Skip to content

Latest commit

 

History

History
293 lines (230 loc) · 21.2 KB

README.md

File metadata and controls

293 lines (230 loc) · 21.2 KB

Multiscale attention networks for sensorless detection of aberrations in adaptive optics

python tensorflow license issues pr

Ubuntu Windows Docker
main Ubuntu-master Windows-master Docker-ubuntu-build
develop Ubuntu-develop Windows-develop Docker-ubuntu-build

Table of Contents

zernike_pyramid

Quick Start

# run from Linux terminal or Windows Powershell terminal
docker run --rm -it --gpus all --ipc=host --ulimit memlock=-1 --ulimit stack=67108864  ghcr.io/abcucberkeley/opticalaberrations:develop /bin/bash 

Once the container's interactive terminal appears, run :

# clone repo inside container and change to /src directory using alias commands
cloneit && repo
# run predict sample on the example 'single.tif'
python ao.py predict_sample ../pretrained_models/opticalnet-15-YuMB-lambda510.h5 ../examples/single/single.tif ../calibration/aang/15_mode_calibration.csv --current_dm None --dm_damping_scalar 1.0 --wavelength 0.51 --lateral_voxel_size 0.097 --axial_voxel_size 0.2 --prediction_threshold 0. --batch_size 96 --prev None --plot --plot_rotations
root@b6f4ae89b870:/app/opticalaberrations/src# python ao.py predict_sample ../pretrained_models/opticalnet-15-YuMB-lambda510.h5 ../examples/single/single.tif ../calibration/aang/15_mode_calibration.csv --current_dm None --dm_damping_scalar 1.0 --wavelength 0.51 --lateral_voxel_size 0.097 --axial_voxel_size 0.2 --prediction_threshold 0. --batch_size 96 --prev None --plot --plot_rotations
2024-01-03 17:47:57,631 - INFO - Namespace(func='predict_sample', model=PosixPath('../pretrained_models/opticalnet-15-YuMB-lambda510.h5'), input=PosixPath('../examples/single/single.tif'), dm_calibration=PosixPath('../calibration/aang/15_mode_calibration.csv'), current_dm=PosixPath('None'), prev=PosixPath('None'), lateral_voxel_size=0.097, axial_voxel_size=0.2, wavelength=0.51, dm_damping_scalar=1.0, freq_strength_threshold=0.01, prediction_threshold=0.0, confidence_threshold=0.02, sign_threshold=0.9, plot=True, plot_rotations=True, num_predictions=1, batch_size=96, estimate_sign_with_decon=False, ignore_mode=[0, 1, 2, 4], ideal_empirical_psf=None, cpu_workers=-1, cluster=False, docker=False, digital_rotations=361, psf_type=None, min_psnr=5, object_width=0.0)
2024-01-03 17:47:57,988 - INFO - Number of active GPUs: 1, NVIDIA RTX A3000 12GB Laptop GPU, batch_size=96
2024-01-03 17:47:57,988 - INFO - Loading new model, because model didn't exist
2024-01-03 17:47:58,068 - INFO - FOV scalar: ../lattice/YuMB_NAlattice0p35_NAAnnulusMax0p40_NAsigma0p1.mat => (axial: 1.00), (lateral: 1.00)
2024-01-03 17:47:58,365 - INFO - Loading ../pretrained_models/opticalnet-15-YuMB-lambda510.h5
2024-01-03 17:48:03,365 - INFO - Loading file: single.tif
2024-01-03 17:48:03,429 - INFO - Sample: (256, 256, 256)
2024-01-03 17:48:08,423 - INFO - FOV scalar: ../lattice/YuMB_NAlattice0p35_NAAnnulusMax0p40_NAsigma0p1.mat => (axial: 1.00), (lateral: 1.00)
2024-01-03 17:48:16,324 - INFO - Ignoring modes: [0, 1, 2, 4]
2024-01-03 17:48:16,324 - INFO - Checking for invalid inputs
2024-01-03 17:48:16,369 - INFO - [BS=96, n=1] Predict-rotations
4/4 [==============================] - 5s 424ms/step
Evaluate predictions: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:02<00:00,  2.21s/it] 2.2s elapsed
2024-01-03 17:48:25,241 - INFO - Total time elapsed: 27.61 sec.
2024-01-03 17:48:25,241 - INFO - Updating file permissions to ../examples/single

