracerDispatchMode tracer_guard;
Scalar scalar;
if (THPUtils_checkLong(value) || PyBool_Check(value)) {
scalar = Scalar(THPUtils_unpackLong(value));
} else if (PyFloat_Check(value)) {
scalar = Scalar(THPUtils_unpackDouble(value));
} else if (PyComplex_Check(value)) {
scalar = Scalar(THPUtils_unpackComplexDouble(value));
} else if (torch::is_symint(value)) {
scalar = Scalar(py::cast<c10::SymInt>(py::handle(value)));
} else if (torch::is_symfloat(value)) {
scalar = Scalar(py::cast<c10::SymFloat>(py::handle(value)));
} else if (torch::is_symbool(value)) {
scalar = Scalar(py::cast<c10::SymBool>(py::handle(value)));
} else {
throw TypeError(
"can't assign a %s to a %s",
Py_TYPE(value)->tp_name,
torch::utils::options_to_string(options).c_str());
}
// lift_fresh is supposed to be used in situations where you are guaranteed to
// get a plain Tensor which is not true for cpu device but not for non cpu
// device
if (device == at::kCPU && !scalar.isSymbolic()) {
return at::lift_fresh(
at::indexing::scalarToTensor(scalar, options, device));
} else {
return at::indexing::scalarToTensor(scalar, options, device);
}
}
static inline void recordSliceTrace(PyObject* obj) {
PySliceObject* sliceobj = (PySliceObject*)obj;
if (THPVariable_Check(sliceobj->start)) {
torch::jit::tracer::ArgumentStash::stashValue(
std::string("start"),
1,
THPVariable_Unpack(sliceobj->start),
torch::jit::IntType::get());
}
if (THPVariable_Check(sliceobj->stop)) {
torch::jit::tracer::ArgumentStash::stashValue(
std::string("end"),
1,
THPVariable_Unpack(sliceobj->stop),
torch::jit::IntType::get());
}
if (THPVariable_Check(sliceobj->step)) {
torch::jit::tracer::ArgumentStash::stashValue(
std::string("step"),
1,
THPVariable_Unpack(sliceobj->step),
torch::jit::IntType::get());
}
}
static inline void recordSelectTrace(const Tensor& index_tensor) {
torch::jit::tracer::ArgumentStash::stashValue(
std::string("index"), 1, index_tensor, torch::jit::IntType::get());
}
static inline Variable applySlicing(
const Variable& self,
PyObject* index,
variable_list& outIndices,
bool is_tracing,
const at::Device& self_device,
const c10::optional<int64_t>& self_ndim,
int64_t specified_dims) {
int64_t size =
PyTuple_GET_SIZE(index); // NOLINT(cppcoreguidelines-pro-type-cstyle-cast)
int64_t dim = 0;
// See NOTE [nested tensor size for indexing]
if (self_ndim.has_value()) {
TORCH_CHECK_INDEX(
specified_dims <= self_ndim.value(),
"too many indices for tensor of dimension ",
self_ndim.value());
}
Variable result = self;
for (const auto i : c10::irange(size)) {
PyObject* obj = PyTuple_GET_ITEM(
index, i); // NOLINT(cppcoreguidelines-pro-type-cstyle-cast)
// NOTE [nested tensor size for indexing]
// nested tensor does not have a size (yet) so for now we represent its size
// as null may need to be changed after we reach a better solution for
// nested tensor size
c10::optional<SymIntArrayRef> result_sizes = result.is_nested()
? c10::optional<SymIntArrayRef>(c10::nullopt)
: c10::optional<SymIntArrayRef>(result.sym_sizes());
result = at::indexing::handleDimInMultiDimIndexing(
/*prev_dim_result=*/result,
/*original_tensor=*/self,
/*index=*/([&]() {
if (THPUtils_checkLong(obj)) {
if (is_tracing && THPVariable_Check(obj)) {
recordSelectTrace(THPVariable_Unpack(obj));
}
return at::indexing::TensorIndex(THPUtils_unpackLong(obj));
} else if (PySlice_Check(obj)) {
auto val = __PySlice_Unpack(obj);
if (is_tracing) {
recordSliceTrace(obj);
