forked from sjvasquez/handwriting-synthesis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrnn_ops.py
247 lines (198 loc) · 10.8 KB
/
rnn_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import tensor_array_ops
from tensorflow.python.ops import variable_scope as vs
from tensorflow.python.ops.rnn_cell_impl import _concat, _like_rnncell
from tensorflow.python.ops.rnn import _maybe_tensor_shape_from_tensor
from tensorflow.python.util import nest
from tensorflow.python.framework import tensor_shape
from tensorflow.python.eager import context
def raw_rnn(cell, loop_fn, parallel_iterations=None, swap_memory=False, scope=None):
"""
raw_rnn adapted from the original tensorflow implementation
(https://github.com/tensorflow/tensorflow/blob/r1.4/tensorflow/python/ops/rnn.py)
to emit arbitrarily nested states for each time step (concatenated along the time axis)
in addition to the outputs at each timestep and the final state
returns (
states for all timesteps,
outputs for all timesteps,
final cell state,
)
"""
if not _like_rnncell(cell):
raise TypeError("cell must be an instance of RNNCell")
if not callable(loop_fn):
raise TypeError("loop_fn must be a callable")
parallel_iterations = parallel_iterations or 32
# Create a new scope in which the caching device is either
# determined by the parent scope, or is set to place the cached
# Variable using the same placement as for the rest of the RNN.
with vs.variable_scope(scope or "rnn") as varscope:
if context.in_graph_mode():
if varscope.caching_device is None:
varscope.set_caching_device(lambda op: op.device)
time = constant_op.constant(0, dtype=dtypes.int32)
(elements_finished, next_input, initial_state, emit_structure,
init_loop_state) = loop_fn(time, None, None, None)
flat_input = nest.flatten(next_input)
# Need a surrogate loop state for the while_loop if none is available.
loop_state = (init_loop_state if init_loop_state is not None
else constant_op.constant(0, dtype=dtypes.int32))
input_shape = [input_.get_shape() for input_ in flat_input]
static_batch_size = input_shape[0][0]
for input_shape_i in input_shape:
# Static verification that batch sizes all match
static_batch_size.merge_with(input_shape_i[0])
batch_size = static_batch_size.value
const_batch_size = batch_size
if batch_size is None:
batch_size = array_ops.shape(flat_input[0])[0]
nest.assert_same_structure(initial_state, cell.state_size)
state = initial_state
flat_state = nest.flatten(state)
flat_state = [ops.convert_to_tensor(s) for s in flat_state]
state = nest.pack_sequence_as(structure=state,
flat_sequence=flat_state)
if emit_structure is not None:
flat_emit_structure = nest.flatten(emit_structure)
flat_emit_size = [emit.shape if emit.shape.is_fully_defined() else
array_ops.shape(emit) for emit in flat_emit_structure]
flat_emit_dtypes = [emit.dtype for emit in flat_emit_structure]
else:
emit_structure = cell.output_size
flat_emit_size = nest.flatten(emit_structure)
flat_emit_dtypes = [flat_state[0].dtype] * len(flat_emit_size)
flat_state_size = [s.shape if s.shape.is_fully_defined() else
array_ops.shape(s) for s in flat_state]
flat_state_dtypes = [s.dtype for s in flat_state]
flat_emit_ta = [
tensor_array_ops.TensorArray(
dtype=dtype_i,
dynamic_size=True,
element_shape=(tensor_shape.TensorShape([const_batch_size])
.concatenate(_maybe_tensor_shape_from_tensor(size_i))),
size=0,
name="rnn_output_%d" % i
)
for i, (dtype_i, size_i) in enumerate(zip(flat_emit_dtypes, flat_emit_size))
]
emit_ta = nest.pack_sequence_as(structure=emit_structure, flat_sequence=flat_emit_ta)
flat_zero_emit = [
array_ops.zeros(_concat(batch_size, size_i), dtype_i)
for size_i, dtype_i in zip(flat_emit_size, flat_emit_dtypes)]
zero_emit = nest.pack_sequence_as(structure=emit_structure, flat_sequence=flat_zero_emit)
flat_state_ta = [
tensor_array_ops.TensorArray(
dtype=dtype_i,
dynamic_size=True,
element_shape=(tensor_shape.TensorShape([const_batch_size])
.concatenate(_maybe_tensor_shape_from_tensor(size_i))),
size=0,
name="rnn_state_%d" % i
)
for i, (dtype_i, size_i) in enumerate(zip(flat_state_dtypes, flat_state_size))
]
state_ta = nest.pack_sequence_as(structure=state, flat_sequence=flat_state_ta)
def condition(unused_time, elements_finished, *_):
return math_ops.logical_not(math_ops.reduce_all(elements_finished))
def body(time, elements_finished, current_input, state_ta, emit_ta, state, loop_state):
(next_output, cell_state) = cell(current_input, state)
nest.assert_same_structure(state, cell_state)
nest.assert_same_structure(cell.output_size, next_output)
next_time = time + 1
(next_finished, next_input, next_state, emit_output,
next_loop_state) = loop_fn(next_time, next_output, cell_state, loop_state)
nest.assert_same_structure(state, next_state)
nest.assert_same_structure(current_input, next_input)
nest.assert_same_structure(emit_ta, emit_output)
# If loop_fn returns None for next_loop_state, just reuse the previous one.
loop_state = loop_state if next_loop_state is None else next_loop_state
def _copy_some_through(current, candidate):
"""Copy some tensors through via array_ops.where."""