Full Installation

Git Clone repository to your host system

# Please make sure you have Git LFS installed to download our pretrained models
git clone -b develop --recurse-submodules https://github.com/abcucberkeley/opticalaberrations.git
# ...to later update to the latest, greatest
git pull --recurse-submodules

Docker images

# our prebuilt image with Python, TensorFlow, and all packages installed for you.
docker pull ghcr.io/abcucberkeley/opticalaberrations:develop

VSCode

We recommend developing using VSCode and our provided Dev Container.

  1. Run VSCode and open the folder where you cloned the repository (opticalaberrations).
  2. A window will appear offering to open this in the detected workspace, then to Reopen in DevContainer. Click yes, and wait for the Dev Container to start.
  3. Select the Python Interpreter (in the container) by clicking in the the bottom right status bar.
  4. Now check if your install is working:
  5. Select the "Tests" icon on the Extensions sidebar, instruct pytest (not unittest) to find the tests in \tests, and run the tests. These will and mirrors the tests Github runs here.
  6. Select the "Run" icon and choose a mode to run in.
  7. The code will execute in the container's python interpreter, the repo files on your host are mounted to the container. If you want to execute on other files, you will need to move them to a folder in the repo or mount their locations to the container.

Anaconda

A legacy install method is to use conda (https://docs.anaconda.com/anaconda/install/index.html) to install the required packages for running our models. This is not currently tested.

Create a new conda environment using the following commands (will create an environment named "ml"):

System Requirements
Ubuntu ubuntu.yml
Windows windows.yml
# Ubuntu via .yml
cd opticalaberrations
conda env create -f ubuntu.yml
conda activate ml

or

# Via conda and pip
conda create python=3.10 cudatoolkit=11.2 cudnn=8.1.0 dask-cuda matplotlib astropy seaborn numpy scikit-image scikit-learn scikit-spatial pandas ipython pytest ujson zarr conda pycudadecon -c conda-forge -n ml --yes
conda activate ml
pip install tensorflow==2.10 keras==2.10
pip install cupy-cuda11x tensorflow_addons dphtools csbdeep line-profiler line-profiler-pycharm tifffile==2023.9.18 imagecodecs==2023.9.18 

Pre-trained models

To make sure you have the latest pre-trained models:

git lfs fetch --all
git lfs pull 

Utilities

The [src/python ao.py](src/python ao.py) script provides a CLI for running our models on a given 3D stack (.tif file).

Note: Make sure to activate the new ml env before running the script, or use the full filepath to your python environment.

Simple predictions

For each successful run, the script will output the following files:

  • *_sample_predictions_psf.tif: predicted PSF
  • *_sample_predictions_zernike_coefficients.csv: predicted Zernike modes
  • *_sample_predictions_pupil_displacement.tif: predicted wavefront
  • *_sample_predictions_corrected_actuators.csv: a new vector describing the new positions for the DM's actuators

Example Usage (Sample)

python ao.py predict_sample [--optional_flags] model input dm_calibration

The script takes 3 positional arguments and a few optional ones described below.

Positional arguments

Description
model path to pretrained TensorFlow model
input path to input (.tif file)
dm_calibration path DM calibration mapping matrix (e.g., Zernike_Korra_Bax273.csv)

Optional arguments

Description
help show this help message and exit
current_dm optional path to current DM state .csv file (Default: blank mirror)
prev previous predictions .csv file (Default: None)
lateral_voxel_size lateral voxel size in microns for X (Default: 0.097)
axial_voxel_size axial voxel size in microns for Z (Default: 0.1)
wavelength wavelength in microns (Default: 0.51)
dm_damping_scalar scale DM actuators by an arbitrary multiplier (Default: 0.75)
freq_strength_threshold minimum frequency threshold in fourier space [fractional values below that will be set to the desired minimum] (Default: 0.01)
prediction_threshold set predictions below threshold to zero (waves) (Default: .1)
sign_threshold flip sign of modes above given threshold
[fractional value relative to previous prediction] (Default: .9)
num_predictions number of predictions per sample to estimate model's confidence (Default: 10)
plot a toggle for plotting predictions
estimate_sign_with_decon a toggle for estimating signs of each Zernike mode via decon
ignore_mode ANSI index for mode you wish to ignore (Default: [0, 1, 2, 4])

