Skip to content

rl-optimize is an open source platform to provide Deep Learning based solutions to combinatorial optimization problems and NP/NP-hard problems..

License

Notifications You must be signed in to change notification settings

abdullah-al-masud/rl-optimize

Repository files navigation

rl-optimize

The main objective of this repository is to research and develop optimization problem (such as TSP, VRP, MIP etc.) solvers based on recent ML and RL introductions to this field.

Our current works are very limited to a bunch of specific problem solvers and we will focus on building ML models or a single model if possible to solve all types of optimization problems.

The true nature of this repository will be to provide high quality open source implementations but at the same time will also be kept private partially of under-development works.

Dependencies

All dependecies are listed inside requirements.txt except Pytorch library.

Installation

Open command line and type

git clone git@github.com:abdullah-al-masud/rl-optimize.git
cd rl-optimize
pip install -r requirements.txt

Note: Python version 3.8, 3.9 are supported. (Ortools fails at 3.11 for some reason.) Last command's "pip" portion may vary based on OS or Anaconda.

Results

TSP

We have used google ORtools to benchmark our results. We trained our models in a low-spec GPU, so the computation time shown in below images are to be ignored. Also due to limitation of compution resulrce, our models were not trained with proper number of epochs as specified in google paper Neural Combinatorial Optimization with Reinforcement Learning. Yet the result is very close to what the paper mentioned.

The results are shown below-

For TSP-20

For TSP-50

For TSP-100

Contributors

We are actively searching for researchers and contributors who can help us building this open source library and will be joining the team to serve mankind with advanced ML based optimization solutions.

About

rl-optimize is an open source platform to provide Deep Learning based solutions to combinatorial optimization problems and NP/NP-hard problems..

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages