-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathfigures_public_scRNAseq.Rmd
405 lines (330 loc) · 15.3 KB
/
figures_public_scRNAseq.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
---
title: "Combining our data with Schauder's Tcm and Yao's progLikes and MPECs"
author: "Friederike Dündar | ABC @ WCM"
date: "August 2021"
output:
html_document:
code_folding: hide
toc: true
toc_float: true
editor_options:
chunk_output_type: console
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
```{r cache=FALSE, message=FALSE}
library(data.table); library(magrittr)
library(ggplot2); theme_set(theme_bw(base_size = 14))
library(patchwork)
library(SingleCellExperiment)
library(pcaExplorer); library(org.Mm.eg.db)
source("src/marker_gene_extract_and_plot.R")
source("src/load_data_from_box.R")
library(pheatmap)
library(org.Mm.eg.db); library(clusterProfiler)
```
## Integrating data sets
* Yao et al (2019): day 7 CD8 T cells from acute (`Arm`) and chronic (`Cl13`) infection
- will focus on the memory precursors and progenitor-like cells (which are from repl. 1 only)
* Schauder et al (2021): day 129 following acute infection
For details of how we retrieved the public data sets, see `Schauder2021.Rmd` and `Yao2019.Rmd`.
```{r integration, eval=FALSE}
## Code here does not need to be executed, it's simply for documentation purposes
## to show the details of how we generated the composite integrated file that
## we're providing for download
library(magrittr)
library(batchelor)
library(scran)
library(scater)
library(patchwork)
fnall <- "sce_integrated_with_YaoProgsMpecs-and-Schauder.rds"
fnmerged <- "sceMultiout_integrated_with_YaoProgsMpecs-and-Schauder.rds"
## MAKE A LIST of INDIVIDUAL SCEs ==============================================
## our data -------------
sln <- load_data_from_Box("https://wcm.box.com/shared/static/2wvbdfs3vja2cnlckcqpk20eu1693o8o.rds")
rownames(sln) <- rowData(sln)$ID
scel <- lapply(unique(sln$Sample), function(x){
out.sce <- sln[, sln$Sample == x]
assay(out.sce, "logcounts") <- NULL
colData(out.sce) <- colData(out.sce)[, c("Sample","Barcode","cell")]
rownames(out.sce) <- rowData(out.sce)$ID
return(out.sce)
})
names(scel) <- unique(sln$Sample)
## Schauder -------------
scs <- readRDS("../2021-08_Schauder2021/sce_integrated_with_Schauder2021.rds")
assay(scs, "logcounts") <- NULL
scs <- scs[,!grepl("^pLN",scs$Sample)]
colData(scs) <- colData(scs)[, c("Sample","Barcode","cell")]
rownames(scs) <- rowData(scs)$ID
scel$Schauder <- scs
## Yao -------------
scy <- readRDS("../2021-08_Yao2019/sce_integrated_with_Yao2019.rds")
assay(scy, "logcounts") <- NULL
scy <- scy[,!grepl("^pLN",scy$Sample)]
yaolabs <- read.table("../2021-08_Yao2019/Yao2019_metadata.txt", header = FALSE, skip = 1)
names(yaolabs) <- c("YaoCell","nGene","nUMI","orig.ident","percent.mito","res.0.5","res.1","res.1.5")
## res.0.5 = clusters; 10 = progs, 7 = MPecs
kp_cells <- subset(yaolabs, res.0.5 %in% c(10, 7)) %>% .$YaoCell
