-
Notifications
You must be signed in to change notification settings - Fork 654
/
all_papers.html
2125 lines (1888 loc) · 428 KB
/
all_papers.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE HTML>
<!-- saved from url=(0016)http://localhost -->
<!-- This file was generated by Snap2HTML 2.14 at 2023-11-22 11:58 AM. See http://www.rlvision.com for more information -->
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=10,IE=9,IE=8">
<title>Literature</title>
<style type="text/css">
html, body {
height:100%;
margin: 0;
padding: 0;
}
html > body {
font-size: 16px;
font-size: 68.75%;
} /* Reset Base Font Size */
body {
font-family: Verdana, helvetica, arial, sans-serif;
font-size: 68.75%;
background: #0072AF;
color: #333;
background-image: rgb(201,222,150);
background-image: -moz-linear-gradient(top, rgb(201,222,150) 0%, rgb(138,182,107) 44%, rgb(57,130,53) 100%);
background-image: -webkit-gradient(linear, left top, left bottom, color-stop(0%,rgb(201,222,150)), color-stop(44%,rgb(138,182,107)), color-stop(100%,rgb(57,130,53)));
background-image: -webkit-linear-gradient(top, rgb(201,222,150) 0%,rgb(138,182,107) 44%,rgb(57,130,53) 100%);
background-image: -o-linear-gradient(top, rgb(201,222,150) 0%,rgb(138,182,107) 44%,rgb(57,130,53) 100%);
background-image: -ms-linear-gradient(top, rgb(201,222,150) 0%,rgb(138,182,107) 44%,rgb(57,130,53) 100%);
filter: progid:DXImageTransform.Microsoft.gradient( startColorstr='#c9de96', endColorstr='#398235',GradientType=0 );
background-image: linear-gradient(top, rgb(201,222,150) 0%,rgb(138,182,107) 44%,rgb(57,130,53) 100%);
}
h1 {
font-family: 'trebuchet ms', verdana, arial;
padding: 10px;
padding-top:12px;
padding-bottom:0px;
margin: 0;
}
a img {
border: none;
}
.loading {
background:#fff;
border: 1px solid #aaa;
margin-left: auto;
margin-right: auto;
width: 90%;
height:90%;
padding-top:30px;
text-align:center;
font-size:120%;
}
.loading_info {
font-size:80%;
font-style: italic;
}
/* --- Top header --- */
.app_header {
height:80px;
max-width: 1440px;
background-color:#eee;
margin-left: auto;
margin-right: auto;
border-left: 1px solid #aaa;
border-right: 1px solid #aaa;
background-image: rgb(246,248,249);
background-image: -moz-linear-gradient(top, rgb(246,248,249) 0%, rgb(215,222,227) 99%);
background-image: -webkit-gradient(linear, left top, left bottom, color-stop(0%,rgb(246,248,249)), color-stop(99%,rgb(215,222,227)));
background-image: -webkit-linear-gradient(top, rgb(246,248,249) 0%,rgb(215,222,227) 99%);
background-image: -o-linear-gradient(top, rgb(246,248,249) 0%,rgb(215,222,227) 99%);
background-image: -ms-linear-gradient(top, rgb(246,248,249) 0%,rgb(215,222,227) 99%);
filter: progid:DXImageTransform.Microsoft.gradient( startColorstr='#f6f8f9', endColorstr='#d7dee3',GradientType=0 );
background-image: linear-gradient(top, rgb(246,248,249) 0%,rgb(215,222,227) 99%);
}
@media screen and (min-width : 1024px) {
.app_header {
width: 90%;
}
}
.app_header a {
color: #900;
}
.app_header_icon {
/* Icon from https://commons.wikimedia.org/wiki/File:Gnome-emblem-documents.svg (GPL) */
background: url()
no-repeat;
margin:10px;
margin-left:16px;
float:left;
width:48px;
height:48px;
}
.app_header_search {
float:right;
padding:10px;
}
.app_header_search_help {
display: inline-block;
background-color: #bbb;
color: white;
width: 14px;
height: 14px;
border-radius: 50%;
text-align: center;
font-weight: bold;
position: relative;
top: -1px;
cursor: pointer;
}
.app_header_stats {
padding: 10px;
padding-top:0px;
font-style: italic;
}
/* --- Main areas --- */
.content {
max-width: 1440px;
display:none;
padding:0px;
margin-left: auto;
margin-right: auto;
background: white;
border: none;
border-left: 1px solid #aaa;
border-right: 1px solid #aaa;
border-bottom: 1px solid #aaa;
}
@media screen and (min-width : 1024px) {
.content {
width: 90%;
}
}
.treeview {
position:relative;
height: 100%;
width:29%;
float:left;
overflow:auto;
border-top: 1px solid #aaa;
}
.treeview_bold {
font-weight: bold;
}
.list_container {
position:relative;
height: 100%;
overflow: auto;
border-top: 1px solid #aaa;
}
.list_files {
overflow: auto;
position: relative;
}
.search_indicator {
position: absolute;
left: 0px;
right: 0px;
top: 0px;
bottom: 0px;
background-color: white;
opacity: 0.7;
text-align: center;
padding-top: 100px;
font-size: 18px;
display: none;
z-index: 99;
}
/* --- Splitter --- */
.vsplitbar {
width: 4px;
background: #d7dee3;
border-right: 1px solid #bbb;
}
/* --- File Table --- */
#files.tablesorter {
font-family:arial;
background-color: #cdcdcd;
font-size: 8pt;
line-height: 1.25em;
width: 100%;
text-align: left;
border-spacing: 0px;
border-bottom: 1px solid #ccc;
}
#files.tablesorter thead tr th, #files.tablesorter tfoot tr th {
background: #ffefcc;
border-left: 1px solid #ccc;
border-right: 1px solid #ccc;
padding: 4px;
border-left: 0px;
}
#files.tablesorter thead tr .header {
background-image: url();
background-repeat: no-repeat;
background-position: center right;
cursor: pointer;
text-align: center;
}
#files.tablesorter tbody td {
vertical-align: top;
background-color: #fff;
border-bottom: none;
border-left: none;
border-right: 1px solid #ccc;
border-top: 1px solid #e0e0e0;
padding: 3px 4px 3px 4px;
}
#files.tablesorter:not(.has-parent-folder) tbody tr:nth-child(even) td {
background-color: #f8f8f8;
}
#files.tablesorter.has-parent-folder tbody tr:nth-child(odd) td {
background-color: #f8f8f8;
}
#files.tablesorter tbody tr:hover td,
#files.tablesorter tbody tr:nth-child(even):hover td {
background-color: #E4F0F9;
}
#files.tablesorter thead tr .headerSortUp {
background-image: url();
}
#files.tablesorter thead tr .headerSortDown {
/*background-image: url(tree_tablesorter_desc.gif);*/
background-image: url();
}
#files.tablesorter thead tr .headerSortDown, #files.tablesorter thead tr .headerSortUp {
background-color: #FFD283;
}
#files.tablesorter th:last-of-type,
#files.tablesorter td:last-of-type {
border-right:0px;
}
span.file, span.file_folder {
background: url()
no-repeat
left center;
padding-left:16px;
padding-bottom:1px;
padding-top:1px;
}
span.file_folder {
background: url()
no-repeat
left center;
}
span.file a, span.file_folder a {
text-decoration: none;
color: #333;
}
span.file a:hover, span.file_folder a:hover {
text-decoration: underline;
color: #900;
}
td.size {
text-align: right;
white-space: nowrap;
}
td.date {
white-space: nowrap;
}
/* make room for [..] */
#files.tablesorter.has-parent-folder th {
border-bottom: 1px solid #ccc;
}
#files.tablesorter.has-parent-folder tbody tr:first-child td {
border-top: 20px solid white;
}
#parent_folder {
position: absolute;
top: 24px;
left: 4px;
}
#parent_folder_border {
background-color: #e0e0e0;
height: 1px;
position: absolute;
width: 100%;
top: 42px;
}
/* --- Breadcrumb --- */
.list_header {
background: #fff;
font-family: arial;
font-size: 8pt;
border: 0px;
border-bottom: 1px solid #CCC;
padding:3px;
padding-left: 6px;
}
.list_header span {
background-color: white;
}
.list_header a {
text-decoration: none;
color: #333;
}
.list_header a:hover {
text-decoration: underline;
color: #900;
}
.path_divider {
display:inline-block;
margin-left: 3px;
margin-right: 2px;
margin-bottom: 1px;
width: 0px;
height: 0px;
border-style: solid;
border-width: 3px 0 3px 5px;
border-color: transparent transparent transparent #222;
}
/* --- Listview footer --- */
.list_footer {
padding: 10px;
border-top: 1px solid #ccc;
}
.list_footer_open_export {
float: right;
}
.list_footer_open_export:hover {
text-decoration: underline;
color: #900;
cursor: pointer;
}
/* --- CSV LightBox --- */
.export_lightbox {
z-index: 1000;
background-color: rgba(0,0,0,0.75);
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
text-align: center;
font-size: 13px;
display: none;
}
.export_content {
text-align: left;
background-color: white;
padding: 20px;
padding-top: 5px;
width: calc(100% - 40px);
max-width: 800px;
height: 240px;
margin-left: auto;
margin-right: auto;
position: relative;
}
.export_options {
line-height: 2em;
}
.export_options input {
position: relative;
top: 2px;
left: 2px;
}
.export_options label {
margin-right: 0.5em;
padding-left: 0.5em;
}
.export_text {
width: 100%;
height: calc(100% - 5.25em); /* two .export_options => 4em + save link*/
}
.export_close:link, .export_close:visited {
float: right;
text-decoration: none;
color: black;
}
.export_close:hover, .export_close:active {
text-decoration: underline;
}
#export_checkbox_csv + label {
margin-right: 1em;
}
.export_save {
text-align: center;
margin-top: 0.25em;
}
.export_save a:link, .export_save a:visited {
color: black;
text-decoration: none;
}
.export_save a:hover {
text-decoration: underline;
}
.export_chevron {
box-sizing: border-box;
position: relative;
display: inline-block;
width: 18px;
height: 16px
}
.export_chevron::after,
.export_chevron::before {
content: "";
display: block;
box-sizing: border-box;
position: absolute;
width: 8px;
height: 8px;
border-bottom: 2px solid;
border-right: 2px solid;
transform: rotate(45deg);
left: 7px;
top: 3px
}
.export_chevron::after {
top: 8px
}
#export_tip {
color: #eee;
position: absolute;
bottom: 13px;
right: 20px;
font-size: 11px;
}
/* --- DynaTree --- */
ul.dynatree-container
{
white-space: nowrap;
padding: 0px;
margin: 0; /* issue 201 */
background-color: white;
border: 0px dotted gray;
overflow: auto;
height: 100%; /* issue 263 */
}
ul.dynatree-container ul
{
padding: 0 0 0 16px;
margin: 0;
}
ul.dynatree-container li
{
list-style-image: none;
list-style-position: outside;
list-style-type: none;
-moz-background-clip:border;
-moz-background-inline-policy: continuous;
-moz-background-origin: padding;
background-attachment: scroll;
background-color: transparent;
background-repeat: repeat-y;
/* vline.gif */
background-image:url();
background-position: 0 0;
margin: 0;
padding: 1px 0 0 0;
}
ul.dynatree-container li.dynatree-lastsib
{
background-image: none;
}
ul.dynatree-no-connector > li
{
background-image: none;
}
.ui-dynatree-disabled ul.dynatree-container
{
opacity: 0.5;
background-color: silver;
}
span.dynatree-empty,
span.dynatree-vline,
span.dynatree-connector,
span.dynatree-expander,
span.dynatree-icon,
span.dynatree-checkbox,
span.dynatree-radio,
span.dynatree-drag-helper-img,
#dynatree-drop-marker
{
width: 16px;
height: 16px;
display: inline-block; /* Required to make a span sizeable */
vertical-align: top;
background-repeat: no-repeat;
background-position: left;
/* icons.gif */
background-image:url();
background-position: 0 0;
}
ul.dynatree-container img
{
width: 16px;
height: 16px;
margin-left: 3px;
vertical-align: top;
border-style: none;
}
span.dynatree-connector
{
background-position: -16px -64px;
}
span.dynatree-expander
{
background-position: 0px -80px;
cursor: pointer;
}
.dynatree-exp-cl span.dynatree-expander /* Collapsed, not delayed, last sibling */
{
background-position: 0px -96px;
}
.dynatree-exp-cd span.dynatree-expander /* Collapsed, delayed, not last sibling */
{
background-position: -64px -80px;
}
.dynatree-exp-cdl span.dynatree-expander /* Collapsed, delayed, last sibling */
{
background-position: -64px -96px;
}
.dynatree-exp-e span.dynatree-expander, /* Expanded, not delayed, not last sibling */
.dynatree-exp-ed span.dynatree-expander /* Expanded, delayed, not last sibling */
{
background-position: -32px -80px;
}
.dynatree-exp-el span.dynatree-expander, /* Expanded, not delayed, last sibling */