Tile-based predictions

For each successful run, the script will output the following files:

  • *_tiles_predictions.csv: a statistical summary of the predictions for each tile

Note: You need to run aggregate predictions to get the final prediction

Example Usage (Tiles)

python ao.py predict_tiles [--optional_flags] model input

The script takes 2 positional arguments and a few optional ones described below.

Positional arguments

Description
model path to pretrained TensorFlow model
input path to input (.tif file)

Optional arguments

Description
help show this help message and exit
window_size size of the window to crop for each tile (Default: 64)
prev previous predictions .csv file (Default: None)
lateral_voxel_size lateral voxel size in microns for X (Default: 0.097)
axial_voxel_size axial voxel size in microns for Z (Default: 0.1)
wavelength wavelength in microns (Default: 0.51)
freq_strength_threshold minimum frequency threshold in fourier space [fractional values below that will be set to the desired minimum] (Default: 0.01)
prediction_threshold set predictions below threshold to zero (waves) (Default: 0.)
sign_threshold flip sign of modes above given threshold
[fractional value relative to previous prediction] (Default: .9)
num_predictions number of predictions per sample to estimate model's confidence (Default: 10)
batch_size maximum batch size for the model (Default: 100)
ignore_tile IDs [e.g., "z0-y0-x0"] for tiles you wish to ignore (Default: None)
plot a toggle for plotting predictions
estimate_sign_with_decon a toggle for estimating signs of each Zernike mode via decon
ignore_mode ANSI index for mode you wish to ignore (Default: [0, 1, 2, 4])

Aggregate predictions

For each successful run, the script will output the following files:

  • *_predictions_aggregated_psf.tif: predicted PSF
  • *_predictions_aggregated.csv: a statistical summary of the predictions
  • *_predictions_aggregated_zernike_coefficients.csv: predicted zernike modes
  • *_predictions_aggregated_pupil_displacement.tif: predicted wavefront
  • *_predictions_aggregated_corrected_actuators.csv: a new vector describing the new positions for the DM's actuators

Note: You need to run aggregate_predictions for both ROI-based predictions and Tile-based predictions to get the final prediction

Example Usage (Aggregate)

python ao.py aggregate_predictions [--optional_flags] model predictions dm_calibration

The script takes 3 positional arguments and a few optional ones described below.

Positional arguments

Description
model path to pretrained TensorFlow model
predictions path to model's predictions (.csv file)
dm_calibration path DM calibration mapping matrix (eg. Zernike_Korra_Bax273.csv)

Optional arguments

Description
help show this help message and exit
current_dm optional path to current DM state .csv file (Default: blank mirror)
dm_damping_scalar scale DM actuators by an arbitrary multiplier (Default: 0.75)
prediction_threshold set predictions below threshold to zero (waves) (Default: 0.)
majority_threshold majority rule to use to determine dominant modes among ROIs (Default: 0.5)
aggregation_rule rule to use to calculate final prediction [mean, median, min, max] (Default: mean)
min_percentile minimum percentile to filter out outliers (Default: 10)
max_percentile maximum percentile to filter out outliers (Default: 90)
lateral_voxel_size lateral voxel size in microns for X (Default: 0.097)
axial_voxel_size axial voxel size in microns for Z (Default: 0.1)
wavelength wavelength in microns (Default: 0.51)
plot a toggle for plotting predictions

Deconvolution

For each successful run, the script will output the following files:

  • *_decon.tif: results of deconvolving the given input with the desired PSF

Example Usage (Deconvolution)

python ao.py decon [--optional_flags] input psf

The script takes 3 positional arguments and a few optional ones described below.

Positional arguments

Description
input path to input (.tif file)
psf path to PSF (.tif file)

Optional arguments

Description
help show this help message and exit
iters number of iterations for Richardson-Lucy deconvolution (Default: 10)
plot a toggle for plotting results