scy$YaoCell <- paste(gsub("_[12]$", "", scy$Sample), gsub("-[0-9]$","", scy$Barcode), sep = "_")
for(i in unique(scy$Sample)){
out.sce <- scy[, scy$Sample == i]
out.sce <- out.sce[, out.sce$YaoCell %in% kp_cells]
colData(out.sce) <- colData(out.sce)[, c("Sample","Barcode","cell")]
rownames(out.sce) <- rowData(out.sce)$ID
scel[[i]] <- out.sce}
## PREPPING ============================================================
rd_qc <- lapply(scel,perFeatureQCMetrics)
for(x in seq_along(scel)){rowData(scel[[x]])$qc.mean <- rd_qc[[x]]$mean}
scel2 <- lapply(scel, function(x){ x[rowData(x)$qc.mean > 0.001,]})
## combine
universe <- Reduce(intersect, lapply(scel2, rownames))
scel2 <- lapply(scel2, "[", i=universe)
# generate logcounts
normed.sce <- do.call(multiBatchNorm, scel2) # returns a list
# Identifying a set of HVGs using stats from all batches, using logcounts
all.dec <- lapply(normed.sce, modelGeneVar)
combined.dec <- do.call(combineVar, all.dec)
combined.hvg <- getTopHVGs(combined.dec, n=2000)
## MERGING with MNN ====================================================
## prep
combined <- noCorrect(normed.sce)
assayNames(combined) <- "logcounts"
combined$Sample <- combined$batch
combined$batch <- NULL
set.seed(1010100)
## progressively merge cells from each sample in each batch until all cells
## are mapped onto a common coordinate space
multiout <- fastMNN(combined, batch=combined$Sample, subset.row=combined.hvg)
# Renaming metadata fields for easier communication later.
multiout$Sample <- multiout$batch
## UMAP----------------------------------
set.seed(10101010)
multiout <- runUMAP(multiout, dimred="corrected")
## Clustering -----------------------------
g <- buildSNNGraph(multiout, use.dimred="corrected", k = 20)
clusters <- igraph::cluster_louvain(g)
multiout$cluster_with_SchauderYao_k20 <- factor(clusters$membership)
g <- buildSNNGraph(multiout, use.dimred="corrected", k = 50)
clusters <- igraph::cluster_louvain(g)
multiout$cluster_with_SchauderYao_k50 <- factor(clusters$membership)
g <- buildSNNGraph(multiout, use.dimred="corrected", k = 10)
clusters <- igraph::cluster_louvain(g)
multiout$cluster_with_SchauderYao_k10 <- factor(clusters$membership)
g <- buildSNNGraph(multiout, use.dimred="corrected", k = 5)
clusters <- igraph::cluster_louvain(g)
multiout$cluster_with_SchauderYao_k5 <- factor(clusters$membership)
saveRDS(multiout,file = fnmerged)
# generate composite file for the combined file of all shared genes ============
## combine
universe <- Reduce(intersect, lapply(scel, rownames))
scel <- lapply(scel, "[", i=universe)
comb.mat <- lapply(scel, function(x) counts(x)) %>% do.call(cbind, .)
colnames(comb.mat) <- unlist(lapply(scel, function(x) colnames(x)))
### rowData
rd <- rowData(scel[[1]])[, c("ID","Symbol")]
rd <- rd[rownames(comb.mat),]
## colData
cd <- lapply(scel, function(x) colData(x)[, c("Sample","Barcode","cell")]) %>% do.call(rbind, .)