.dynatree-exp-edl span.dynatree-expander /* Expanded, delayed, last sibling */
{
background-position: -32px -96px;
}
.dynatree-loading span.dynatree-expander /* 'Loading' status overrides all others */
{
background-position: 0 0;
/*background-image: url("loading.gif");*/
}
span.dynatree-icon /* Default icon */
{
margin-left: 3px;
background-position: 0px 0px;
}
.dynatree-ico-cf span.dynatree-icon /* Collapsed Folder */
{
/*background-position: 0px -16px;*/
background: url()
}
.dynatree-ico-ef span.dynatree-icon /* Expanded Folder */
{
/*background-position: -64px -16px;*/
background:url();
}
span.dynatree-node
{
/* display: -moz-inline-box; /* issue 133, 165, 172, 192. removed for issue 221*/
/* -moz-box-align: start; /* issue 221 */
/* display: inline-block; /* Required to make a span sizeable */
}
ul.dynatree-container a
{
color: black; /* inherit doesn't work on IE */
text-decoration: none;
vertical-align: top;
margin: 0px;
/*margin-left: 3px;*/
border: 1px solid transparent;
/* outline: 0; /* @ Firefox, prevent dotted border after click */
}
ul.dynatree-container a:hover
{
/* text-decoration: underline; */
background-color: #E9EDEF;
border: 1px solid #aaa;
}
span.dynatree-node a
{
/*font-size: 10pt; /* required for IE, quirks mode */
display: inline-block; /* Better alignment, when title contains <br> */
padding-left: 2px;
padding-right: 3px; /* Otherwise italic font will be outside bounds */
}
span.dynatree-folder a
{
}
ul.dynatree-container a:focus,
span.dynatree-focused a:link /* @IE */
{
}
span.dynatree-has-children a
{
}
span.dynatree-expanded a
{
}
span.dynatree-selected a
{
}
span.dynatree-active a
{
font-weight: bold;
/*background-color: #3169C6 !important;
color: white !important; /* @ IE6 */
}
</style>
<script type="text/javascript">
/* --- jQuery 1.6.2: http://jquery.com/ --- */
(function(a,b){function cv(a){return f.isWindow(a)?a:a.nodeType===9?a.defaultView||a.parentWindow:!1}function cs(a){if(!cg[a]){var b=c.body,d=f("<"+a+">").appendTo(b),e=d.css("display");d.remove();if(e==="none"||e===""){ch||(ch=c.createElement("iframe"),ch.frameBorder=ch.width=ch.height=0),b.appendChild(ch);if(!ci||!ch.createElement)ci=(ch.contentWindow||ch.contentDocument).document,ci.write((c.compatMode==="CSS1Compat"?"<!doctype html>":"")+"<html><body>"),ci.close();d=ci.createElement(a),ci.body.appendChild(d),e=f.css(d,"display"),b.removeChild(ch)}cg[a]=e}return cg[a]}function cr(a,b){var c={};f.each(cm.concat.apply([],cm.slice(0,b)),function(){c[this]=a});return c}function cq(){cn=b}function cp(){setTimeout(cq,0);return cn=f.now()}function cf(){try{return new a.ActiveXObject("Microsoft.XMLHTTP")}catch(b){}}function ce(){try{return new a.XMLHttpRequest}catch(b){}}function b$(a,c){a.dataFilter&&(c=a.dataFilter(c,a.dataType));var d=a.dataTypes,e={},g,h,i=d.length,j,k=d[0],l,m,n,o,p;for(g=1;g<i;g++){if(g===1)for(h in a.converters)typeof h=="string"&&(e[h.toLowerCase()]=a.converters[h]);l=k,k=d[g];if(k==="*")k=l;else if(l!=="*"&&l!==k){m=l+" "+k,n=e[m]||e["* "+k];if(!n){p=b;for(o in e){j=o.split(" ");if(j[0]===l||j[0]==="*"){p=e[j[1]+" "+k];if(p){o=e[o],o===!0?n=p:p===!0&&(n=o);break}}}}!n&&!p&&f.error("No conversion from "+m.replace(" "," to ")),n!==!0&&(c=n?n(c):p(o(c)))}}return c}function bZ(a,c,d){var e=a.contents,f=a.dataTypes,g=a.responseFields,h,i,j,k;for(i in g)i in d&&(c[g[i]]=d[i]);while(f[0]==="*")f.shift(),h===b&&(h=a.mimeType||c.getResponseHeader("content-type"));if(h)for(i in e)if(e[i]&&e[i].test(h)){f.unshift(i);break}if(f[0]in d)j=f[0];else{for(i in d){if(!f[0]||a.converters[i+" "+f[0]]){j=i;break}k||(k=i)}j=j||k}if(j){j!==f[0]&&f.unshift(j);return d[j]}}function bY(a,b,c,d){if(f.isArray(b))f.each(b,function(b,e){c||bC.test(a)?d(a,e):bY(a+"["+(typeof e=="object"||f.isArray(e)?b:"")+"]",e,c,d)});else if(!c&&b!=null&&typeof b=="object")for(var e in b)bY(a+"["+e+"]",b[e],c,d);else d(a,b)}function bX(a,c,d,e,f,g){f=f||c.dataTypes[0],g=g||{},g[f]=!0;var h=a[f],i=0,j=h?h.length:0,k=a===bR,l;for(;i<j&&(k||!l);i++)l=h[i](c,d,e),typeof l=="string"&&(!k||g[l]?l=b:(c.dataTypes.unshift(l),l=bX(a,c,d,e,l,g)));(k||!l)&&!g["*"]&&(l=bX(a,c,d,e,"*",g));return l}function bW(a){return function(b,c){typeof b!="string"&&(c=b,b="*");if(f.isFunction(c)){var d=b.toLowerCase().split(bN),e=0,g=d.length,h,i,j;for(;e<g;e++)h=d[e],j=/^\+/.test(h),j&&(h=h.substr(1)||"*"),i=a[h]=a[h]||[],i[j?"unshift":"push"](c)}}}function bA(a,b,c){var d=b==="width"?a.offsetWidth:a.offsetHeight,e=b==="width"?bv:bw;if(d>0){c!=="border"&&f.each(e,function(){c||(d-=parseFloat(f.css(a,"padding"+this))||0),c==="margin"?d+=parseFloat(f.css(a,c+this))||0:d-=parseFloat(f.css(a,"border"+this+"Width"))||0});return d+"px"}d=bx(a,b,b);if(d<0||d==null)d=a.style[b]||0;d=parseFloat(d)||0,c&&f.each(e,function(){d+=parseFloat(f.css(a,"padding"+this))||0,c!=="padding"&&(d+=parseFloat(f.css(a,"border"+this+"Width"))||0),c==="margin"&&(d+=parseFloat(f.css(a,c+this))||0)});return d+"px"}function bm(a,b){b.src?f.ajax({url:b.src,async:!1,dataType:"script"}):f.globalEval((b.text||b.textContent||b.innerHTML||"").replace(be,"/*$0*/")),b.parentNode&&b.parentNode.removeChild(b)}function bl(a){f.nodeName(a,"input")?bk(a):"getElementsByTagName"in a&&f.grep(a.getElementsByTagName("input"),bk)}function bk(a){if(a.type==="checkbox"||a.type==="radio")a.defaultChecked=a.checked}function bj(a){return"getElementsByTagName"in a?a.getElementsByTagName("*"):"querySelectorAll"in a?a.querySelectorAll("*"):[]}function bi(a,b){var c;if(b.nodeType===1){b.clearAttributes&&b.clearAttributes(),b.mergeAttributes&&b.mergeAttributes(a),c=b.nodeName.toLowerCase();if(c==="object")b.outerHTML=a.outerHTML;else if(c!=="input"||a.type!=="checkbox"&&a.type!=="radio"){if(c==="option")b.selected=a.defaultSelected;else if(c==="input"||c==="textarea")b.defaultValue=a.defaultValue}else a.checked&&(b.defaultChecked=b.checked=a.checked),b.value!==a.value&&(b.value=a.value);b.removeAttribute(f.expando)}}function bh(a,b){if(b.nodeType===1&&!!f.hasData(a)){var c=f.expando,d=f.data(a),e=f.data(b,d);if(d=d[c]){var g=d.events;e=e[c]=f.extend({},d);if(g){delete e.handle,e.events={};for(var h in g)for(var i=0,j=g[h].length;i<j;i++)f.event.add(b,h+(g[h][i].namespace?".":"")+g[h][i].namespace,g[h][i],g[h][i].data)}}}}function bg(a,b){return f.nodeName(a,"table")?a.getElementsByTagName("tbody")[0]||a.appendChild(a.ownerDocument.createElement("tbody")):a}function W(a,b,c){b=b||0;if(f.isFunction(b))return f.grep(a,function(a,d){var e=!!b.call(a,d,a);return e===c});if(b.nodeType)return f.grep(a,function(a,d){return a===b===c});if(typeof b=="string"){var d=f.grep(a,function(a){return a.nodeType===1});if(R.test(b))return f.filter(b,d,!c);b=f.filter(b,d)}return f.grep(a,function(a,d){return f.inArray(a,b)>=0===c})}function V(a){return!a||!a.parentNode||a.parentNode.nodeType===11}function N(a,b){return(a&&a!=="*"?a+".":"")+b.replace(z,"`").replace(A,"&")}function M(a){var b,c,d,e,g,h,i,j,k,l,m,n,o,p=[],q=[],r=f._data(this,"events");if(!(a.liveFired===this||!r||!r.live||a.target.disabled||a.button&&a.type==="click")){a.namespace&&(n=new RegExp("(^|\\.)"+a.namespace.split(".").join("\\.(?:.*\\.)?")+"(\\.|$)")),a.liveFired=this;var s=r.live.slice(0);for(i=0;i<s.length;i++)g=s[i],g.origType.replace(x,"")===a.type?q.push(g.selector):s.splice(i--,1);e=f(a.target).closest(q,a.currentTarget);for(j=0,k=e.length;j<k;j++){m=e[j];for(i=0;i<s.length;i++){g=s[i];if(m.selector===g.selector&&(!n||n.test(g.namespace))&&!m.elem.disabled){h=m.elem,d=null;if(g.preType==="mouseenter"||g.preType==="mouseleave")a.type=g.preType,d=f(a.relatedTarget).closest(g.selector)[0],d&&f.contains(h,d)&&(d=h);(!d||d!==h)&&p.push({elem:h,handleObj:g,level:m.level})}}}for(j=0,k=p.length;j<k;j++){e=p[j];if(c&&e.level>c)break;a.currentTarget=e.elem,a.data=e.handleObj.data,a.handleObj=e.handleObj,o=e.handleObj.origHandler.apply(e.elem,arguments);if(o===!1||a.isPropagationStopped()){c=e.level,o===!1&&(b=!1);if(a.isImmediatePropagationStopped())break}}return b}}function K(a,c,d){var e=f.extend({},d[0]);e.type=a,e.originalEvent={},e.liveFired=b,f.event.handle.call(c,e),e.isDefaultPrevented()&&d[0].preventDefault()}function E(){return!0}function D(){return!1}function m(a,c,d){var e=c+"defer",g=c+"queue",h=c+"mark",i=f.data(a,e,b,!0);i&&(d==="queue"||!f.data(a,g,b,!0))&&(d==="mark"||!f.data(a,h,b,!0))&&setTimeout(function(){!f.data(a,g,b,!0)&&!f.data(a,h,b,!0)&&(f.removeData(a,e,!0),i.resolve())},0)}function l(a){for(var b in a)if(b!=="toJSON")return!1;return!0}function k(a,c,d){if(d===b&&a.nodeType===1){var e="data-"+c.replace(j,"$1-$2").toLowerCase();d=a.getAttribute(e);if(typeof d=="string"){try{d=d==="true"?!0:d==="false"?!1:d==="null"?null:f.isNaN(d)?i.test(d)?f.parseJSON(d):d:parseFloat(d)}catch(g){}f.data(a,c,d)}else d=b}return d}var c=a.document,d=a.navigator,e=a.location,f=function(){function J(){if(!e.isReady){try{c.documentElement.doScroll("left")}catch(a){setTimeout(J,1);return}e.ready()}}var e=function(a,b){return new e.fn.init(a,b,h)},f=a.jQuery,g=a.$,h,i=/^(?:[^<]*(<[\w\W]+>)[^>]*$|#([\w\-]*)$)/,j=/\S/,k=/^\s+/,l=/\s+$/,m=/\d/,n=/^<(\w+)\s*\/?>(?:<\/\1>)?$/,o=/^[\],:{}\s]*$/,p=/\\(?:["\\\/bfnrt]|u[0-9a-fA-F]{4})/g,q=/"[^"\\\n\r]*"|true|false|null|-?\d+(?:\.\d*)?(?:[eE][+\-]?\d+)?/g,r=/(?:^|:|,)(?:\s*\[)+/g,s=/(webkit)[ \/]([\w.]+)/,t=/(opera)(?:.*version)?[ \/]([\w.]+)/,u=/(msie) ([\w.]+)/,v=/(mozilla)(?:.*? rv:([\w.]+))?/,w=/-([a-z])/ig,x=function(a,b){return b.toUpperCase()},y=d.userAgent,z,A,B,C=Object.prototype.toString,D=Object.prototype.hasOwnProperty,E=Array.prototype.push,F=Array.prototype.slice,G=String.prototype.trim,H=Array.prototype.indexOf,I={};e.fn=e.prototype={constructor:e,init:function(a,d,f){var g,h,j,k;if(!a)return this;if(a.nodeType){this.context=this[0]=a,this.length=1;return this}if(a==="body"&&!d&&c.body){this.context=c,this[0]=c.body,this.selector=a,this.length=1;return this}if(typeof a=="string"){a.charAt(0)!=="<"||a.charAt(a.length-1)!==">"||a.length<3?g=i.exec(a):g=[null,a,null];if(g&&(g[1]||!d)){if(g[1]){d=d instanceof e?d[0]:d,k=d?d.ownerDocument||d:c,j=n.exec(a),j?e.isPlainObject(d)?(a=[c.createElement(j[1])],e.fn.attr.call(a,d,!0)):a=[k.createElement(j[1])]:(j=e.buildFragment([g[1]],[k]),a=(j.cacheable?e.clone(j.fragment):j.fragment).childNodes);return e.merge(this,a)}h=c.getElementById(g[2]);if(h&&h.parentNode){if(h.id!==g[2])return f.find(a);this.length=1,this[0]=h}this.context=c,this.selector=a;return this}return!d||d.jquery?(d||f).find(a):this.constructor(d).find(a)}if(e.isFunction(a))return f.ready(a);a.selector!==b&&(this.selector=a.selector,this.context=a.context);return e.makeArray(a,this)},selector:"",jquery:"1.6.2",length:0,size:function(){return this.length},toArray:function(){return F.call(this,0)},get:function(a){return a==null?this.toArray():a<0?this[this.length+a]:this[a]},pushStack:function(a,b,c){var d=this.constructor();e.isArray(a)?E.apply(d,a):e.merge(d,a),d.prevObject=this,d.context=this.context,b==="find"?d.selector=this.selector+(this.selector?" ":"")+c:b&&(d.selector=this.selector+"."+b+"("+c+")");return d},each:function(a,b){return e.each(this,a,b)},ready:function(a){e.bindReady(),A.done(a);return this},eq:function(a){return a===-1?this.slice(a):this.slice(a,+a+1)},first:function(){return this.eq(0)},last:function(){return this.eq(-1)},slice:function(){return this.pushStack(F.apply(this,arguments),"slice",F.call(arguments).join(","))},map:function(a){return this.pushStack(e.map(this,function(b,c){return a.call(b,c,b)}))},end:function(){return this.prevObject||this.constructor(null)},push:E,sort:[].sort,splice:[].splice},e.fn.init.prototype=e.fn,e.extend=e.fn.extend=function(){var a,c,d,f,g,h,i=arguments[0]||{},j=1,k=arguments.length,l=!1;typeof i=="boolean"&&(l=i,i=arguments[1]||{},j=2),typeof i!