def copy_fn(cur_i, cand_i):
# TensorArray and scalar get passed through.
if isinstance(cur_i, tensor_array_ops.TensorArray):
return cand_i
if cur_i.shape.ndims == 0:
return cand_i
# Otherwise propagate the old or the new value.
with ops.colocate_with(cand_i):
return array_ops.where(elements_finished, cur_i, cand_i)
return nest.map_structure(copy_fn, current, candidate)
emit_output = _copy_some_through(zero_emit, emit_output)
next_state = _copy_some_through(state, next_state)
emit_ta = nest.map_structure(lambda ta, emit: ta.write(time, emit), emit_ta, emit_output)
state_ta = nest.map_structure(lambda ta, state: ta.write(time, state), state_ta, next_state)
elements_finished = math_ops.logical_or(elements_finished, next_finished)
return (next_time, elements_finished, next_input, state_ta,
emit_ta, next_state, loop_state)
returned = control_flow_ops.while_loop(
condition, body, loop_vars=[
time, elements_finished, next_input, state_ta,
emit_ta, state, loop_state],
parallel_iterations=parallel_iterations,
swap_memory=swap_memory
)
(state_ta, emit_ta, final_state, final_loop_state) = returned[-4:]
flat_states = nest.flatten(state_ta)
flat_states = [array_ops.transpose(ta.stack(), (1, 0, 2)) for ta in flat_states]
states = nest.pack_sequence_as(structure=state_ta, flat_sequence=flat_states)
flat_outputs = nest.flatten(emit_ta)
flat_outputs = [array_ops.transpose(ta.stack(), (1, 0, 2)) for ta in flat_outputs]
outputs = nest.pack_sequence_as(structure=emit_ta, flat_sequence=flat_outputs)
return (states, outputs, final_state)
def rnn_teacher_force(inputs, cell, sequence_length, initial_state, scope='dynamic-rnn-teacher-force'):
"""
Implementation of an rnn with teacher forcing inputs provided.
Used in the same way as tf.dynamic_rnn.
"""
inputs = array_ops.transpose(inputs, (1, 0, 2))
inputs_ta = tensor_array_ops.TensorArray(dtype=dtypes.float32, size=array_ops.shape(inputs)[0])
inputs_ta = inputs_ta.unstack(inputs)
def loop_fn(time, cell_output, cell_state, loop_state):
emit_output = cell_output
next_cell_state = initial_state if cell_output is None else cell_state
elements_finished = time >= sequence_length
finished = math_ops.reduce_all(elements_finished)
next_input = control_flow_ops.cond(
finished,
lambda: array_ops.zeros([array_ops.shape(inputs)[1], inputs.shape.as_list()[2]], dtype=dtypes.float32),
lambda: inputs_ta.read(time)
)
next_loop_state = None
return (elements_finished, next_input, next_cell_state, emit_output, next_loop_state)
states, outputs, final_state = raw_rnn(cell, loop_fn, scope=scope)
return states, outputs, final_state
def rnn_free_run(cell, initial_state, sequence_length, initial_input=None, scope='dynamic-rnn-free-run'):
"""
Implementation of an rnn which feeds its feeds its predictions back to itself at the next timestep.
cell must implement two methods:
cell.output_function(state) which takes in the state at timestep t and returns
the cell input at timestep t+1.
cell.termination_condition(state) which returns a boolean tensor of shape
[batch_size] denoting which sequences no longer need to be sampled.
"""
with vs.variable_scope(scope, reuse=True):
if initial_input is None:
initial_input = cell.output_function(initial_state)
def loop_fn(time, cell_output, cell_state, loop_state):
next_cell_state = initial_state if cell_output is None else cell_state
elements_finished = math_ops.logical_or(
time >= sequence_length,
cell.termination_condition(next_cell_state)
)
finished = math_ops.reduce_all(elements_finished)
next_input = control_flow_ops.cond(
finished,
lambda: array_ops.zeros_like(initial_input),
lambda: initial_input if cell_output is None else cell.output_function(next_cell_state)
)
emit_output = next_input[0] if cell_output is None else next_input
next_loop_state = None
return (elements_finished, next_input, next_cell_state, emit_output, next_loop_state)
states, outputs, final_state = raw_rnn(cell, loop_fn, scope=scope)
return states, outputs, final_state