cd <- cd[colnames(comb.mat),]
scAll <- SingleCellExperiment(
assays = list(counts = comb.mat),
colData = cd, rowData = rd)
## add redDims from the merged data set
rdu <- reducedDim(multiout, "UMAP")
reducedDim(scAll, "UMAP") <- rdu[colnames(scAll),]
reducedDim(scAll, "PCA_corr") <- reducedDim(multiout, "corrected")
## add log-counts
qckclst <- quickCluster(scAll, method = "igraph", min.mean = 0.1)
scAll <- computeSumFactors(scAll, min.mean=0.1, cluster = qckclst)
scAll <- scater::logNormCounts(scAll)
saveRDS(scAll, file = fnall)
colData(multiout) %>% saveRDS("colData_multiout_YaoProgsMpecs-and-Schauder.rds")
## fix ColData ======================================================
cd2 <- colData(multiout)
cd2 <- as.data.frame(cd2)
cd2$cell <- rownames(cd2)
cd2 <- cd2[, c("cell",grep("cluster", names(cd2), value=TRUE))]
newcd <- merge(colData(scAll), cd2, by = "cell")
## add YAO LABELS -----------------------------------------------
newcd$YaoCell <- paste(gsub("_[12]$", "", newcd$Sample), gsub("-[0-9]$","", newcd$Barcode), sep = "_")
newcd <- merge(newcd, yaolabs, by="YaoCell", all.x = TRUE)
## add OUR LABELS ------------------------------------------------
cdus <- colData(sln)
newcd <- cdus[, c("cell","CD62L","label")] %>% as.data.frame %>%
merge(newcd, ., on = "cell", all.x = TRUE)
newcd$label <- ifelse(!is.na(newcd$label), newcd$label,
ifelse(grepl("GSM3732587", newcd$Sample), "Schauder",
ifelse(grepl("^D", newcd$Sample), paste0("Yao_", gsub("_1$", "", gsub("_P14","",newcd$Sample))),
"no.clue")))
## 10 = progs, 7 = MPecs
newcd$label2 <- ifelse(is.na(newcd$res.0.5), newcd$label,
ifelse(newcd$res.0.5 == 10, "ProgLike",
ifelse(newcd$res.0.5 == 7, paste(newcd$label, "MPECS", sep = "_"), "no.clue")))
newcd$label2 <- ifelse(newcd$label2 == "Schauder", "Tcm", newcd$label2)
#> table(newcd$label2)
# AIC AMC ProgLike Tcm
# 1704 1335 114 535
# transition Yao_D7_Arm_MPECS Yao_D7_Cl13_MPECS
# 2016 386 2
## finalize colData
rownames(newcd) <- newcd$cell
colData(scAll) <- newcd[colnames(scAll),]
## adjust the naming scheme for our populations
scAll$label <- ifelse(scAll$label == "AIC","AP", ifelse(scAll$label == "transition", "intermediate", ifelse(scAll$label == "AMC", "AM", scAll$label)))
scAll$label2 <- ifelse(scAll$label2 == "AIC","AP", ifelse(scAll$label2 == "transition", "intermediate", ifelse(scAll$label2 == "AMC", "AM", scAll$label2)))
## remove the lonely two cells classified as D7-Cl13-MPECS
scAll <- scAll[, scAll$label2 != "Yao_D7_Cl13_MPECS"]
scAll$label2 <- gsub("Yao_D7_Arm_", "", scAll$label2)
scAll$label2 <- factor(scAll$label2, levels = c("AP","intermediate","AM","MPECS","ProgLike", "Tcm"), ordered = TRUE)
scAll$Ref <- ifelse(grepl("Yao",scAll$label), "Yao", ifelse(grepl("Schauder", scAll$label), "Schauder", "Gearty"))
rownames(scAll) <- scater::uniquifyFeatureNames(ID = rowData(scAll)$ID,
names = rowData(scAll)$Symbol)
saveRDS(scAll, file = fnall)
```
```{r load_data}
sc3 <- load_RDSdata_from_Box(shared_link = "https://wcm.box.com/shared/static/ixtkzzow5b4r2ck3u6zit2jtep7dunzv.rds")
```
```{r define_colors}
## define color schemes ---------------------------------------------------------
popcols <- c("#1E498F", "#629DD4","#5E3DD8", # dark blue, light blue, intermediate blue
"#228B22", #"bisque1",
"#9ED9B9",#"lightpink1",
"maroon1")
names(popcols) <- c("AP","intermediate","AM",
"Tcm",
"MPECS","ProgLike")
sample_cols <- c(
"D7_P14_Cl13_1" = "sienna4", "D7_P14_Arm_1"="sienna2",
"GSM3732587_Day129"="wheat3",
"pLN_1"="blue","pLN_2"="dodgerblue1","pLN_3"="lightskyblue")
cluster_cols <- c('#B1E2F9','limegreen','grey30','#FFC914','#0066E2','#FC71E9','#00E5CA','#E31A1C','grey83','#FF7F00','#378C07','#6A3D9A','#FFFF99','#B15928')
names(cluster_cols) <- sort(unique(sc3$cluster_with_SchauderYao_k20))
cluster_cols <- cluster_cols[sort(unique(sc3$cluster_with_SchauderYao_k20))]
```
## Global comparisons
We can pretend that the individual cell types of interest are pseudo-bulk samples,
i.e. we can sum up the reads across all cells of the same label-sample combination
(e.g. all cells from Sample "pLN_1" that are labelled as "AP" will form one pseudo-bulk
sample "pLN_1_AP").