="object"&&!e.isFunction(i)&&(i={}),k===j&&(i=this,--j);for(;j<k;j++)if((a=arguments[j])!=null)for(c in a){d=i[c],f=a[c];if(i===f)continue;l&&f&&(e.isPlainObject(f)||(g=e.isArray(f)))?(g?(g=!1,h=d&&e.isArray(d)?d:[]):h=d&&e.isPlainObject(d)?d:{},i[c]=e.extend(l,h,f)):f!==b&&(i[c]=f)}return i},e.extend({noConflict:function(b){a.$===e&&(a.$=g),b&&a.jQuery===e&&(a.jQuery=f);return e},isReady:!1,readyWait:1,holdReady:function(a){a?e.readyWait++:e.ready(!0)},ready:function(a){if(a===!0&&!--e.readyWait||a!==!0&&!e.isReady){if(!c.body)return setTimeout(e.ready,1);e.isReady=!0;if(a!==!0&&--e.readyWait>0)return;A.resolveWith(c,[e]),e.fn.trigger&&e(c).trigger("ready").unbind("ready")}},bindReady:function(){if(!A){A=e._Deferred();if(c.readyState==="complete")return setTimeout(e.ready,1);if(c.addEventListener)c.addEventListener("DOMContentLoaded",B,!1),a.addEventListener("load",e.ready,!1);else if(c.attachEvent){c.attachEvent("onreadystatechange",B),a.attachEvent("onload",e.ready);var b=!1;try{b=a.frameElement==null}catch(d){}c.documentElement.doScroll&&b&&J()}}},isFunction:function(a){return e.type(a)==="function"},isArray:Array.isArray||function(a){return e.type(a)==="array"},isWindow:function(a){return a&&typeof a=="object"&&"setInterval"in a},isNaN:function(a){return a==null||!m.test(a)||isNaN(a)},type:function(a){return a==null?String(a):I[C.call(a)]||"object"},isPlainObject:function(a){if(!a||e.type(a)!=="object"||a.nodeType||e.isWindow(a))return!1;if(a.constructor&&!D.call(a,"constructor")&&!D.call(a.constructor.prototype,"isPrototypeOf"))return!1;var c;for(c in a);return c===b||D.call(a,c)},isEmptyObject:function(a){for(var b in a)return!1;return!0},error:function(a){throw a},parseJSON:function(b){if(typeof b!="string"||!b)return null;b=e.trim(b);if(a.JSON&&a.JSON.parse)return a.JSON.parse(b);if(o.test(b.replace(p,"@").replace(q,"]").replace(r,"")))return(new Function("return "+b))();e.error("Invalid JSON: "+b)},parseXML:function(b,c,d){a.DOMParser?(d=new DOMParser,c=d.parseFromString(b,"text/xml")):(c=new ActiveXObject("Microsoft.XMLDOM"),c.async="false",c.loadXML(b)),d=c.documentElement,(!d||!d.nodeName||d.nodeName==="parsererror")&&e.error("Invalid XML: "+b);return c},noop:function(){},globalEval:function(b){b&&j.test(b)&&(a.execScript||function(b){a.eval.call(a,b)})(b)},camelCase:function(a){return a.replace(w,x)},nodeName:function(a,b){return a.nodeName&&a.nodeName.toUpperCase()===b.toUpperCase()},each:function(a,c,d){var f,g=0,h=a.length,i=h===b||e.isFunction(a);if(d){if(i){for(f in a)if(c.apply(a[f],d)===!1)break}else for(;g<h;)if(c.apply(a[g++],d)===!1)break}else if(i){for(f in a)if(c.call(a[f],f,a[f])===!1)break}else for(;g<h;)if(c.call(a[g],g,a[g++])===!1)break;return a},trim:G?function(a){return a==null?"":G.call(a)}:function(a){return a==null?"":(a+"").replace(k,"").replace(l,"")},makeArray:function(a,b){var c=b||[];if(a!=null){var d=e.type(a);a.length==null||d==="string"||d==="function"||d==="regexp"||e.isWindow(a)?E.call(c,a):e.merge(c,a)}return c},inArray:function(a,b){if(H)return H.call(b,a);for(var c=0,d=b.length;c<d;c++)if(b[c]===a)return c;return-1},merge:function(a,c){var d=a.length,e=0;if(typeof c.length=="number")for(var f=c.length;e<f;e++)a[d++]=c[e];else while(c[e]!==b)a[d++]=c[e++];a.length=d;return a},grep:function(a,b,c){var d=[],e;c=!!c;for(var f=0,g=a.length;f<g;f++)e=!!b(a[f],f),c!==e&&d.push(a[f]);return d},map:function(a,c,d){var f,g,h=[],i=0,j=a.length,k=a instanceof e||j!==b&&typeof j=="number"&&(j>0&&a[0]&&a[j-1]||j===0||e.isArray(a));if(k)for(;i<j;i++)f=c(a[i],i,d),f!=null&&(h[h.length]=f);else for(g in a)f=c(a[g],g,d),f!=null&&(h[h.length]=f);return h.concat.apply([],h)},guid:1,proxy:function(a,c){if(typeof c=="string"){var d=a[c];c=a,a=d}if(!e.isFunction(a))return b;var f=F.call(arguments,2),g=function(){return a.apply(c,f.concat(F.call(arguments)))};g.guid=a.guid=a.guid||g.guid||e.guid++;return g},access:function(a,c,d,f,g,h){var i=a.length;if(typeof c=="object"){for(var j in c)e.access(a,j,c[j],f,g,d);return a}if(d!==b){f=!h&&f&&e.isFunction(d);for(var k=0;k<i;k++)g(a[k],c,f?d.call(a[k],k,g(a[k],c)):d,h);return a}return i?g(a[0],c):b},now:function(){return(new Date).getTime()},uaMatch:function(a){a=a.toLowerCase();var b=s.exec(a)||t.exec(a)||u.exec(a)||a.indexOf("compatible")<0&&v.exec(a)||[];return{browser:b[1]||"",version:b[2]||"0"}},sub:function(){function a(b,c){return new a.fn.init(b,c)}e.extend(!0,a,this),a.superclass=this,a.fn=a.prototype=this(),a.fn.constructor=a,a.sub=this.sub,a.fn.init=function(d,f){f&&f instanceof e&&!(f instanceof a)&&(f=a(f));return e.fn.init.call(this,d,f,b)},a.fn.init.prototype=a.fn;var b=a(c);return a},browser:{}}),e.each("Boolean Number String Function Array Date RegExp Object".split(" "),function(a,b){I["[object "+b+"]"]=b.toLowerCase()}),z=e.uaMatch(y),z.browser&&(e.browser[z.browser]=!0,e.browser.version=z.version),e.browser.webkit&&(e.browser.safari=!0),j.test(" ")&&(k=/^[\s\xA0]+/,l=/[\s\xA0]+$/),h=e(c),c.addEventListener?B=function(){c.removeEventListener("DOMContentLoaded",B,!1),e.ready()}:c.attachEvent&&(B=function(){c.readyState==="complete"&&(c.detachEvent("onreadystatechange",B),e.ready())});return e}(),g="done fail isResolved isRejected promise then always pipe".split(" "),h=[].slice;f.extend({_Deferred:function(){var a=[],b,c,d,e={done:function(){if(!d){var c=arguments,g,h,i,j,k;b&&(k=b,b=0);for(g=0,h=c.length;g<h;g++)i=c[g],j=f.type(i),j==="array"?e.done.apply(e,i):j==="function"&&a.push(i);k&&e.resolveWith(k[0],k[1])}return this},resolveWith:function(e,f){if(!d&&!b&&!c){f=f||[],c=1;try{while(a[0])a.shift().apply(e,f)}finally{b=[e,f],c=0}}return this},resolve:function(){e.resolveWith(this,arguments);return this},isResolved:function(){return!!c||!!b},cancel:function(){d=1,a=[];return this}};return e},Deferred:function(a){var b=f._Deferred(),c=f._Deferred(),d;f.extend(b,{then:function(a,c){b.done(a).fail(c);return this},always:function(){return b.done.apply(b,arguments).fail.apply(this,arguments)},fail:c.done,rejectWith:c.resolveWith,reject:c.resolve,isRejected:c.isResolved,pipe:function(a,c){return f.Deferred(function(d){f.each({done:[a,"resolve"],fail:[c,"reject"]},function(a,c){var e=c[0],g=c[1],h;f.isFunction(e)?b[a](function(){h=e.apply(this,arguments),h&&f.isFunction(h.promise)?h.promise().then(d.resolve,d.reject):d[g](h)}):b[a](d[g])})}).promise()},promise:function(a){if(a==null){if(d)return d;d=a={}}var c=g.length;while(c--)a[g[c]]=b[g[c]];return a}}),b.done(c.cancel).fail(b.cancel),delete b.cancel,a&&a.call(b,b);return b},when:function(a){function i(a){return function(c){b[a]=arguments.length>1?h.call(arguments,0):c,--e||g.resolveWith(g,h.call(b,0))}}var b=arguments,c=0,d=b.length,e=d,g=d<=1&&a&&f.isFunction(a.promise)?a:f.Deferred();if(d>1){for(;c<d;c++)b[c]&&f.isFunction(b[c].promise)?b[c].promise().then(i(c),g.reject):--e;e||g.resolveWith(g,b)}else g!==a&&g.resolveWith(g,d?[a]:[]);return g.promise()}}),f.support=function(){var a=c.createElement("div"),b=c.documentElement,d,e,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u;a.setAttribute("className","t"),a.innerHTML=" <link/><table></table><a href='/a' style='top:1px;float:left;opacity:.55;'>a</a><input type='checkbox'/>",d=a.getElementsByTagName("*"),e=a.getElementsByTagName("a")[0];if(!d||!d.length||!e)return{};g=c.createElement("select"),h=g.appendChild(c.createElement("option")),i=a.getElementsByTagName("input")[0],k={leadingWhitespace:a.firstChild.nodeType===3,tbody:!a.getElementsByTagName("tbody").length,htmlSerialize:!!a.getElementsByTagName("link").length,style:/top/.test(e.getAttribute("style")),hrefNormalized:e.getAttribute("href")==="/a",opacity:/^0.55$/.test(e.style.opacity),cssFloat:!!e.style.cssFloat,checkOn:i.value==="on",optSelected:h.selected,getSetAttribute:a.className!=="t",submitBubbles:!0,changeBubbles:!0,focusinBubbles:!1,deleteExpando:!0,noCloneEvent:!0,inlineBlockNeedsLayout:!1,shrinkWrapBlocks:!1,reliableMarginRight:!0},i.checked=!0,k.noCloneChecked=i.cloneNode(!0).checked,g.disabled=!0,k.optDisabled=!h.disabled;try{delete a.test}catch(v){k.deleteExpando=!1}!a.addEventListener&&a.attachEvent&&a.fireEvent&&(a.attachEvent("onclick",function(){k.noCloneEvent=!1}),a.cloneNode(!0).fireEvent("onclick")),i=c.createElement("input"),i.value="t",i.setAttribute("type","radio"),k.radioValue=i.value==="t",i.setAttribute("checked","checked"),a.appendChild(i),l=c.createDocumentFragment(),l.appendChild(a.firstChild),k.checkClone=l.cloneNode(!0).cloneNode(!0).lastChild.checked,a.innerHTML="",a.style.width=a.style.paddingLeft="1px",m=c.getElementsByTagName("body")[0],o=c.createElement(m?"div":"body"),p={visibility:"hidden",width:0,height:0,border:0,margin:0},m&&f.extend(p,{position:"absolute",left:-1e3,top:-1e3});for(t in p)o.style[t]=p[t];o.appendChild(a),n=m||b,n.insertBefore(o,n.firstChild),k.appendChecked=i.checked,k.boxModel=a.offsetWidth===2,"zoom"in a.style&&(a.style.display="inline",a.style.zoom=1,k.inlineBlockNeedsLayout=a.offsetWidth===2,a.style.display="",a.innerHTML="<div style='width:4px;'></div>",k.shrinkWrapBlocks=a.offsetWidth!==2),a.innerHTML="<table><tr><td style='padding:0;border:0;display:none'></td><td>t</td></tr></table>",q=a.getElementsByTagName("td"),u=q[0].offsetHeight===0,q[0].style.display="",q[1].style.display="none",k.reliableHiddenOffsets=u&&q[0].offsetHeight===0,a.innerHTML="",c.defaultView&&c.defaultView.getComputedStyle&&(j=c.createElement("div"),j.style.width="0",j.style.marginRight="0",a.appendChild(j),k.reliableMarginRight=(parseInt((c.defaultView.getComputedStyle(j,null)||{marginRight:0}).marginRight,10)||0)===0),o.innerHTML="",n.removeChild(o);if(a.attachEvent)for(t in{submit:1,change:1,focusin:1})s="on"+t,u=s in a,u||(a.setAttribute(s,"return;"),u=typeof a[s]=="function"),k[t+"Bubbles"]=u;o=l=g=h=m=j=a=i=null;return k}(),f.boxModel=f.support.boxModel;var i=/^(?:\{.*\}|\[.*\])$/,j=/([a-z])([A-Z])/g;f.extend({cache:{},uuid:0,expando:"jQuery"+(f.fn.jquery+Math.random()).replace(/\D/g,""),noData:{embed:!0,object:"clsid:D27CDB6E-AE6D-11cf-96B8-444553540000",applet:!0},hasData:function(a){a=a.nodeType?f.cache[a[f.expando]]:a[f.expando];return!!a&&!l(a)},data:function(a,c,d,e){if(!!f.acceptData(a)){var g=f.expando,h=typeof c=="string",i,j=a.nodeType,k=j?f.cache:a,l=j?a[f.expando]:a[f.expando]&&f.expando;if((!l||e&&l&&!k[l][g])&&h&&d===b)return;l||(j?a[f.expando]=l=++f.uuid:l=f.expando),k[l]||(k[l]={},j||(k[l].toJSON=f.noop));if(typeof c=="object"||typeof c=="function")e?k[l][g]=f.extend(k[l][g],c):k[l]=f.extend(k[l],c);i=k[l],e&&(i[g]||(i[g]={}),i=i[g]),d!==b&&(i[f.camelCase(c)]=d);if(c==="events"&&!i[c])return i[g]&&i[g].events;return h?i[f.camelCase(c)]||i[c]:i}},removeData:function(b,c,d){if(!!f.acceptData(b)){var e=f.expando,g=b.nodeType,h=g?f.cache:b,i=g?b[f.expando]:f.expando;if(!h[i])return;if(c){var j=d?h[i][e]:h[i];if(j){delete j[c];if(!l(j))return}}if(d){delete h[i][e];if(!l(h[i]))return}var k=h[i][e];f.support.deleteExpando||h!=a?delete h[i]:h[i]=null,k?(h[i]={},g||(h[i].toJSON=f.noop),h[i][e]=k):g&&(f.support.deleteExpando?delete b[f.expando]:b.removeAttribute?b.removeAttribute(f.expando):b[f.expando]=null)}},_data:function(a,b,c){return f.data(a,b,c,!0)},acceptData:function(a){if(a.nodeName){var b=f.noData[a.nodeName.toLowerCase()];if(b)return b!