-
Notifications
You must be signed in to change notification settings - Fork 4
/
run_training.py
executable file
·202 lines (166 loc) · 7.69 KB
/
run_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
#!/usr/bin/env python3
import matplotlib
# matplotlib.use('Agg')
import os
import sys
import numpy as np
from funque.config import DisplayConfig
from funque.tools.misc import import_python_file, cmd_option_exists, get_cmd_option
from funque.core.result_store import FileSystemResultStore
from funque.routine import print_matplotlib_warning, train_test_on_dataset
from funque.tools.stats import ListStats
__copyright__ = "Copyright 2016-2020, Netflix, Inc."
__license__ = "BSD+Patent"
POOL_METHODS = ['mean', 'harmonic_mean', 'min', 'median', 'perc5', 'perc10', 'perc20']
SUBJECTIVE_MODELS = ['DMOS', 'DMOS_MLE', 'MLE', 'MLE_CO_AP',
'MLE_CO_AP2 (default)', 'MOS', 'SR_DMOS',
'SR_MOS (i.e. ITU-R BT.500)',
'BR_SR_MOS (i.e. ITU-T P.913)',
'ZS_SR_DMOS', 'ZS_SR_MOS', '...']
def print_usage():
print("usage: " + os.path.basename(sys.argv[0]) + \
" train_dataset_filepath feature_param_filepath model_param_filepath output_model_filepath " \
"[--subj-model subjective_model] [--cache-result] [--parallelize] [--save-plot plot_dir] " \
"[--processes processes] [--config-param-filepath config_param_file_path] "
"[--test-dataset-filepath test_dataset_filepath] \n")
print("subjective_model:\n\t" + "\n\t".join(SUBJECTIVE_MODELS) + "\n")
print("processes: must be an integer >=1")
def main():
if len(sys.argv) < 5:
print_usage()
return 2
try:
train_dataset_filepath = sys.argv[1]
feature_param_filepath = sys.argv[2]
model_param_filepath = sys.argv[3]
output_model_filepath = sys.argv[4]
except ValueError:
print_usage()
return 2
try:
train_dataset = import_python_file(train_dataset_filepath)
feature_param = import_python_file(feature_param_filepath)
model_param = import_python_file(model_param_filepath)
except Exception as e:
print("Error: %s" % e)
return 1
cache_result = cmd_option_exists(sys.argv, 3, len(sys.argv), '--cache-result')
parallelize = cmd_option_exists(sys.argv, 3, len(sys.argv), '--parallelize')
processes = get_cmd_option(sys.argv, 3, len(sys.argv), '--processes')
suppress_plot = cmd_option_exists(sys.argv, 3, len(sys.argv), '--suppress-plot')
pool_method = get_cmd_option(sys.argv, 3, len(sys.argv), '--pool')
if not (pool_method is None
or pool_method in POOL_METHODS):
print('--pool can only have option among {}'.format(', '.join(POOL_METHODS)))
return 2
subj_model = get_cmd_option(sys.argv, 3, len(sys.argv), '--subj-model')
try:
from sureal.subjective_model import SubjectiveModel
if subj_model is not None:
subj_model_class = SubjectiveModel.find_subclass(subj_model)
else:
subj_model_class = SubjectiveModel.find_subclass('MLE_CO_AP2')
except Exception as e:
print("Error: %s" % e)
return 1
save_plot_dir = get_cmd_option(sys.argv, 3, len(sys.argv), '--save-plot')
if cache_result:
result_store = FileSystemResultStore()
else:
result_store = None
if processes is not None:
try:
processes = int(processes)
except ValueError:
print("Input error: processes must be an integer")
assert processes >= 1
config_param_filepath = get_cmd_option(sys.argv, 3, len(sys.argv), '--config-param-filepath')
if config_param_filepath is not None:
config_param = import_python_file(config_param_filepath)
optional_dict = config_param.optional_dict
else:
optional_dict = None
test_dataset_filepath = get_cmd_option(sys.argv, 3, len(sys.argv), '--test-dataset-filepath')
if test_dataset_filepath is not None:
test_dataset = import_python_file(test_dataset_filepath)
else:
test_dataset = None
# pooling
if pool_method == 'harmonic_mean':
aggregate_method = ListStats.harmonic_mean
elif pool_method == 'min':
aggregate_method = np.min
elif pool_method == 'median':
aggregate_method = np.median
elif pool_method == 'perc5':
aggregate_method = ListStats.perc5
elif pool_method == 'perc10':
aggregate_method = ListStats.perc10
elif pool_method == 'perc20':
aggregate_method = ListStats.perc20
else: # None or 'mean'
aggregate_method = np.mean
logger = None
try:
if suppress_plot:
raise AssertionError
from funque import plt
if test_dataset is None:
fig, ax = plt.subplots(figsize=(5, 5), nrows=1, ncols=1)
axs = (ax, None)
else:
fig, axs = plt.subplots(figsize=(10, 5), nrows=1, ncols=2)
train_test_on_dataset(train_dataset=train_dataset, test_dataset=test_dataset,
feature_param=feature_param, model_param=model_param,
train_ax=axs[0], test_ax=axs[1],
result_store=result_store,
parallelize=parallelize,
logger=logger,
output_model_filepath=output_model_filepath,
aggregate_method=aggregate_method,
subj_model_class=subj_model_class,
processes=processes,
optional_dict=optional_dict,
)
bbox = {'facecolor':'white', 'alpha':0.5, 'pad':20}
axs[0].annotate('Training Set', xy=(0.1, 0.85), xycoords='axes fraction', bbox=bbox)
if axs[1] is not None:
axs[1].annotate('Testing Set', xy=(0.1, 0.85), xycoords='axes fraction', bbox=bbox)
# ax.set_xlim([-10, 110])
# ax.set_ylim([-10, 110])
plt.tight_layout()
if save_plot_dir is None:
DisplayConfig.show()
else:
DisplayConfig.show(write_to_dir=save_plot_dir)
except ImportError:
print_matplotlib_warning()
train_test_on_dataset(train_dataset=train_dataset, test_dataset=test_dataset,
feature_param=feature_param, model_param=model_param,
train_ax=None, test_ax=None,
result_store=result_store,
parallelize=parallelize,
logger=logger,
output_model_filepath=output_model_filepath,
aggregate_method=aggregate_method,
subj_model_class=subj_model_class,
processes=processes,
optional_dict=optional_dict,
)
except AssertionError:
train_test_on_dataset(train_dataset=train_dataset, test_dataset=test_dataset,
feature_param=feature_param, model_param=model_param,
train_ax=None, test_ax=None,
result_store=result_store,
parallelize=parallelize,
logger=logger,
output_model_filepath=output_model_filepath,
aggregate_method=aggregate_method,
subj_model_class=subj_model_class,
processes=processes,
optional_dict=optional_dict,
)
return 0
if __name__ == '__main__':
ret = main()
exit(ret)