This helps us to apply more robust bulk-RNA-seq methods for global comparisons across the samples.
```{r message=FALSE}
summed.scf <- scater::aggregateAcrossCells(sc3,
ids=colData(sc3)[,c("label2","Sample")])
library(edgeR)
y <- DGEList(counts(summed.scf), samples=colData(summed.scf))
keep <- filterByExpr(y, group=summed.scf$Sample)
y <- y[keep,]
y <- calcNormFactors(y)
```
### PCA
```{r PCA, fig.width = 15, fig.height = 8}
PCA <- prcomp(t(cpm(y, log = TRUE)), scale = F)
percentVar <- round(100*PCA$sdev^2/sum(PCA$sdev^2),1)
dataGG = data.frame(PC1 = PCA$x[,1],PC2 = PCA$x[,2],
PC3 = PCA$x[,3],PC4 = PCA$x[,4],
sampleName = row.names(y$samples),
y$samples)
dataGG$MySampleName <- paste(dataGG$Sample.1, dataGG$label2.1, sep = "_")
p1 <- ggplot(dataGG, aes(x = PC1, y = PC2, fill = label2.1, shape = Ref)) +
geom_point(size = 8, alpha = .85) +
xlab(paste0("PC1, VarExp:", round(percentVar[1],4))) +
ylab(paste0("PC2, VarExp:", round(percentVar[2],4))) +
scale_fill_manual(values = popcols, name = "") +
scale_shape_manual(values = c(21,22,23), name = "") +
theme(legend.position = "bottom")
p2 <- ggplot(dataGG, aes(x = PC1, y = PC2, color = label2.1, label = MySampleName)) +
geom_text(size = 6) + scale_color_manual(values = popcols) +
theme(legend.position = "none")
p1 | p2
```
```{r pca_loadings, message=FALSE, warning=FALSE, eval=TRUE, fig.width=10, fig.height=6.5, context="data"}
par(mfrow=c(2,1))
hi_loadings(PCA,whichpc = as.integer(1),topN = 20)
hi_loadings(PCA,whichpc = as.integer(2),topN = 20)
```
```{r hclusting, fig.height=8, fig.width = 10}
hc <- hclust( as.dist(1-cor(cpm(y, log = TRUE))), method="complete")
hc$labels <- dataGG$MySampleName
#plot(hc)
```
```{r hclust_mod, fig.height = 4.5, fig.width =7, message=FALSE}
library(dendextend)
dend <- as.dendrogram(hc)
labels_colors(dend) <- c(rep(popcols[["AP"]], 3), popcols[["AM"]], rep(popcols[["intermediate"]], 3), rep(popcols[["AM"]], 2), popcols[["Tcm"]], popcols[["MPECS"]], popcols[["ProgLike"]])
par(mar=c(15,4,4,2))
rotate(dend, c( 'pLN_1_AP', 'pLN_3_AP', 'pLN_4_AP', 'pLN_1_intermediate', 'pLN_3_intermediate', 'pLN_4_intermediate', 'pLN_1_AM', 'pLN_3_AM', 'pLN_4_AM', 'D7_P14_Arm_1_MPECS', 'D7_P14_Cl13_1_ProgLike','GSM3732587_Day129_Tcm')) %>% plot
```
## Single-cell level: markers distinguishing the populations
>comparing AP vs ProgLike vs Tcm and so on
Taking all genes that are either up- or down in any one of the populations (FDR <= 1%) and that are at least in the top 50 for each population.