==!0&&a.getAttribute("classid")===b}return!0}}),f.fn.extend({data:function(a,c){var d=null;if(typeof a=="undefined"){if(this.length){d=f.data(this[0]);if(this[0].nodeType===1){var e=this[0].attributes,g;for(var h=0,i=e.length;h<i;h++)g=e[h].name,g.indexOf("data-")===0&&(g=f.camelCase(g.substring(5)),k(this[0],g,d[g]))}}return d}if(typeof a=="object")return this.each(function(){f.data(this,a)});var j=a.split(".");j[1]=j[1]?"."+j[1]:"";if(c===b){d=this.triggerHandler("getData"+j[1]+"!",[j[0]]),d===b&&this.length&&(d=f.data(this[0],a),d=k(this[0],a,d));return d===b&&j[1]?this.data(j[0]):d}return this.each(function(){var b=f(this),d=[j[0],c];b.triggerHandler("setData"+j[1]+"!",d),f.data(this,a,c),b.triggerHandler("changeData"+j[1]+"!",d)})},removeData:function(a){return this.each(function(){f.removeData(this,a)})}}),f.extend({_mark:function(a,c){a&&(c=(c||"fx")+"mark",f.data(a,c,(f.data(a,c,b,!0)||0)+1,!0))},_unmark:function(a,c,d){a!==!0&&(d=c,c=a,a=!1);if(c){d=d||"fx";var e=d+"mark",g=a?0:(f.data(c,e,b,!0)||1)-1;g?f.data(c,e,g,!0):(f.removeData(c,e,!0),m(c,d,"mark"))}},queue:function(a,c,d){if(a){c=(c||"fx")+"queue";var e=f.data(a,c,b,!0);d&&(!e||f.isArray(d)?e=f.data(a,c,f.makeArray(d),!0):e.push(d));return e||[]}},dequeue:function(a,b){b=b||"fx";var c=f.queue(a,b),d=c.shift(),e;d==="inprogress"&&(d=c.shift()),d&&(b==="fx"&&c.unshift("inprogress"),d.call(a,function(){f.dequeue(a,b)})),c.length||(f.removeData(a,b+"queue",!0),m(a,b,"queue"))}}),f.fn.extend({queue:function(a,c){typeof a!="string"&&(c=a,a="fx");if(c===b)return f.queue(this[0],a);return this.each(function(){var b=f.queue(this,a,c);a==="fx"&&b[0]!=="inprogress"&&f.dequeue(this,a)})},dequeue:function(a){return this.each(function(){f.dequeue(this,a)})},delay:function(a,b){a=f.fx?f.fx.speeds[a]||a:a,b=b||"fx";return this.queue(b,function(){var c=this;setTimeout(function(){f.dequeue(c,b)},a)})},clearQueue:function(a){return this.queue(a||"fx",[])},promise:function(a,c){function m(){--h||d.resolveWith(e,[e])}typeof a!="string"&&(c=a,a=b),a=a||"fx";var d=f.Deferred(),e=this,g=e.length,h=1,i=a+"defer",j=a+"queue",k=a+"mark",l;while(g--)if(l=f.data(e[g],i,b,!0)||(f.data(e[g],j,b,!0)||f.data(e[g],k,b,!0))&&f.data(e[g],i,f._Deferred(),!0))h++,l.done(m);m();return d.promise()}});var n=/[\n\t\r]/g,o=/\s+/,p=/\r/g,q=/^(?:button|input)$/i,r=/^(?:button|input|object|select|textarea)$/i,s=/^a(?:rea)?$/i,t=/^(?:autofocus|autoplay|async|checked|controls|defer|disabled|hidden|loop|multiple|open|readonly|required|scoped|selected)$/i,u=/\:|^on/,v,w;f.fn.extend({attr:function(a,b){return f.access(this,a,b,!0,f.attr)},removeAttr:function(a){return this.each(function(){f.removeAttr(this,a)})},prop:function(a,b){return f.access(this,a,b,!0,f.prop)},removeProp:function(a){a=f.propFix[a]||a;return this.each(function(){try{this[a]=b,delete this[a]}catch(c){}})},addClass:function(a){var b,c,d,e,g,h,i;if(f.isFunction(a))return this.each(function(b){f(this).addClass(a.call(this,b,this.className))});if(a&&typeof a=="string"){b=a.split(o);for(c=0,d=this.length;c<d;c++){e=this[c];if(e.nodeType===1)if(!e.className&&b.length===1)e.className=a;else{g=" "+e.className+" ";for(h=0,i=b.length;h<i;h++)~g.indexOf(" "+b[h]+" ")||(g+=b[h]+" ");e.className=f.trim(g)}}}return this},removeClass:function(a){var c,d,e,g,h,i,j;if(f.isFunction(a))return this.each(function(b){f(this).removeClass(a.call(this,b,this.className))});if(a&&typeof a=="string"||a===b){c=(a||"").split(o);for(d=0,e=this.length;d<e;d++){g=this[d];if(g.nodeType===1&&g.className)if(a){h=(" "+g.className+" ").replace(n," ");for(i=0,j=c.length;i<j;i++)h=h.replace(" "+c[i]+" "," ");g.className=f.trim(h)}else g.className=""}}return this},toggleClass:function(a,b){var c=typeof a,d=typeof b=="boolean";if(f.isFunction(a))return this.each(function(c){f(this).toggleClass(a.call(this,c,this.className,b),b)});return this.each(function(){if(c==="string"){var e,g=0,h=f(this),i=b,j=a.split(o);while(e=j[g++])i=d?i:!h.hasClass(e),h[i?"addClass":"removeClass"](e)}else if(c==="undefined"||c==="boolean")this.className&&f._data(this,"__className__",this.className),this.className=this.className||a===!1?"":f._data(this,"__className__")||""})},hasClass:function(a){var b=" "+a+" ";for(var c=0,d=this.length;c<d;c++)if((" "+this[c].className+" ").replace(n," ").indexOf(b)>-1)return!0;return!1},val:function(a){var c,d,e=this[0];if(!arguments.length){if(e){c=f.valHooks[e.nodeName.toLowerCase()]||f.valHooks[e.type];if(c&&"get"in c&&(d=c.get(e,"value"))!==b)return d;d=e.value;return typeof d=="string"?d.replace(p,""):d==null?"":d}return b}var g=f.isFunction(a);return this.each(function(d){var e=f(this),h;if(this.nodeType===1){g?h=a.call(this,d,e.val()):h=a,h==null?h="":typeof h=="number"?h+="":f.isArray(h)&&(h=f.map(h,function(a){return a==null?"":a+""})),c=f.valHooks[this.nodeName.toLowerCase()]||f.valHooks[this.type];if(!c||!("set"in c)||c.set(this,h,"value")===b)this.value=h}})}}),f.extend({valHooks:{option:{get:function(a){var b=a.attributes.value;return!b||b.specified?a.value:a.text}},select:{get:function(a){var b,c=a.selectedIndex,d=[],e=a.options,g=a.type==="select-one";if(c<0)return null;for(var h=g?c:0,i=g?c+1:e.length;h<i;h++){var j=e[h];if(j.selected&&(f.support.optDisabled?!j.disabled:j.getAttribute("disabled")===null)&&(!j.parentNode.disabled||!f.nodeName(j.parentNode,"optgroup"))){b=f(j).val();if(g)return b;d.push(b)}}if(g&&!d.length&&e.length)return f(e[c]).val();return d},set:function(a,b){var c=f.makeArray(b);f(a).find("option").each(function(){this.selected=f.inArray(f(this).val(),c)>=0}),c.length||(a.selectedIndex=-1);return c}}},attrFn:{val:!0,css:!0,html:!0,text:!0,data:!0,width:!0,height:!0,offset:!0},attrFix:{tabindex:"tabIndex"},attr:function(a,c,d,e){var g=a.nodeType;if(!a||g===3||g===8||g===2)return b;if(e&&c in f.attrFn)return f(a)[c](d);if(!("getAttribute"in a))return f.prop(a,c,d);var h,i,j=g!==1||!f.isXMLDoc(a);j&&(c=f.attrFix[c]||c,i=f.attrHooks[c],i||(t.test(c)?i=w:v&&c!=="className"&&(f.nodeName(a,"form")||u.test(c))&&(i=v)));if(d!==b){if(d===null){f.removeAttr(a,c);return b}if(i&&"set"in i&&j&&(h=i.set(a,d,c))!==b)return h;a.setAttribute(c,""+d);return d}if(i&&"get"in i&&j&&(h=i.get(a,c))!==null)return h;h=a.getAttribute(c);return h===null?b:h},removeAttr:function(a,b){var c;a.nodeType===1&&(b=f.attrFix[b]||b,f.support.getSetAttribute?a.removeAttribute(b):(f.attr(a,b,""),a.removeAttributeNode(a.getAttributeNode(b))),t.test(b)&&(c=f.propFix[b]||b)in a&&(a[c]=!1))},attrHooks:{type:{set:function(a,b){if(q.test(a.nodeName)&&a.parentNode)f.error("type property can't be changed");else if(!f.support.radioValue&&b==="radio"&&f.nodeName(a,"input")){var c=a.value;a.setAttribute("type",b),c&&(a.value=c);return b}}},tabIndex:{get:function(a){var c=a.getAttributeNode("tabIndex");return c&&c.specified?parseInt(c.value,10):r.test(a.nodeName)||s.test(a.nodeName)&&a.href?0:b}},value:{get:function(a,b){if(v&&f.nodeName(a,"button"))return v.get(a,b);return b in a?a.value:null},set:function(a,b,c){if(v&&f.nodeName(a,"button"))return v.set(a,b,c);a.value=b}}},propFix:{tabindex:"tabIndex",readonly:"readOnly","for":"htmlFor","class":"className",maxlength:"maxLength",cellspacing:"cellSpacing",cellpadding:"cellPadding",rowspan:"rowSpan",colspan:"colSpan",usemap:"useMap",frameborder:"frameBorder",contenteditable:"contentEditable"},prop:function(a,c,d){var e=a.nodeType;if(!a||e===3||e===8||e===2)return b;var g,h,i=e!==1||!f.isXMLDoc(a);i&&(c=f.propFix[c]||c,h=f.propHooks[c]);return d!==b?h&&"set"in h&&(g=h.set(a,d,c))!==b?g:a[c]=d:h&&"get"in h&&(g=h.get(a,c))!==b?g:a[c]},propHooks:{}}),w={get:function(a,c){return f.prop(a,c)?c.toLowerCase():b},set:function(a,b,c){var d;b===!1?f.removeAttr(a,c):(d=f.propFix[c]||c,d in a&&(a[d]=!0),a.setAttribute(c,c.toLowerCase()));return c}},f.support.getSetAttribute||(f.attrFix=f.propFix,v=f.attrHooks.name=f.attrHooks.title=f.valHooks.button={get:function(a,c){var d;d=a.getAttributeNode(c);return d&&d.nodeValue!==""?d.nodeValue:b},set:function(a,b,c){var d=a.getAttributeNode(c);if(d){d.nodeValue=b;return b}}},f.each(["width","height"],function(a,b){f.attrHooks[b]=f.extend(f.attrHooks[b],{set:function(a,c){if(c===""){a.setAttribute(b,"auto");return c}}})})),f.support.hrefNormalized||f.each(["href","src","width","height"],function(a,c){f.attrHooks[c]=f.extend(f.attrHooks[c],{get:function(a){var d=a.getAttribute(c,2);return d===null?b:d}})}),f.support.style||(f.attrHooks.style={get:function(a){return a.style.cssText.toLowerCase()||b},set:function(a,b){return a.style.cssText=""+b}}),f.support.optSelected||(f.propHooks.selected=f.extend(f.propHooks.selected,{get:function(a){var b=a.parentNode;b&&(b.selectedIndex,b.parentNode&&b.parentNode.selectedIndex)}})),f.support.checkOn||f.each(["radio","checkbox"],function(){f.valHooks[this]={get:function(a){return a.getAttribute("value")===null?"on":a.value}}}),f.each(["radio","checkbox"],function(){f.valHooks[this]=f.extend(f.valHooks[this],{set:function(a,b){if(f.isArray(b))return a.checked=f.inArray(f(a).val(),b)>=0}})});var x=/\.(.*)$/,y=/^(?:textarea|input|select)$/i,z=/\./g,A=/ /g,B=/[^\w\s.|`]/g,C=function(a){return a.replace(B,"\\$&")};f.event={add:function(a,c,d,e){if(a.nodeType!==3&&a.nodeType!==8){if(d===!1)d=D;else if(!d)return;var g,h;d.handler&&(g=d,d=g.handler),d.guid||(d.guid=f.guid++);var i=f._data(a);if(!i)return;var j=i.events,k=i.handle;j||(i.events=j={}),k||(i.handle=k=function(a){return typeof f!="undefined"&&(!a||f.event.triggered!==a.type)?f.event.handle.apply(k.elem,arguments):b}),k.elem=a,c=c.split(" ");var l,m=0,n;while(l=c[m++]){h=g?f.extend({},g):{handler:d,data:e},l.indexOf(".")>-1?(n=l.split("."),l=n.shift(),h.namespace=n.slice(0).sort().join(".")):(n=[],h.namespace=""),h.type=l,h.guid||(h.guid=d.guid);var o=j[l],p=f.event.special[l]||{};if(!o){o=j[l]=[];if(!p.setup||p.setup.call(a,e,n,k)===!1)a.addEventListener?a.addEventListener(l,k,!1):a.attachEvent&&a.attachEvent("on"+l,k)}p.add&&(p.add.call(a,h),h.handler.guid||(h.handler.guid=d.guid)),o.push(h),f.event.global[l]=!0}a=null}},global:{},remove:function(a,c,d,e){if(a.nodeType!==3&&a.nodeType!==8){d===!1&&(d=D);var g,h,i,j,k=0,l,m,n,o,p,q,r,s=f.hasData(a)&&f._data(a),t=s&&s.events;if(!s||!t)return;c&&c.type&&(d=c.handler,c=c.type);if(!c||typeof c=="string"&&c.charAt(0)==="."){c=c||"";for(h in t)f.event.remove(a,h+c);return}c=c.split(" ");while(h=c[k++]){r=h,q=null,l=h.indexOf(".")<0,m=[],l||(m=h.split("."),h=m.shift(),n=new RegExp("(^|\\.)"+f.map(m.slice(0).sort(),C).join("\\.(?:.*\\.)?")+"(\\.|$)")),p=t[h];if(!p)continue;if(!d){for(j=0;j<p.length;j++){q=p[j];if(l||n.test(q.namespace))f.event.remove(a,r,q.handler,j),p.splice(j--,1)}continue}o=f.event.special[h]||{};for(j=e||0;j<p.length;j++){q=p[j];if(d.guid===q.guid){if(l||n.test(q.namespace))e==null&&p.splice(j--,1),o.remove&&o.remove.call(a,q);if(e!=null)break}}if(p.length===0||e!=null&&p.length===1)(!o.teardown||o.teardown.call(a,m)===!1)&&f.removeEvent(a,h,s.handle),g=null,delete t[h]}if(f.isEmptyObject(t)){var u=s.handle;u&&(u.elem=null),delete s.events,delete s.handle,f.isEmptyObject(s)&&f.removeData(a,b,!0)}}},customEvent:{getData:!0,setData:!0,changeData:!0},trigger:function(c,d,e,g){var h=c.type||c,i=[],j;h.indexOf("!")>=0&&(h=h.slice(0,-1),j=!0),h.indexOf(".")>=0&&(i=h.split("."),h=i.