}
return at::indexing::TensorIndex(
at::indexing::Slice(val.start, val.stop, val.step));
} else if (obj == Py_Ellipsis) {
return at::indexing::TensorIndex(at::indexing::Ellipsis);
} else if (obj == Py_None) {
return at::indexing::TensorIndex(at::indexing::None);
} else if (PyBool_Check(obj)) {
return at::indexing::TensorIndex(obj == Py_True);
} else if (THPVariable_Check(obj)) {
Tensor tensor = THPVariable_Unpack(obj);
if (is_tracing) {
auto scalar_type = tensor.scalar_type();
if (tensor.dim() == 0 &&
at::isIntegralType(scalar_type, /*includeBool=*/false) &&
scalar_type != at::kByte) {
recordSelectTrace(tensor);
}
}
return at::indexing::TensorIndex(std::move(tensor));
} else if (PySequence_Check(obj)) {
return at::indexing::TensorIndex(
sequenceToVariable(self.options(), obj));
} else {
auto idx = THPObjectPtr(PyNumber_Index(obj));
if (!idx) {
PyErr_Clear();
invalid_index(obj);
}
if (is_tracing && THPVariable_Check(idx)) {
recordSelectTrace(THPVariable_Unpack(idx));
}
return at::indexing::TensorIndex(THPUtils_unpackLong(idx));
}
})(),
/*dim_ptr=*/&dim,
/*specified_dims_ptr=*/&specified_dims,
/*real_dim=*/i,
/*outIndices=*/outIndices,
// See NOTE [ Setting `disable_slice_optimization` when calling C++
// tensor indexing functions from Python ]
/*disable_slice_optimization=*/is_tracing,
/*original_tensor_device=*/self_device,
/*prev_dim_result_sizes=*/result_sizes);
}
return result;
}
static inline bool treatSequenceAsTuple(PyObject* index) {
if (PyTuple_Check(index)) {
return true;
}
if (THPVariable_Check(index)) {
return false;
}
// Allow indexing with ndarray if numpy compilation is enabled. An ndarray
// index should not be treated as a tuple since the indexing has a different
// syntax.
#ifdef USE_NUMPY
if (::torch::utils::is_numpy_available() && PyArray_CheckExact(index)) {
return false;
}
#endif
if (!PySequence_Check(index)) {
return false;
}
// This uses a heuristics from NumPy for determining whether to treat
// non-tuple sequences as if they were a tuple. From the NumPy code comments:
//
// "At this point, we're left with a non-tuple, non-array, sequence:
// typically, a list. We use some somewhat-arbitrary heuristics from here
// onwards to decided whether to treat that list as a single index, or a
// list of indices. Backwards compatibility only takes effect for short
// sequences - otherwise we treat it like any other scalar."
auto n = PySequence_Size(index);
if (n < 0) {
// Negative size indicates a Python error in the PySequence_Size call.
PyErr_Clear();
return false;
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
if (n >= 32) {
return false;
}
for (Py_ssize_t i = 0; i < n; i++) {
auto obj = THPObjectPtr{PySequence_GetItem(index, i)};
if (!obj.get()) {
PyErr_Clear();
return false;
}
if (THPVariable_Check(obj.get()) || PySequence_Check(obj.get()) ||
PySlice_Check(obj.get())) {
return true;
}
if (obj.get() == Py_Ellipsis || obj.get() == Py_None) {
return true;
}
}
return false;
}
static inline THPObjectPtr wrapTuple(PyObject* index) {
THPObjectPtr res;
if (treatSequenceAsTuple(index)) {
res = PySequence_Tuple(index);
} else {
res = PyTuple_Pack(
1, index); // NOLINT(cppcoreguidelines-pro-type-cstyle-cast)
}
if (!res)
throw python_error();
return res;
}
// NOTE: Here is the dispatch structure for `THPVariable_getitem`:
//
// 1. Python 1-D getter calls C++ `at::indexing::get_item` after
// converting Python index to C++ TensorIndex.
//
// 2. Python N-D getter calls C++ `at::indexing::handleDimInMultiDimIndexing`
// for each dim, after converting Python index to C++ TensorIndex. If advanced
// indexing is needed, it calls C++ `at::indexing::dispatch_index`.
PyObject* THPVariable_getitem(PyObject* self, PyObject* index) {
HANDLE_TH_ERRORS
if (!THPVariable_CheckExact(self) && check_has_torch_function(self)) {
return handle_torch_function_indexing(self, index);
}
const auto& self_ = THPVariable_Unpack(self);
OptionalDeviceGuard device_guard(device_of(self_));
// handle simple types: none, ellipsis
if (index == Py_None) {
return THPVariable_Wrap(at::indexing::get_item(
self_, {at::indexing::TensorIndex(at::indexing::None)}));
} else if (index == Py_Ellipsis) {
return THPVariable_Wrap(at::indexing::get_item(
self_, {at::indexing::TensorIndex(at::indexing::Ellipsis)}));
}
bool is_tracing = torch::jit::tracer::isTracing();
// handle simple types: integers, slices, bool
if (THPUtils_checkLong(index)) {
if (is_tracing && THPVariable_Check(index)) {
recordSelectTrace(THPVariable_Unpack(index));
}
return THPVariable_Wrap(at::indexing::get_item(
self_, {at::indexing::TensorIndex(THPUtils_unpackLong(index))}));
} else if (PySlice_Check(index)) {
auto val = __PySlice_Unpack(index);
if (is_tracing) {
recordSliceTrace(index);
}
return THPVariable_Wrap(at::indexing::get_item(
self_,
{at::indexing::TensorIndex(
at::indexing::Slice(val.start, val.stop, val.step))}));
} else if (index == Py_False || index == Py_True) {
return THPVariable_Wrap(([&]() {
pybind11::gil_scoped_release no_gil;
return at::indexing::get_item(
self_, {at::indexing::TensorIndex(index == Py_True)});
})());
}
// wrap index in a tuple if it's not already one
THPObjectPtr holder = wrapTuple(index);
variable_list variableIndices;
int64_t specified_dims = count_specified_dimensions(holder.get());
if (specified_dims == -1) {
return handle_torch_function_indexing(self, holder.get());
}
Variable sliced = applySlicing(
self_,
holder.get(),
variableIndices,
/*is_tracing=*/is_tracing,
self_.device(),
self_.ndimension(),
specified_dims);
if (variableIndices.empty()) {
if (sliced.is_same(self_)) {
// ensure we return a shallow copy for things like x[...]
sliced = at::alias(sliced);
}
return THPVariable_Wrap(std::move(sliced));
}
// indexing by tensors ("advanced" indexing)
return THPVariable_Wrap(([&]() {
pybind11::gil_scoped_release no_gil;
return at::indexing::dispatch_index(sliced, std::move(variableIndices));
})());
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
void dispatch_set_item(
const Tensor& self,
ArrayRef<at::indexing::TensorIndex> indices,
const Tensor& value,
bool disable_slice_optimization = false) {
pybind11::gil_scoped_release no_gil;
at::indexing::set_item(self, indices, value, disable_slice_optimization);
}
// NOTE: Here is the dispatch structure for `THPVariable_setitem`:
//
// 1. Python 1-D setter calls C++ `at::indexing::set_item` after
// converting Python index to C++ TensorIndex.
//
// 2. Python N-D setter calls C++ `at::indexing::handleDimInMultiDimIndexing`
// for each dim, after converting Python index to C++ TensorIndex. If advanced
// indexing is needed, it calls C++ `at::indexing::dispatch_index_put_`.
int THPVariable_setitem(PyObject* self, PyObject* index, PyObject* py_value) {
HANDLE_TH_ERRORS
if (py_value == nullptr) {
throw TypeError("Tensor does not support deleting items");
}
if ((!THPVariable_CheckExact(self) && check_has_torch_function(self)) ||
(!THPVariable_CheckExact(py_value) &&
check_has_torch_function(py_value))) {
py::object ret = py::reinterpret_steal<py::object>(
handle_torch_function_indexing(self, index, py_value));
return 0;
}
const auto& self_ = THPVariable_Unpack(self);
if (self_.layout() == kSparse || self_.layout() == kSparseCsr ||
self_.layout() == kSparseCsc || self_.layout() == kSparseBsr ||
self_.layout() == kSparseBsc) {
throw TypeError("Cannot assign to a sparse tensor");
}
OptionalDeviceGuard device_guard(device_of(self_));
at::Device self_device = self_.device();
Variable value;
// TODO: This qint special case looks very suspicious...
if (isQIntType(self_.scalar_type())) {
value =
valueToTensor(device(kCPU).dtype(kFloat), py_value, at::Device(kCPU));
} else if (self_device.is_cuda()) {
value = valueToTensor(self_.options(), py_value, at::Device(kCPU));
} else {
value = valueToTensor(self_.options(), py_value, self_device);
}
// handle simple types: ellipsis, none, bool
if (index == Py_False) { // NOLINT(cppcoreguidelines-pro-type-cstyle-cast)
// do nothing for false (technically we should check the size, but we don't
// have real 0-sized shapes.
return 0;
} else if (index == Py_Ellipsis) {
dispatch_set_item(
self_, {at::indexing::TensorIndex(at::indexing::Ellipsis)}, value);
return 0;
} else if (index == Py_None) {
dispatch_set_item(
self_, {at::indexing::TensorIndex(at::indexing::None)}, value);
return 0;
} else if (index == Py_True) {
dispatch_set_item(self_, {at::indexing::TensorIndex(true)}, value);
return 0;
}
bool is_tracing = torch::jit::tracer::isTracing();
// handle simple types: integers, slices
if (THPUtils_checkLong(index) || torch::is_symint(index)) {
if (is_tracing && THPVariable_Check(index)) {
recordSelectTrace(THPVariable_Unpack(index));
}
auto symint = torch::is_symint(index) ? py::cast<SymInt>(index)
: SymInt(THPUtils_unpackLong(index));
dispatch_set_item(self_, {at::indexing::TensorIndex(symint)}, value);
return 0;
} else if (PySlice_Check(index)) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
auto val = __PySlice_Unpack(index);
if (is_tracing) {
recordSliceTrace(index);
}
// See NOTE [ Setting `disable_slice_optimization` when calling C++ tensor
// indexing functions from Python ]
dispatch_set_item(
self_,
{at::indexing::TensorIndex(
at::indexing::Slice(val.start, val.stop, val.step))},
value,
/*disable_slice_optimization=*/is_tracing);
return 0;
}
// wrap index in a tuple if it's not already one
THPObjectPtr holder = wrapTuple(index);
variable_list variableIndices;
int64_t specified_dims = count_specified_dimensions(holder.get());
if (specified_dims == -1) {
py::object val = py::reinterpret_steal<py::object>(
handle_torch_function_indexing(self, index, py_value));
return 0;
}
Variable sliced = applySlicing(
self_,
holder.get(),
variableIndices,
/*is_tracing=*/is_tracing,
self_device,
self_.ndimension(),
specified_dims);
if (variableIndices.empty()) {
pybind11::gil_scoped_release no_gil;
at::indexing::copy_to(sliced, value);
return 0;
}
{
pybind11::gil_scoped_release no_gil;
SymIntArrayRef valueSizes = value.sym_sizes();
SymIntArrayRef slicedValueSizes =
at::indexing::slicePrefix1sSize(valueSizes);
torch::autograd::Variable valuesSliced;
if (!valueSizes.equals(slicedValueSizes)) {
valuesSliced = value.view_symint(slicedValueSizes);
} else {
valuesSliced = value;
}
at::indexing::dispatch_index_put_(
sliced, std::move(variableIndices), valuesSliced);
return 0;
}
END_HANDLE_TH_ERRORS_RET(-1)
}
} // namespace autograd
} // namespace torch