```{r marker_gene_detection_pops, message=FALSE, cache=FALSE}
LabelMarkers <- scran::findMarkers(sc3,
group = sc3$label2)
goi <- lapply(LabelMarkers, function(x) rownames(subset(as.data.frame(x), FDR <= 0.01 & Top <= 50))) %>% unlist %>% unique
```
```{r fig.height = 20, fig.width = 12}
## with Tcf7 as a color bar
plot_marker_heatmap(sc3,
gns=unique(c("Tox",goi)),
gns_as_cellAnnotation = c("Tcf7","Tox"), exclude_genes = "Tox",
exprs_values = "logcounts",
show_HKgenes = "both",
n_quant_breaks = 300,
scale="row",col_palette = c("mediumorchid","black","yellow"),
fontsize_row = 7,
add_cell_annotation = data.frame(
row.names = colnames(sc3),
#cluster = sc3$cluster_with_SchauderYao_k20,
population = sc3$label2),
define_anno_cols = list(
#cluster = cluster_cols,
population = popcols,
Tox = scales::brewer_pal("seq", "Reds")(5)[1:4],
Tcf7 = scales::brewer_pal("seq", "Reds")(5)[1:4]),
main = "Marker genes of the individual populations\n(FDR 1%, Rank <= 50)"
)
```
### GO term enrichments
Determining the top enriched GO terms for markers that are specifically overexpressed in the different populations.
```{r message=FALSE, warning=FALSE, eval=FALSE}
## marker genes
cm.up <- scran::findMarkers(sc3,
group = sc3$label2, direction = "up")
mks.up <- extract_markers(sc3,
marker_search_result = cm.up, FDR_thresh = 0.01,
rank_thresh = 300)
## get ENTREZ IDs
all.entrez <- clusterProfiler::bitr(rownames(sc3),
fromType="SYMBOL", toType="ENTREZID",
OrgDb="org.Mm.eg.db") %>% as.data.table
setnames(all.entrez, names(all.entrez), c("gene_symbol", "entrez"))
## generate list of ENTREZ IDs of interest
eg <- all.entrez[mks.up, on = "gene_symbol"]
## focus on those that are UP and UNIQUELY so per population
clstcomp.list <- lapply(names(cm.up), function(x) eg[up_in == x & classify == "unique"]$entrez )
names(clstcomp.list) <- names(cm.up)
```
```{r gobp_cluster_comparison, eval=FALSE}
cc.gobp <- compareCluster(clstcomp.list, fun = "enrichGO", OrgDb = org.Mm.eg.db,
ont = "BP", pvalueCutoff=0.05, readable=TRUE, universe = all.entrez$entrez)
```
```{r include=FALSE}
load("YaoSchauderGearty_markerGenes_GOBP.rda")
```
```{r fig.width = 10, fig.height = 7, message=FALSE, warning=FALSE}
## visualization
dotplot(cc.gobp, showCategory = 10) +
ggtitle("Overrepresented GO BP terms for markers that are\nuniquely upregulated in either population") +
scale_color_gradientn(colours =rev(c("azure2", "darkseagreen1", "seagreen2","forestgreen")), limits = c(0, 0.05))
```
- geneRatio should be number of genes that overlap gene set divided by size of gene set
Here are some of the top enriched GO terms in detail:
```{r fig.width = 15, fig.height = 15}
cnetplot(cc.gobp) + scale_fill_manual(values = popcols, name = "")
```
## Session Info
```{r}
sessionInfo()
```