shift(),i.sort());if(!!e&&!f.event.customEvent[h]||!!f.event.global[h]){c=typeof c=="object"?c[f.expando]?c:new f.Event(h,c):new f.Event(h),c.type=h,c.exclusive=j,c.namespace=i.join("."),c.namespace_re=new RegExp("(^|\\.)"+i.join("\\.(?:.*\\.)?")+"(\\.|$)");if(g||!e)c.preventDefault(),c.stopPropagation();if(!e){f.each(f.cache,function(){var a=f.expando,b=this[a];b&&b.events&&b.events[h]&&f.event.trigger(c,d,b.handle.elem)});return}if(e.nodeType===3||e.nodeType===8)return;c.result=b,c.target=e,d=d!=null?f.makeArray(d):[],d.unshift(c);var k=e,l=h.indexOf(":")<0?"on"+h:"";do{var m=f._data(k,"handle");c.currentTarget=k,m&&m.apply(k,d),l&&f.acceptData(k)&&k[l]&&k[l].apply(k,d)===!1&&(c.result=!1,c.preventDefault()),k=k.parentNode||k.ownerDocument||k===c.target.ownerDocument&&a}while(k&&!c.isPropagationStopped());if(!c.isDefaultPrevented()){var n,o=f.event.special[h]||{};if((!o._default||o._default.call(e.ownerDocument,c)===!1)&&(h!=="click"||!f.nodeName(e,"a"))&&f.acceptData(e)){try{l&&e[h]&&(n=e[l],n&&(e[l]=null),f.event.triggered=h,e[h]())}catch(p){}n&&(e[l]=n),f.event.triggered=b}}return c.result}},handle:function(c){c=f.event.fix(c||a.event);var d=((f._data(this,"events")||{})[c.type]||[]).slice(0),e=!c.exclusive&&!c.namespace,g=Array.prototype.slice.call(arguments,0);g[0]=c,c.currentTarget=this;for(var h=0,i=d.length;h<i;h++){var j=d[h];if(e||c.namespace_re.test(j.namespace)){c.handler=j.handler,c.data=j.data,c.handleObj=j;var k=j.handler.apply(this,g);k!==b&&(c.result=k,k===!1&&(c.preventDefault(),c.stopPropagation()));if(c.isImmediatePropagationStopped())break}}return c.result},props:"altKey attrChange attrName bubbles button cancelable charCode clientX clientY ctrlKey currentTarget data detail eventPhase fromElement handler keyCode layerX layerY metaKey newValue offsetX offsetY pageX pageY prevValue relatedNode relatedTarget screenX screenY shiftKey srcElement target toElement view wheelDelta which".split(" "),fix:function(a){if(a[f.expando])return a;var d=a;a=f.Event(d);for(var e=this.props.length,g;e;)g=this.props[--e],a[g]=d[g];a.target||(a.target=a.srcElement||c),a.target.nodeType===3&&(a.target=a.target.parentNode),!a.relatedTarget&&a.fromElement&&(a.relatedTarget=a.fromElement===a.target?a.toElement:a.fromElement);if(a.pageX==null&&a.clientX!=null){var h=a.target.ownerDocument||c,i=h.documentElement,j=h.body;a.pageX=a.clientX+(i&&i.scrollLeft||j&&j.scrollLeft||0)-(i&&i.clientLeft||j&&j.clientLeft||0),a.pageY=a.clientY+(i&&i.scrollTop||j&&j.scrollTop||0)-(i&&i.clientTop||j&&j.clientTop||0)}a.which==null&&(a.charCode!=null||a.keyCode!=null)&&(a.which=a.charCode!=null?a.charCode:a.keyCode),!a.metaKey&&a.ctrlKey&&(a.metaKey=a.ctrlKey),!a.which&&a.button!==b&&(a.which=a.button&1?1:a.button&2?3:a.button&4?2:0);return a},guid:1e8,proxy:f.proxy,special:{ready:{setup:f.bindReady,teardown:f.noop},live:{add:function(a){f.event.add(this,N(a.origType,a.selector),f.extend({},a,{handler:M,guid:a.handler.guid}))},remove:function(a){f.event.remove(this,N(a.origType,a.selector),a)}},beforeunload:{setup:function(a,b,c){f.isWindow(this)&&(this.onbeforeunload=c)},teardown:function(a,b){this.onbeforeunload===b&&(this.onbeforeunload=null)}}}},f.removeEvent=c.removeEventListener?function(a,b,c){a.removeEventListener&&a.removeEventListener(b,c,!1)}:function(a,b,c){a.detachEvent&&a.detachEvent("on"+b,c)},f.Event=function(a,b){if(!this.preventDefault)return new f.Event(a,b);a&&a.type?(this.originalEvent=a,this.type=a.type,this.isDefaultPrevented=a.defaultPrevented||a.returnValue===!1||a.getPreventDefault&&a.getPreventDefault()?E:D):this.type=a,b&&f.extend(this,b),this.timeStamp=f.now(),this[f.expando]=!0},f.Event.prototype={preventDefault:function(){this.isDefaultPrevented=E;var a=this.originalEvent;!a||(a.preventDefault?a.preventDefault():a.returnValue=!1)},stopPropagation:function(){this.isPropagationStopped=E;var a=this.originalEvent;!a||(a.stopPropagation&&a.stopPropagation(),a.cancelBubble=!0)},stopImmediatePropagation:function(){this.isImmediatePropagationStopped=E,this.stopPropagation()},isDefaultPrevented:D,isPropagationStopped:D,isImmediatePropagationStopped:D};var F=function(a){var b=a.relatedTarget,c=!1,d=a.type;a.type=a.data,b!==this&&(b&&(c=f.contains(this,b)),c||(f.event.handle.apply(this,arguments),a.type=d))},G=function(a){a.type=a.data,f.event.handle.apply(this,arguments)};f.each({mouseenter:"mouseover",mouseleave:"mouseout"},function(a,b){f.event.special[a]={setup:function(c){f.event.add(this,b,c&&c.selector?G:F,a)},teardown:function(a){f.event.remove(this,b,a&&a.selector?G:F)}}}),f.support.submitBubbles||(f.event.special.submit={setup:function(a,b){if(!f.nodeName(this,"form"))f.event.add(this,"click.specialSubmit",function(a){var b=a.target,c=b.type;(c==="submit"||c==="image")&&f(b).closest("form").length&&K("submit",this,arguments)}),f.event.add(this,"keypress.specialSubmit",function(a){var b=a.target,c=b.type;(c==="text"||c==="password")&&f(b).closest("form").length&&a.keyCode===13&&K("submit",this,arguments)});else return!1},teardown:function(a){f.event.remove(this,".specialSubmit")}});if(!f.support.changeBubbles){var H,I=function(a){var b=a.type,c=a.value;b==="radio"||b==="checkbox"?c=a.checked:b==="select-multiple"?c=a.selectedIndex>-1?f.map(a.options,function(a){return a.selected}).join("-"):"":f.nodeName(a,"select")&&(c=a.selectedIndex);return c},J=function(c){var d=c.target,e,g;if(!!y.test(d.nodeName)&&!d.readOnly){e=f._data(d,"_change_data"),g=I(d),(c.type!=="focusout"||d.type!=="radio")&&f._data(d,"_change_data",g);if(e===b||g===e)return;if(e!=null||g)c.type="change",c.liveFired=b,f.event.trigger(c,arguments[1],d)}};f.event.special.change={filters:{focusout:J,beforedeactivate:J,click:function(a){var b=a.target,c=f.nodeName(b,"input")?b.type:"";(c==="radio"||c==="checkbox"||f.nodeName(b,"select"))&&J.call(this,a)},keydown:function(a){var b=a.target,c=f.nodeName(b,"input")?b.type:"";(a.keyCode===13&&!f.nodeName(b,"textarea")||a.keyCode===32&&(c==="checkbox"||c==="radio")||c==="select-multiple")&&J.call(this,a)},beforeactivate:function(a){var b=a.target;f._data(b,"_change_data",I(b))}},setup:function(a,b){if(this.type==="file")return!1;for(var c in H)f.event.add(this,c+".specialChange",H[c]);return y.test(this.nodeName)},teardown:function(a){f.event.remove(this,".specialChange");return y.test(this.nodeName)}},H=f.event.special.change.filters,H.focus=H.beforeactivate}f.support.focusinBubbles||f.each({focus:"focusin",blur:"focusout"},function(a,b){function e(a){var c=f.event.fix(a);c.type=b,c.originalEvent={},f.event.trigger(c,null,c.target),c.isDefaultPrevented()&&a.preventDefault()}var d=0;f.event.special[b]={setup:function(){d++===0&&c.addEventListener(a,e,!0)},teardown:function(){--d===0&&c.removeEventListener(a,e,!0)}}}),f.each(["bind","one"],function(a,c){f.fn[c]=function(a,d,e){var g;if(typeof a=="object"){for(var h in a)this[c](h,d,a[h],e);return this}if(arguments.length===2||d===!1)e=d,d=b;c==="one"?(g=function(a){f(this).unbind(a,g);return e.apply(this,arguments)},g.guid=e.guid||f.guid++):g=e;if(a==="unload"&&c!=="one")this.one(a,d,e);else for(var i=0,j=this.length;i<j;i++)f.event.add(this[i],a,g,d);return this}}),f.fn.extend({unbind:function(a,b){if(typeof a=="object"&&!a.preventDefault)for(var c in a)this.unbind(c,a[c]);else for(var d=0,e=this.length;d<e;d++)f.event.remove(this[d],a,b);return this},delegate:function(a,b,c,d){return this.live(b,c,d,a)},undelegate:function(a,b,c){return arguments.length===0?this.unbind("live"):this.die(b,null,c,a)},trigger:function(a,b){return this.each(function(){f.event.trigger(a,b,this)})},triggerHandler:function(a,b){if(this[0])return f.event.trigger(a,b,this[0],!0)},toggle:function(a){var b=arguments,c=a.guid||f.guid++,d=0,e=function(c){var e=(f.data(this,"lastToggle"+a.guid)||0)%d;f.data(this,"lastToggle"+a.guid,e+1),c.preventDefault();return b[e].apply(this,arguments)||!1};e.guid=c;while(d<b.length)b[d++].guid=c;return this.click(e)},hover:function(a,b){return this.mouseenter(a).mouseleave(b||a)}});var L={focus:"focusin",blur:"focusout",mouseenter:"mouseover",mouseleave:"mouseout"};f.each(["live","die"],function(a,c){f.fn[c]=function(a,d,e,g){var h,i=0,j,k,l,m=g||this.selector,n=g?this:f(this.context);if(typeof a=="object"&&!a.preventDefault){for(var o in a)n[c](o,d,a[o],m);return this}if(c==="die"&&!a&&g&&g.charAt(0)==="."){n.unbind(g);return this}if(d===!1||f.isFunction(d))e=d||D,d=b;a=(a||"").split(" ");while((h=a[i++])!=null){j=x.exec(h),k="",j&&(k=j[0],h=h.replace(x,""));if(h==="hover"){a.push("mouseenter"+k,"mouseleave"+k);continue}l=h,L[h]?(a.push(L[h]+k),h=h+k):h=(L[h]||h)+k;if(c==="live")for(var p=0,q=n.length;p<q;p++)f.event.add(n[p],"live."+N(h,m),{data:d,selector:m,handler:e,origType:h,origHandler:e,preType:l});else n.unbind("live."+N(h,m),e)}return this}}),f.each("blur focus focusin focusout load resize scroll unload click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup error".split(" "),function(a,b){f.fn[b]=function(a,c){c==null&&(c=a,a=null);return arguments.length>0?this.bind(b,a,c):this.trigger(b)},f.attrFn&&(f.attrFn[b]=!0)}),function(){function u(a,b,c,d,e,f){for(var g=0,h=d.length;g<h;g++){var i=d[g];if(i){var j=!1;i=i[a];while(i){if(i.sizcache===c){j=d[i.sizset];break}if(i.nodeType===1){f||(i.sizcache=c,i.sizset=g);if(typeof b!="string"){if(i===b){j=!0;break}}else if(k.filter(b,[i]).length>0){j=i;break}}i=i[a]}d[g]=j}}}function t(a,b,c,d,e,f){for(var g=0,h=d.length;g<h;g++){var i=d[g];if(i){var j=!1;i=i[a];while(i){if(i.sizcache===c){j=d[i.sizset];break}i.nodeType===1&&!f&&(i.sizcache=c,i.sizset=g);if(i.nodeName.toLowerCase()===b){j=i;break}i=i[a]}d[g]=j}}}var a=/((?:\((?:\([^()]+\)|[^()]+)+\)|\[(?:\[[^\[\]]*\]|['"][^'"]*['"]|[^\[\]'"]+)+\]|\\.|[^ >+~,(\[\\]+)+|[>+~])(\s*,\s*)?((?:.|\r|\n)*)/g,d=0,e=Object.prototype.toString,g=!1,h=!0,i=/\\/g,j=/\W/;[0,0].sort(function(){h=!1;return 0});var k=function(b,d,f,g){f=f||[],d=d||c;var h=d;if(d.nodeType!==1&&d.nodeType!==9)return[];if(!b||typeof b!="string")return f;var i,j,n,o,q,r,s,t,u=!0,w=k.isXML(d),x=[],y=b;do{a.exec(""),i=a.exec(y);if(i){y=i[3],x.push(i[1]);if(i[2]){o=i[3];break}}}while(i);if(x.length>1&&m.exec(b))if(x.length===2&&l.relative[x[0]])j=v(x[0]+x[1],d);else{j=l.relative[x[0]]?[d]:k(x.shift(),d);while(x.length)b=x.shift(),l.relative[b]&&(b+=x.shift()),j=v(b,j)}else{!g&&x.length>1&&d.nodeType===9&&!w&&l.match.ID.test(x[0])&&!l.match.ID.test(x[x.length-1])&&(q=k.find(x.shift(),d,w),d=q.expr?k.filter(q.expr,q.set)[0]:q.set[0]);if(d){q=g?{expr:x.pop(),set:p(g)}:k.find(x.pop(),x.length===1&&(x[0]==="~"||x[0]==="+")&&d.parentNode?d.parentNode:d,w),j=q.expr?k.filter(q.expr,q.set):q.set,x.length>0?n=p(j):u=!1;while(x.length)r=x.pop(),s=r,l.relative[r]?s=x.pop():r="",s==null&&(s=d),l.relative[r](n,s,w)}else n=x=[]}n||(n=j),n||k.error(r||b);if(e.call(n)==="[object Array]")if(!u)f.push.apply(f,n);else if(d&&d.nodeType===1)for(t=0;n[t]!=null;t++)n[t]&&(n[t]===!0||n[t].nodeType===1&&k.contains(d,n[t]))&&f.push(j[t]);else for(t=0;n[t]!=null;t++)n[t]&&n[t].nodeType===1&&f.push(j[t]);else p(n,f);o&&(k(o,h,f,g),k.uniqueSort(f));return f};k.uniqueSort=function(a){if(r){g=h,a.sort(r);if(g)for(var b=1;b<a.length;b++)a[b]===a[b-1]&&a.splice(b--,1)}return a},k.matches=function(a,b){return k(a,null,null,b)},k.matchesSelector=function(a,b){return k(b,null,null,[a]).length>0},k.find=function(a,b,c){var d;if(!a)return[];for(var e=0,f=l.order.length;e<f;e++){var g,h=l.order[e];if(g=l.leftMatch[h].exec(a)){var j=g[1];g.splice(1,1);if(j.substr(j.length-1)!=="\\"){g[1]=(g[1]||"").replace(i,""),d=l.find[h](g,b,c);if(d!=null){a=a.replace(l.match[h],"");break}}}}d||(d=typeof b.getElementsByTagName!="undefined"?b.getElementsByTagName("*"):[]);return{set:d,expr:a}},k.filter=function(a,c,d,e){var f,g,h=a,i=[],j=c,m=c&&c[0]&&k.isXML(c[0]);while(a&&c.length){for(var n in l.filter)if((f=l.leftMatch[n].exec(a))!=null&&f[2]){var o,p,q=l.filter[n],r=f[1];g=!1,f.splice(1,1);if(r.substr(r.length-1)==="\\")continue;j===i&&(i=[]);if(l.preFilter[n]){f=l.preFilter[n](f,j,d,i,e,m);if(!f)g=o=!0;else if(f===!0)continue}if(f)for(var s=0;(p=j[s])!=null;s++)if(p){o=q(p,f,s,j);var t=e^!!o;d&&o!=null?t?g=!0:j[s]=!1:t&&(i.push(p),g=!0)}if(o!==b){d||(j=i),a=a.replace(l.match[n],"");if(!g)return[];break}}if(a===h)if(g==null)k.error(a);else break;h=a}return j},k.error=function(a){throw"Syntax error, unrecognized expression: "+a};var l=k.selectors={order:["ID","NAME","TAG"],match:{ID:/#((?:[\w\u00c0-\uFFFF\-]|\\.)+)/,CLASS:/\.((?:[\w\u00c0-\uFFFF\-]|\\.)+)/,NAME:/\[name=['"]*((?:[\w\u00c0-\uFFFF\-]|\\.)+)['"]*\]/,ATTR:/\[\s*((?:[\w\u00c0-\uFFFF\-]|\\.)+)\s*(?:(\S?=)\s*(?:(['"])(.*?)\3|(#?(?:[\w\u00c0-\uFFFF\-]|\\.)*)|)|)\s*\]/,TAG:/^((?:[\w\u00c0-\uFFFF\*\-]|\\.)+)/,CHILD:/:(only|nth|last|first)-child(?:\(\s*(even|odd|(?:[+\-]?\d+|(?:[+\-]?\d*)?n\s*(?:[+\-]\s*\d+)?))\s*\))?/,POS:/:(nth|eq|gt|lt|first|last|even|odd)(?:\((\d*)\))?(?=[^\-]|$)/,PSEUDO:/:((?:[\w\u00c0-\uFFFF\-]|\\.)+)(?:\((['"]?)((?:\([^\)]+\)|[^\(\)]*)+)\2\))?/},leftMatch:{},attrMap:{"class":"className","for":"htmlFor"},attrHandle:{href:function(a){return a.getAttribute("href")},type:function(a){return a.getAttribute("type")}},relative:{"+":function(a,b){var c=typeof b=="string",d=c&&!j.test(b),e=c&&!d;d&&(b=b.toLowerCase());for(var f=0,g=a.length,h;f<g;f++)if(h=a[f]){while((h=h.previousSibling)&&h.nodeType!==1);a[f]=e||h&&h.nodeName.toLowerCase()===b?h||!1:h===b}e&&k.filter(b,a,!0)},">":function(a,b){var c,d=typeof b=="string",e=0,f=a.length;if(d&&!j.test(b)){b=b.toLowerCase();for(;e<f;e++){c=a[e];if(c){var g=c.parentNode;a[e]=g.nodeName.toLowerCase()===b?g:!1}}}else{for(;e<f;e++)c=a[e],c&&(a[e]=d?c.parentNode:c.parentNode===b);d&&k.filter(b,a,!0)}},"":function(a,b,c){var e,f=d++,g=u;typeof b=="string"&&!j.test(b)&&(b=b.toLowerCase(),e=b,g=t),g("parentNode",b,f,a,e,c)},"~":function(a,b,c){var e,f=d++,g=u;typeof b=="string"&&!j.test(b)&&(b=b.toLowerCase(),e=b,g=t),g("previousSibling",b,f,a,e,c)}},find:{ID:function(a,b,c){if(typeof b.getElementById!="undefined"&&!c){var d=b.getElementById(a[1]);return d&&d.parentNode?[d]:[]}},NAME:function(a,b){if(typeof b.getElementsByName!="undefined"){var c=[],d=b.getElementsByName(a[1]);for(var e=0,f=d.length;e<f;e++)d[e].getAttribute("name")===a[1]&&c.push(d[e]);return c.length===0?null:c}},TAG:function(a,b){if(typeof b.getElementsByTagName!="undefined")return b.getElementsByTagName(a[1])}},preFilter:{CLASS:function(a,b,c,d,e,f){a=" "+a[1].replace(i,"")+" ";if(f)return a;for(var g=0,h;(h=b[g])!=null;g++)h&&(e^(h.className&&(" "+h.className+" ").replace(/[\t\n\r]/g," ").indexOf(a)>=0)?c||d.push(h):c&&(b[g]=!1));return!1},ID:function(a){return a[1].replace(i,"")},TAG:function(a,b){return a[1].replace(i,"").toLowerCase()},CHILD:function(a){if(a[1]==="nth"){a[2]||k.error(a[0]),a[2]=a[2].replace(/^\+|\s*/g,"");var b=/(-?)(\d*)(?:n([+\-]?\d*))?/.exec(a[2]==="even"&&"2n"||a[2]==="odd"&&"2n+1"||!/\D/.test(a[2])&&"0n+"+a[2]||a[2]);a[2]=b[1]+(b[2]||1)-0,a[3]=b[3]-0}else a[2]&&k.error(a[0]);a[0]=d++;return a},ATTR:function(a,b,c,d,e,f){var g=a[1]=a[1].replace(i,"");!f&&l.attrMap[g]&&(a[1]=l.attrMap[g]),a[4]=(a[4]||a[5]||"").replace(i,""),a[2]==="~="&&(a[4]=" "+a[4]+" ");return a},PSEUDO:function(b,c,d,e,f){if(b[1]==="not")if((a.exec(b[3])||"").length>1||/^\w/.test(b[3]))b[3]=k(b[3],null,null,c);else{var g=k.filter(b[3],c,d,!0^f);d||e.push.apply(e,g);return!1}else if(l.match.POS.test(b[0])||l.match.CHILD.test(b[0]))return!0;return b},POS:function(a){a.unshift(!0);return a}},filters:{enabled:function(a){return a.disabled===!1&&a.type!=="hidden"},disabled:function(a){return a.disabled===!0},checked:function(a){return a.checked===!0},selected:function(a){a.parentNode&&a.parentNode.selectedIndex;return a.selected===!0},parent:function(a){return!!a.firstChild},empty:function(a){return!a.firstChild},has:function(a,b,c){return!!k(c[3],a).length},header:function(a){return/h\d/i.test(a.nodeName)},text:function(a){var b=a.getAttribute("type"),c=a.type;return a.nodeName.toLowerCase()==="input"&&"text"===c&&(b===c||b===null)},radio:function(a){return a.nodeName.toLowerCase()==="input"&&"radio"===a.type},checkbox:function(a){return a.nodeName.toLowerCase()==="input"&&"checkbox"===a.type},file:function(a){return a.nodeName.toLowerCase()==="input"&&"file"===a.type},password:function(a){return a.nodeName.toLowerCase()==="input"&&"password"===a.type},submit:function(a){var b=a.nodeName.toLowerCase();return(b==="input"||b==="button")&&"submit"===a.type},image:function(a){return a.nodeName.toLowerCase()==="input"&&"image"===a.type},reset:function(a){var b=a.nodeName.toLowerCase();return(b==="input"||b==="button")&&"reset"===a.type},button:function(a){var b=a.nodeName.toLowerCase();return b==="input"&&"button"===a.type||b==="button"},input:function(a){return/input|select|textarea|button/i.test(a.nodeName)},focus:function(a){return a===a.ownerDocument.activeElement}},setFilters:{first:function(a,b){return b===0},last:function(a,b,c,d){return b===d.length-1},even:function(a,b){return b%2===0},odd:function(a,b){return b%2===1},lt:function(a,b,c){return b<c[3]-0},gt:function(a,b,c){return b>c[3]-0},nth:function(a,b,c){return c[3]-0===b},eq:function(a,b,c){return c[3]-0===b}},filter:{PSEUDO:function(a,b,c,d){var e=b[1],f=l.filters[e];if(f)return f(a,c,b,d);if(e==="contains")return(a.textContent||a.innerText||k.getText([a])||"").indexOf(b[3])>=0;if(e==="not"){var g=b[3];for(var h=0,i=g.length;h<i;h++)if(g[h]===a)return!1;return!0}k.error(e)},CHILD:function(a,b){var c=b[1],d=a;switch(c){case"only":case"first":while(d=d.previousSibling)if(d.nodeType===1)return!1;if(c==="first")return!0;d=a;case"last":while(d=d.nextSibling)if(d.nodeType===1)return!1;return!0;case"nth":var e=b[2],f=b[3];if(e===1&&f===0)return!0;var g=b[0],h=a.parentNode;if(h&&(h.sizcache!==g||!a.nodeIndex)){var i=0;for(d=h.firstChild;d;d=d.nextSibling)d.nodeType===1&&(d.nodeIndex=++i);h.sizcache=g}var j=a.nodeIndex-f;return e===0?j===0:j%e===0&&j/e>=0}},ID:function(a,b){return a.nodeType===1&&a.getAttribute("id")===b},TAG:function(a,b){return b==="*"&&a.nodeType===1||a.nodeName.toLowerCase()===b},CLASS:function(a,b){return(" "+(a.className||a.getAttribute("class"))+" ").indexOf(b)>-1},ATTR:function(a,b){var c=b[1],d=l.attrHandle[c]?l.attrHandle[c](a):a[c]!=null?a[c]:a.getAttribute(c),e=d+"",f=b[2],g=b[4];return d==null?f==="!=":f==="="?e===g:f==="*="?e.indexOf(g)>=0:f==="~="?(" "+e+" ").indexOf(g)>=0:g?f==="!="?e!==g:f==="^="?e.indexOf(g)===0:f==="$="?e.substr(e.length-g.length)===g:f==="|="?e===g||e.substr(0,g.length+1)===g+"-":!1:e&&d!==!1},POS:function(a,b,c,d){var e=b[2],f=l.setFilters[e];if(f)return f(a,c,b,d)}}},m=l.match.POS,n=function(a,b){return"\\"+(b-0+1)};for(var o in l.match)l.match[o]=new RegExp(l.match[o].source+/(?![^\[]*\])(?![^\(]*\))/.source),l.leftMatch[o]=new RegExp(/(^(?:.|\r|\n)*?)/.source+l.match[o].source.replace(/\\(\d+)/g,n));var p=function(a,b){a=Array.prototype.slice.call(a,0);if(b){b.push.apply(b,a);return b}return a};try{Array.prototype.slice.call(c.documentElement.childNodes,0)[0].nodeType}catch(q){p=function(a,b){var c=0,d=b||[];if(e.call(a)==="[object Array]")Array.prototype.push.apply(d,a);else if(typeof a.length=="number")for(var f=a.length;c<f;c++)d.push(a[c]);else for(;a[c];c++)d.push(a[c]);return d}}var r,s;c.documentElement.compareDocumentPosition?r=function(a,b){if(a===b){g=!0;return 0}if(!a.compareDocumentPosition||!b.compareDocumentPosition)return a.compareDocumentPosition?-1:1;return a.compareDocumentPosition(b)&4?-1:1}:(r=function(a,b){if(a===b){g=!0;return 0}if(a.sourceIndex&&b.sourceIndex)return a.sourceIndex-b.sourceIndex;var c,d,e=[],f=[],h=a.parentNode,i=b.parentNode,j=h;if(h===i)return s(a,b);if(!h)return-1;if(!i)return 1;while(j)e.unshift(j),j=j.parentNode;j=i;while(j)f.unshift(j),j=j.parentNode;c=e.length,d=f.length;for(var k=0;k<c&&k<d;k++)if(e[k]!==f[k])return s(e[k],f[k]);return k===c?s(a,f[k],-1):s(e[k],b,1)},s=function(a,b,c){if(a===b)return c;var d=a.nextSibling;while(d){if(d===b)return-1;d=d.nextSibling}return 1}),k.getText=function(a){var b="",c;for(var d=0;a[d];d++)c=a[d],c.nodeType===3||c.nodeType===4?b+=c.nodeValue:c.nodeType!==8&&(b+=k.getText(c.childNodes));return b},function(){var a=c.createElement("div"),d="script"+(new Date).getTime(),e=c.documentElement;a.innerHTML="<a name='"+d+"'/>",e.insertBefore(a,e.firstChild),c.getElementById(d)&&(l.find.ID=function(a,c,d){if(typeof c.getElementById!="undefined"&&!d){var e=c.getElementById(a[1]);return e?e.id===a[1]||typeof e.getAttributeNode!="undefined"&&e.getAttributeNode("id").nodeValue===a[1]?[e]:b:[]}},l.filter.ID=function(a,b){var c=typeof a.getAttributeNode!="undefined"&&a.getAttributeNode("id");return a.nodeType===1&&c&&c.nodeValue===b}),e.removeChild(a),e=a=null}(),function(){var a=c.createElement("div");a.appendChild(c.createComment("")),a.getElementsByTagName("*").length>0&&(l.find.TAG=function(a,b){var c=b.getElementsByTagName(a[1]);if(a[1]==="*"){var d=[];for(var e=0;c[e];e++)c[e].nodeType===1&&d.push(c[e]);c=d}return c}),a.innerHTML="<a href='#'></a>",a.firstChild&&typeof a.firstChild.getAttribute!="undefined"&&a.firstChild.getAttribute("href")!=="#"&&(l.attrHandle.href=function(a){return a.getAttribute("href",2)}),a=null}(),c.querySelectorAll&&function(){var a=k,b=c.createElement("div"),d="__sizzle__";b.innerHTML="<p class='TEST'></p>";if(!b.querySelectorAll||b.querySelectorAll(".TEST").length!==0){k=function(b,e,f,g){e=e||c;if(!g&&!k.isXML(e)){var h=/^(\w+$)|^\.([\w\-]+$)|^#([\w\-]+$)/.exec(b);if(h&&(e.nodeType===1||e.nodeType===9)){if(h[1])return p(e.getElementsByTagName(b),f);if(h[2]&&l.find.CLASS&&e.getElementsByClassName)return p(e.getElementsByClassName(h[2]),f)}if(e.nodeType===9){if(b==="body"&&e.body)return p([e.body],f);if(h&&h[3]){var i=e.getElementById(h[3]);if(!i||!i.parentNode)return p([],f);if(i.id===h[3])return p([i],f)}try{return p(e.querySelectorAll(b),f)}catch(j){}}else if(e.nodeType===1&&e.nodeName.toLowerCase()!=="object"){var m=e,n=e.getAttribute("id"),o=n||d,q=e.parentNode,r=/^\s*[+~]/.test(b);n?o=o.replace(/'/g,"\\$&"):e.setAttribute("id",o),r&&q&&(e=e.parentNode);try{if(!r||q)return p(e.querySelectorAll("[id='"+o+"'] "+b),f)}catch(s){}finally{n||m.removeAttribute("id")}}}return a(b,e,f,g)};for(var e in a)k[e]=a[e];b=null}}(),function(){var a=c.documentElement,b=a.matchesSelector||a.mozMatchesSelector||a.webkitMatchesSelector||a.msMatchesSelector;if(b){var d=!b.call(c.createElement("div"),"div"),e=!1;try{b.call(c.documentElement,"[test!='']:sizzle")}catch(f){e=!0}k.matchesSelector=function(a,c){c=c.replace(/\=\s*([^'"\]]*)\s*\]/g,"='$1']");if(!k.isXML(a))try{if(e||!l.match.PSEUDO.test(c)&&!/!=/.test(c)){var f=b.call(a,c);if(f||!d||a.document&&a.document.nodeType!==11)return f}}catch(g){}return k(c,null,null,[a]).length>0}}}(),function(){var a=c.createElement("div");a.innerHTML="<div class='test e'></div><div class='test'></div>";if(!!a.getElementsByClassName&&a.getElementsByClassName("e").length!==0){a.lastChild.className="e";if(a.getElementsByClassName("e").length===1)return;l.order.splice(1,0,"CLASS"),l.find.CLASS=function(a,b,c){if(typeof b.getElementsByClassName!="undefined"&&!c)return b.getElementsByClassName(a[1])},a=null}}(),c.documentElement.contains?k.contains=function(a,b){return a!==b&&(a.contains?a.contains(b):!0)}:c.documentElement.compareDocumentPosition?k.contains=function(a,b){return!!(a.compareDocumentPosition(b)&16)}:k.contains=function(){return!1},k.isXML=function(a){var b=(a?a.ownerDocument||a:0).documentElement;return b?b.nodeName!=="HTML":!1};var v=function(a,b){var c,d=[],e="",f=b.nodeType?[b]:b;while(c=l.match.PSEUDO.exec(a))e+=c[0],a=a.replace(l.match.PSEUDO,"");a=l.relative[a]?a+"*":a;for(var g=0,h=f.length;g<h;g++)k(a,f[g],d);return k.filter(e,d)};f.find=k,f.expr=k.selectors,f.expr[":"]=f.expr.filters,f.unique=k.uniqueSort,f.text=k.getText,f.isXMLDoc=k.isXML,f.contains=k.contains}();var O=/Until$/,P=/^(?:parents|prevUntil|prevAll)/,Q=/,/,R=/^.[^:#\[\.,]*$/,S=Array.prototype.slice,T=f.expr.match.POS,U={children:!0,contents:!0,next:!0,prev:!0};f.fn.extend({find:function(a){var b=this,c,d;if(typeof a!="string")return f(a).filter(function(){for(c=0,d=b.length;c<d;c++)if(f.contains(b[c],this))return!0});var e=this.pushStack("","find",a),g,h,i;for(c=0,d=this.length;c<d;c++){g=e.length,f.find(a,this[c],e);if(c>0)for(h=g;h<e.length;h++)for(i=0;i<g;i++)if(e[i]===e[h]){e.splice(h--,1);break}}return e},has:function(a){var b=f(a);return this.filter(function(){for(var a=0,c=b.length;a<c;a++)if(f.contains(this,b[a]))return!0})},not:function(a){return this.pushStack(W(this,a,!1),"not",a)},filter:function(a){return this.pushStack(W(this,a,!0),"filter",a)},is:function(a){return!!a&&(typeof a=="string"?f.filter(a,this).length>0:this.filter(a).length>0)},closest:function(a,b){var c=[],d,e,g=this[0];if(f.isArray(a)){var h,i,j={},k=1;if(g&&a.length){for(d=0,e=a.length;d<e;d++)i=a[d],j[i]||(j[i]=T.test(i)?f(i,b||this.context):i);while(g&&g.ownerDocument&&g!==b){for(i in j)h=j[i],(h.jquery?h.index(g)>-1:f(g).is(h))&&c.push({selector:i,elem:g,level:k});g=g.parentNode,k++}}return c}var l=T.test(a)||typeof a!="string"?f(a,b||this.context):0;for(d=0,e=this.length;d<e;d++){g=this[d];while(g){if(l?l.index(g)>-1:f.find.matchesSelector(g,a)){c.push(g);break}g=g.parentNode;if(!g||!g.ownerDocument||g===b||g.nodeType===11)break}}c=c.length>1?f.unique(c):c;return this.pushStack(c,"closest",a)},index:function(a){if(!a||typeof a=="string")return f.inArray(this[0],a?f(a):this.parent().children());return f.inArray(a.jquery?a[0]:a,this)},add:function(a,b){var c=typeof a=="string"?f(a,b):f.makeArray(a&&a.nodeType?[a]:a),d=f.merge(this.get(),c);return this.pushStack(V(c[0])||V(d[0])?d:f.unique(d))},andSelf:function(){return this.add(this.prevObject)}}),f.each({parent:function(a){var b=a.parentNode;return b&&b.nodeType!==11?b:null},parents:function(a){return f.dir(a,"parentNode")},parentsUntil:function(a,b,c){return f.dir(a,"parentNode",c)},next:function(a){return f.nth(a,2,"nextSibling")},prev:function(a){return f.nth(a,2,"previousSibling")},nextAll:function(a){return f.dir(a,"nextSibling")},prevAll:function(a){return f.dir(a,"previousSibling")},nextUntil:function(a,b,c){return f.dir(a,"nextSibling",c)},prevUntil:function(a,b,c){return f.dir(a,"previousSibling",c)},siblings:function(a){return f.sibling(a.parentNode.firstChild,a)},children:function(a){return f.sibling(a.firstChild)},contents:function(a){return f.nodeName(a,"iframe")?a.contentDocument||a.contentWindow.document:f.makeArray(a.childNodes)}},function(a,b){f.fn[a]=function(c,d){var e=f.map(this,b,c),g=S.call(arguments);O.test(a)||(d=c),d&&typeof d=="string"&&(e=f.filter(d,e)),e=this.length>1&&!U[a]?f.unique(e):e,(this.length>1||Q.test(d))&&P.test(a)&&(e=e.reverse());return this.pushStack(e,a,g.join(","))}}),f.extend({filter:function(a,b,c){c&&(a=":not("+a+")");return b.length===1?f.find.matchesSelector(b[0],a)?[b[0]]:[]:f.find.matches(a,b)},dir:function(a,c,d){var e=[],g=a[c];while(g&&g.nodeType!==9&&(d===b||g.nodeType!==1||!f(g).is(d)))g.nodeType===1&&e.push(g),g=g[c];return e},nth:function(a,b,c,d){b=b||1;var e=0;for(;a;a=a[c])if(a.nodeType===1&&++e===b)break;return a},sibling:function(a,b){var c=[];for(;a;a=a.nextSibling)a.nodeType===1&&a!==b&&c.push(a);return c}});var X=/ jQuery\d+="(?:\d+|null)"/g,Y=/^\s+/,Z=/<(?!area|br|col|embed|hr|img|input|link|meta|param)(([\w:]+)[^>]*)\/>/ig,$=/<([\w:]+)/,_=/<tbody/i,ba=/<|&#?\w+;/,bb=/<(?:script|object|embed|option|style)/i,bc=/checked\s*(?:[^=]|=\s*.checked.)/i,bd=/\/(java|ecma)script/i,be=/^\s*<!(?:\[CDATA\[|\-\-)/,bf={option:[1,"<select multiple='multiple'>","</select>"],legend:[1,"<fieldset>","</fieldset>"],thead:[1,"<table>","</table>"],tr:[2,"<table><tbody>","</tbody></table>"],td:[3,"<table><tbody><tr>","</tr></tbody></table>"],col:[2,"<table><tbody></tbody><colgroup>","</colgroup></table>"],area:[1,"<map>","</map>"],_default:[0,"",""]};bf.optgroup=bf.option,bf.tbody=bf.tfoot=bf.colgroup=bf.caption=bf.thead,bf.th=bf.td,f.support.htmlSerialize||(bf._default=[1,"div<div>","</div>"]),f.fn.extend({text:function(a){if(f.isFunction(a))return this.each(function(b){var c=f(this);c.text(a.call(this,b,c.text()))});if(typeof a!="object"&&a!==b)return this.empty().append((this[0]&&this[0].ownerDocument||c).createTextNode(a));return f.text(this)},wrapAll:function(a){if(f.isFunction(a))return this.each(function(b){f(this).wrapAll(a.call(this,b))});if(this[0]){var b=f(a,this[0].ownerDocument).eq(0).clone(!0);this[0].parentNode&&b.insertBefore(this[0]),b.map(function(){var a=this;while(a.firstChild&&a.firstChild.nodeType===1)a=a.firstChild;return a}).append(this)}return this},wrapInner:function(a){if(f.isFunction(a))return this.each(function(b){f(this).wrapInner(a.call(this,b))});return this.each(function(){var b=f(this),c=b.contents();c.length?c.wrapAll(a):b.append(a)})},wrap:function(a){return this.each(function(){f(this).wrapAll(a)})},unwrap:function(){return this.parent().each(function(){f.nodeName(this,"body")||f(this).replaceWith(this.childNodes)}).end()},append:function(){return this.domManip(arguments,!0,function(a){this.nodeType===1&&this.appendChild(a)})},prepend:function(){return this.domManip(arguments,!0,function(a){this.nodeType===1&&this.insertBefore(a,this.firstChild)})},before:function(){if(this[0]&&this[0].parentNode)return this.domManip(arguments,!1,function(a){this.parentNode.insertBefore(a,this)});if(arguments.length){var a=f(arguments[0]);a.push.apply(a,this.toArray());return this.pushStack(a,"before",arguments)}},after:function(){if(this[0]&&this[0].parentNode)return this.domManip(arguments,!1,function(a){this.parentNode.insertBefore(a,this.nextSibling)});if(arguments.length){var a=this.pushStack(this,"after",arguments);a.push.apply(a,f(arguments[0]).toArray());return a}},remove:function(a,b){for(var c=0,d;(d=this[c])!=null;c++)if(!a||f.filter(a,[d]).length)!b&&d.nodeType===1&&(f.cleanData(d.getElementsByTagName("*")),f.cleanData([d])),d.parentNode&&d.parentNode.removeChild(d);return this},empty:function(){for(var a=0,b;(b=this[a])!=null;a++){b.nodeType===1&&f.cleanData(b.getElementsByTagName("*"));while(b.firstChild)b.removeChild(b.firstChild)}return this},clone:function(a,b){a=a==null?!1:a,b=b==null?a:b;return this.map(function(){return f.clone(this,a,b)})},html:function(a){if(a===b)return this[0]&&this[0].nodeType===1?this[0].innerHTML.replace(X,""):null;if(typeof a=="string"&&!bb.test(a)&&(f.support.leadingWhitespace||!Y.test(a))&&!bf[($.exec(a)||["",""])[1].toLowerCase()]){a=a.replace(Z,"<$1></$2>");try{for(var c=0,d=this.length;c<d;c++)this[c].nodeType===1&&(f.cleanData(this[c].getElementsByTagName("*")),this[c].innerHTML=a)}catch(e){this.empty().append(a)}}else f.isFunction(a)?this.each(function(b){var c=f(this);c.html(a.call(this,b,c.html()))}):this.empty().append(a);return this},replaceWith:function(a){if(this[0]&&this[0].parentNode){if(f.isFunction(a))return this.each(function(b){var c=f(this),d=c.html();c.replaceWith(a.call(this,b,d))});typeof a!="string"&&(a=f(a).detach());return this.each(function(){var b=this.nextSibling,c=this.parentNode;f(this).remove(),b?f(b).before(a):f(c).append(a)})}return this.length?this.pushStack(f(f.isFunction(a)?a():a),"replaceWith",a):this},detach:function(a){return this.remove(a,!0)},domManip:function(a,c,d){var e,g,h,i,j=a[0],k=[];if(!f.support.checkClone&&arguments.length===3&&typeof j=="string"&&bc.test(j))return this.each(function(){f(this).domManip(a,c,d,!0)});if(f.isFunction(j))return this.each(function(e){var g=f(this);a[0]=j.call(this,e,c?g.html():b),g.domManip(a,c,d)});if(this[0]){i=j&&j.parentNode,f.support.parentNode&&i&&i.nodeType===11&&i.childNodes.length===this.length?e={fragment:i}:e=f.buildFragment(a,this,k),h=e.fragment,h.childNodes.length===1?g=h=h.firstChild:g=h.firstChild;if(g){c=c&&f.nodeName(g,"tr");for(var l=0,m=this.length,n=m-1;l<m;l++)d.call(c?bg(this[l],g):this[l],e.cacheable||m>1&&l<n?f.clone(h,!0,!0):h)}k.length&&f.each(k,bm)}return this}}),f.buildFragment=function(a,b,d){var e,g,h,i;b&&b[0]&&(i=b[0].ownerDocument||b[0]),i.createDocumentFragment||(i=c),a.length===1&&typeof a[0]=="string"&&a[0].length<512&&i===c&&a[0].charAt(0)==="<"&&!bb.test(a[0])&&(f.support.checkClone||!bc.test(a[0]))&&(g=!0,h=f.fragments[a[0]],h&&h!==1&&(e=h)),e||(e=i.createDocumentFragment(),f.clean(a,i,e,d)),g&&(f.fragments[a[0]]=h?e:1);return{fragment:e,cacheable:g}},f.fragments={},f.each({appendTo:"append",prependTo:"prepend",insertBefore:"before",insertAfter:"after",replaceAll:"replaceWith"},function(a,b){f.fn[a]=function(c){var d=[],e=f(c),g=this.length===1&&this[0].parentNode;if(g&&g.nodeType===11&&g.childNodes.length===1&&e.length===1){e[b](this[0]);return this}for(var h=0,i=e.length;h<i;h++){var j=(h>0?this.clone(!0):this).get();f(e[h])[b](j),d=d.concat(j
)}return this.pushStack(d,a,e.selector)}}),f.extend({clone:function(a,b,c){var d=a.cloneNode(!0),e,g,h;if((!f.support.noCloneEvent||!f.support.noCloneChecked)&&(a.nodeType===1||a.nodeType===11)&&!f.isXMLDoc(a)){bi(a,d),e=bj(a),g=bj(d);for(h=0;e[h];++h)bi(e[h],g[h])}if(b){bh(a,d);if(c){e=bj(a),g=bj(d);for(h=0;e[h];++h)bh(e[h],g[h])}}e=g=null;return d},clean:function(a,b,d,e){var g;b=b||c,typeof b.createElement=="undefined"&&(b=b.ownerDocument||b[0]&&b[0].ownerDocument||c);var h=[],i;for(var j=0,k;(k=a[j])!=null;j++){typeof k=="number"&&(k+="");if(!k)continue;if(typeof k=="string")if(!ba.test(k))k=b.createTextNode(k);else{k=k.replace(Z,"<$1></$2>");var l=($.exec(k)||["",""])[1].toLowerCase(),m=bf[l]||bf._default,n=m[0],o=b.createElement("div");o.innerHTML=m[1]+k+m[2];while(n--)o=o.lastChild;if(!f.support.tbody){var p=_.test(k),q=l==="table"&&!p?o.firstChild&&o.firstChild.childNodes:m[1]==="<table>"&&!p?o.childNodes:[];for(i=q.length-1;i>=0;--i)f.nodeName(q[i],"tbody")&&!q[i].childNodes.length&&q[i].parentNode.removeChild(q[i])}!f.support.leadingWhitespace&&Y.test(k)&&o.insertBefore(b.createTextNode(Y.exec(k)[0]),o.firstChild),k=o.childNodes}var r;if(!f.support.appendChecked)if(k[0]&&typeof (r=k.length)=="number")for(i=0;i<r;i++)bl(k[i]);else bl(k);k.nodeType?h.push(k):h=f.merge(h,k)}if(d){g=function(a){return!a.type||bd.test(a.type)};for(j=0;h[j];j++)if(e&&f.nodeName(h[j],"script")&&(!h[j].type||h[j].type.toLowerCase()==="text/javascript"))e.push(h[j].parentNode?h[j].parentNode.removeChild(h[j]):h[j]);else{if(h[j].nodeType===1){var s=f.grep(h[j].getElementsByTagName("script"),g);h.splice.apply(h,[j+1,0].concat(s))}d.appendChild(h[j])}}return h},cleanData:function(a){var b,c,d=f.cache,e=f.expando,g=f.event.special,h=f.support.deleteExpando;for(var i=0,j;(j=a[i])!=null;i++){if(j.nodeName&&f.noData[j.nodeName.toLowerCase()])continue;c=j[f.expando];if(c){b=d[c]&&d[c][e];if(b&&b.events){for(var k in b.events)g[k]?f.event.remove(j,k):f.removeEvent(j,k,b.handle);b.handle&&(b.handle.elem=null)}h?delete j[f.expando]:j.removeAttribute&&j.removeAttribute(f.expando),delete d[c]}}}});var bn=/alpha\([^)]*\)/i,bo=/opacity=([^)]*)/,bp=/([A-Z]|^ms)/g,bq=/^-?\d+(?:px)?$/i,br=/^-?\d/,bs=/^[+\-]=/,bt=/[^+\-\.\de]+/g,bu={position:"absolute",visibility:"hidden",display:"block"},bv=["Left","Right"],bw=["Top","Bottom"],bx,by,bz;f.fn.css=function(a,c){if(arguments.length===2&&c===b)return this;return f.access(this,a,c,!0,function(a,c,d){return d!==b?f.style(a,c,d):f.css(a,c)})},f.extend({cssHooks:{opacity:{get:function(a,b){if(b){var c=bx(a,"opacity","opacity");return c===""?"1":c}return a.style.opacity}}},cssNumber:{fillOpacity:!0,fontWeight:!0,lineHeight:!0,opacity:!0,orphans:!0,widows:!0,zIndex:!0,zoom:!0},cssProps:{"float":f.support.cssFloat?"cssFloat":"styleFloat"},style:function(a,c,d,e){if(!!a&&a.nodeType!==3&&a.nodeType!==8&&!!a.style){var g,h,i=f.camelCase(c),j=a.style,k=f.cssHooks[i];c=f.cssProps[i]||i;if(d===b){if(k&&"get"in k&&(g=k.get(a,!1,e))!==b)return g;return j[c]}h=typeof d;if(h==="number"&&isNaN(d)||d==null)return;h==="string"&&bs.test(d)&&(d=+d.replace(bt,"")+parseFloat(f.css(a,c)),h="number"),h==="number"&&!f.cssNumber[i]&&(d+="px");if(!k||!("set"in k)||(d=k.set(a,d))!==b)try{j[c]=d}catch(l){}}},css:function(a,c,d){var e,g;c=f.camelCase(c),g=f.cssHooks[c],c=f.cssProps[c]||c,c==="cssFloat"&&(c="float");if(g&&"get"in g&&(e=g.get(a,!0,d))!==b)return e;if(bx)return bx(a,c)},swap:function(a,b,c){var d={};for(var e in b)d[e]=a.style[e],a.style[e]=b[e];c.call(a);for(e in b)a.style[e]=d[e]}}),f.curCSS=f.css,f.each(["height","width"],function(a,b){f.cssHooks[b]={get:function(a,c,d){var e;if(c){if(a.offsetWidth!==0)return bA(a,b,d);f.swap(a,bu,function(){e=bA(a,b,d)});return e}},set:function(a,b){if(!bq.test(b))return b;b=parseFloat(b);if(b>=0)return b+"px"}}}),f.support.opacity||(f.cssHooks.opacity={get:function(a,b){return bo.test((b&&a.currentStyle?a.currentStyle.filter:a.style.filter)||"")?parseFloat(RegExp.$1)/100+"":b?"1":""},set:function(a,b){var c=a.style,d=a.currentStyle;c.zoom=1;var e=f.isNaN(b)?"":"alpha(opacity="+b*100+")",g=d&&d.filter||c.filter||"";c.filter=bn.test(g)?g.replace(bn,e):g+" "+e}}),f(function(){f.support.reliableMarginRight||(f.cssHooks.marginRight={get:function(a,b){var c;f.swap(a,{display:"inline-block"},function(){b?c=bx(a,"margin-right","marginRight"):c=a.style.marginRight});return c}})}),c.defaultView&&c.defaultView.getComputedStyle&&(by=function(a,c){var d,e,g;c=c.replace(bp,"-$1").toLowerCase();if(!(e=a.ownerDocument.defaultView))return b;if(g=e.getComputedStyle(a,null))d=g.getPropertyValue(c),d===""&&!f.contains(a.ownerDocument.documentElement,a)&&(d=f.style(a,c));return d}),c.documentElement.currentStyle&&(bz=function(a,b){var c,d=a.currentStyle&&a.currentStyle[b],e=a.runtimeStyle&&a.runtimeStyle[b],f=a.style;!bq.test(d)&&br.test(d)&&(c=f.left,e&&(a.runtimeStyle.left=a.currentStyle.left),f.left=b==="fontSize"?"1em":d||0,d=f.pixelLeft+"px",f.left=c,e&&(a.runtimeStyle.left=e));return d===""?"auto":d}),bx=by||bz,f.expr&&f.expr.filters&&(f.expr.filters.hidden=function(a){var b=a.offsetWidth,c=a.offsetHeight;return b===0&&c===0||!f.support.reliableHiddenOffsets&&(a.style.display||f.css(a,"display"))==="none"},f.expr.filters.visible=function(a){return!f.expr.filters.hidden(a)});var bB=/%20/g,bC=/\[\]$/,bD=/\r?\n/g,bE=/#.*$/,bF=/^(.*?):[ \t]*([^\r\n]*)\r?$/mg,bG=/^(?:color|date|datetime|email|hidden|month|number|password|range|search|tel|text|time|url|week)$/i,bH=/^(?:about|app|app\-storage|.+\-extension|file|widget):$/,bI=/^(?:GET|HEAD)$/,bJ=/^\/\//,bK=/\?/,bL=/<script\b[^<]*(?:(?!<\/script>)<[^<]*)*<\/script>/gi,bM=/^(?:select|textarea)/i,bN=/\s+/,bO=/([?&])_=[^&]*/,bP=/^([\w\+\.\-]+:)(?:\/\/([^\/?#:]*)(?::(\d+))?)?/,bQ=f.fn.load,bR={},bS={},bT,bU;try{bT=e.href}catch(bV){bT=c.createElement("a"),bT.href="",bT=bT.href}bU=bP.exec(bT.toLowerCase())||[],f.fn.extend({load:function(a,c,d){if(typeof a!="string"&&bQ)return bQ.apply(this,arguments);if(!this.length)return this;var e=a.indexOf(" ");if(e>=0){var g=a.slice(e,a.length);a=a.slice(0,e)}var h="GET";c&&(f.isFunction(c)?(d=c,c=b):typeof c=="object"&&(c=f.param(c,f.ajaxSettings.traditional),h="POST"));var i=this;f.ajax({url:a,type:h,dataType:"html",data:c,complete:function(a,b,c){c=a.responseText,a.isResolved()&&(a.done(function(a){c=a}),i.html(g?f("<div>").append(c.replace(bL,"")).find(g):c)),d&&i.each(d,[c,b,a])}});return this},serialize:function(){return f.param(this.serializeArray())},serializeArray:function(){return this.map(function(){return this.elements?f.makeArray(this.elements):this}).filter(function(){return this.name&&!this.disabled&&(this.checked||bM.test(this.nodeName)||bG.test(this.type))}).map(function(a,b){var c=f(this).val();return c==null?null:f.isArray(c)?f.map(c,function(a,c){return{name:b.name,value:a.replace(bD,"\r\n")}}):{name:b.name,value:c.replace(bD,"\r\n")}}).get()}}),f.each("ajaxStart ajaxStop ajaxComplete ajaxError ajaxSuccess ajaxSend".split(" "),function(a,b){f.fn[b]=function(a){return this.bind(b,a)}}),f.each(["get","post"],function(a,c){f[c]=function(a,d,e,g){f.isFunction(d)&&(g=g||e,e=d,d=b);return f.ajax({type:c,url:a,data:d,success:e,dataType:g})}}),f.extend({getScript:function(a,c){return f.get(a,b,c,"script")},getJSON:function(a,b,c){return f.get(a,b,c,"json")},ajaxSetup:function(a,b){b?f.extend(!0,a,f.ajaxSettings,b):(b=a,a=f.extend(!0,f.ajaxSettings,b));for(var c in{context:1,url:1})c in b?a[c]=b[c]:c in f.ajaxSettings&&(a[c]=f.ajaxSettings[c]);return a},ajaxSettings:{url:bT,isLocal:bH.test(bU[1]),global:!0,type:"GET",contentType:"application/x-www-form-urlencoded",processData:!0,async:!0,accepts:{xml:"application/xml, text/xml",html:"text/html",text:"text/plain",json:"application/json, text/javascript","*":"*/*"},contents:{xml:/xml/,html:/html/,json:/json/},responseFields:{xml:"responseXML",text:"responseText"},converters:{"* text":a.String,"text html":!0,"text json":f.parseJSON,"text xml":f.parseXML}},ajaxPrefilter:bW(bR),ajaxTransport:bW(bS),ajax:function(a,c){function w(a,c,l,m){if(s!==2){s=2,q&&clearTimeout(q),p=b,n=m||"",v.readyState=a?4:0;var o,r,u,w=l?bZ(d,v,l):b,x,y;if(a>=200&&a<300||a===304){if(d.ifModified){if(x=v.getResponseHeader("Last-Modified"))f.lastModified[k]=x;if(y=v.getResponseHeader("Etag"))f.etag[k]=y}if(a===304)c="notmodified",o=!0;else try{r=b$(d,w),c="success",o=!0}catch(z){c="parsererror",u=z}}else{u=c;if(!c||a)c="error",a<0&&(a=0)}v.status=a,v.statusText=c,o?h.resolveWith(e,[r,c,v]):h.rejectWith(e,[v,c,u]),v.statusCode(j),j=b,t&&g.trigger("ajax"+(o?"Success":"Error"),[v,d,o?r:u]),i.resolveWith(e,[v,c]),t&&(g.trigger("ajaxComplete",[v,d]),--f.active||f.event.trigger("ajaxStop"))}}typeof a=="object"&&(c=a,a=b),c=c||{};var d=f.ajaxSetup({},c),e=d.context||d,g=e!==d&&(e.nodeType||e instanceof f)?f(e):f.event,h=f.Deferred(),i=f._Deferred(),j=d.statusCode||{},k,l={},m={},n,o,p,q,r,s=0,t,u,v={readyState:0,setRequestHeader:function(a,b){if(!s){var c=a.toLowerCase();a=m[c]=m[c]||a,l[a]=b}return this},getAllResponseHeaders:function(){return s===2?n:null},getResponseHeader:function(a){var c;if(s===2){if(!o){o={};while(c=bF.exec(n))o[c[1].toLowerCase()]=c[2]}c=o[a.toLowerCase()]}return c===b?null:c},overrideMimeType:function(a){s||(d.mimeType=a);return this},abort:function(a){a=a||"abort",p&&p.abort(a),w(0,a);return this}};h.promise(v),v.success=v.done,v.error=v.fail,v.complete=i.done,v.statusCode=function(a){if(a){var b;if(s<2)for(b in a)j[b]=[j[b],a[b]];else b=a[v.status],v.then(b,b)}return this},d.url=((a||d.url)+"").replace(bE,"").replace(bJ,bU[1]+"//"),d.dataTypes=f.trim(d.dataType||"*").toLowerCase().split(bN),d.crossDomain==null&&(r=bP.exec(d.url.toLowerCase()),d.crossDomain=!(!r||r[1]==bU[1]&&r[2]==bU[2]&&(r[3]||(r[1]==="http:"?80:443))==(bU[3]||(bU[1]==="http:"?80:443)))),d.data&&d.processData&&typeof d.data!="string"&&(d.data=f.param(d.data,d.traditional)),bX(bR,d,c,v);if(s===2)return!1;t=d.global,d.type=d.type.toUpperCase(),d.hasContent=!bI.test(d.type),t&&f.active++===0&&f.event.trigger("ajaxStart");if(!d.hasContent){d.data&&(d.url+=(bK.test(d.url)?"&":"?")+d.data),k=d.url;if(d.cache===!1){var x=f.now(),y=d.url.replace(bO,"$1_="+x);d.url=y+(y===d.url?(bK.test(d.url)?"&":"?")+"_="+x:"")}}(d.data&&d.hasContent&&d.contentType!==!1||c.contentType)&&v.setRequestHeader("Content-Type",d.contentType),d.ifModified&&(k=k||d.url,f.lastModified[k]&&v.setRequestHeader("If-Modified-Since",f.lastModified[k]),f.etag[k]&&v.setRequestHeader("If-None-Match",f.etag[k])),v.setRequestHeader("Accept",d.dataTypes[0]&&d.accepts[d.dataTypes[0]]?d.accepts[d.dataTypes[0]]+(d.dataTypes[0]!=="*"?", */*; q=0.01":""):d.accepts["*"]);for(u in d.headers)v.setRequestHeader(u,d.headers[u]);if(d.beforeSend&&(d.beforeSend.call(e,v,d)===!1||s===2)){v.abort();return!1}for(u in{success:1,error:1,complete:1})v[u](d[u]);p=bX(bS,d,c,v);if(!p)w(-1,"No Transport");else{v.readyState=1,t&&g.trigger("ajaxSend",[v,d]),d.async&&d.timeout>0&&(q=setTimeout(function(){v.abort("timeout")},d.timeout));try{s=1,p.send(l,w)}catch(z){status<2?w(-1,z):f.error(z)}}return v},param:function(a,c){var d=[],e=function(a,b){b=f.isFunction(b)?b():b,d[d.length]=encodeURIComponent(a)+"="+encodeURIComponent(b)};c===b&&(c=f.ajaxSettings.traditional);if(f.isArray(a)||a.jquery&&!f.isPlainObject(a))f.each(a,function(){e(this.name,this.value)});else for(var g in a)bY(g,a[g],c,e);return d.join("&").replace(bB,"+")}}),f.extend({active:0,lastModified:{},etag:{}});var b_=f.now(),ca=/(\=)\?(&|$)|\?\?/i;f.ajaxSetup({jsonp:"callback",jsonpCallback:function(){return f.expando+"_"+b_++}}),f.ajaxPrefilter("json jsonp",function(b,c,d){var e=b.contentType==="application/x-www-form-urlencoded"&&typeof b.data=="string";if(b.dataTypes[0]==="jsonp"||b.jsonp!==!1&&(ca.test(b.url)||e&&ca.test(b.data))){var g,h=b.jsonpCallback=f.isFunction(b.jsonpCallback)?b.jsonpCallback():b.jsonpCallback,i=a[h],j=b.url,k=b.data,l="$1"+h+"$2";b.jsonp!==!1&&(j=j.replace(ca,l),b.url===j&&(e&&(k=k.replace(ca,l)),b.data===k&&(j+=(/\?/.test(j)?"&":"?")+b.jsonp+"="+h))),b.url=j,b.data=k,a[h]=function(a){g=[a]},d.always(function(){a[h]=i,g&&f.isFunction(i)&&a[h](g[0])}),b.converters["script json"]=function(){g||f.error(h+" was not called");return g[0]},b.dataTypes[0]="json";return"script"}}),f.ajaxSetup({accepts:{script:"text/javascript, application/javascript, application/ecmascript, application/x-ecmascript"},contents:{script:/javascript|ecmascript/},converters:{"text script":function(a){f.globalEval(a);return a}}}),f.ajaxPrefilter("script",function(a){a.cache===b&&(a.cache=!1),a.crossDomain&&(a.type="GET",a.global=!1)}),f.ajaxTransport("script",function(a){if(a.crossDomain){var d,e=c.head||c.getElementsByTagName("head")[0]||c.documentElement;return{send:function(f,g){d=c.createElement("script"),d.async="async",a.scriptCharset&&(d.charset=a.scriptCharset),d.src=a.url,d.onload=d.onreadystatechange=function(a,c){if(c||!d.readyState||/loaded|complete/.test(d.readyState))d.onload=d.onreadystatechange=null,e&&d.parentNode&&e.removeChild(d),d=b,c||g(200,"success")},e.insertBefore(d,e.firstChild)},abort:function(){d&&d.onload(0,1)}}}});var cb=a.ActiveXObject?function(){for(var a in cd)cd[a](0,1)}:!1,cc=0,cd;f.ajaxSettings.xhr=a.ActiveXObject?function(){return!this.isLocal&&ce()||cf()}:ce,function(a){f.extend(f.support,{ajax:!!a,cors:!!a&&"withCredentials"in a})}(f.ajaxSettings.xhr()),f.support.ajax&&f.ajaxTransport(function(c){if(!c.crossDomain||f.support.cors){var d;return{send:function(e,g){var h=c.xhr(),i,j;c.username?h.open(c.type,c.url,c.async,c.username,c.password):h.open(c.type,c.url,c.async);if(c.xhrFields)for(j in c.xhrFields)h[j]=c.xhrFields[j];c.mimeType&&h.overrideMimeType&&h.overrideMimeType(c.mimeType),!c.crossDomain&&!e["X-Requested-With"]&&(e["X-Requested-With"]="XMLHttpRequest");try{for(j in e)h.setRequestHeader(j,e[j])}catch(k){}h.send(c.hasContent&&c.data||null),d=function(a,e){var j,k,l,m,n;try{if(d&&(e||h.readyState===4)){d=b,i&&(h.onreadystatechange=f.noop,cb&&delete cd[i]);if(e)h.readyState!==4&&h.abort();else{j=h.status,l=h.getAllResponseHeaders(),m={},n=h.responseXML,n&&n.documentElement&&(m.xml=n),m.text=h.responseText;try{k=h.statusText}catch(o){k=""}!j&&c.isLocal&&!c.crossDomain?j=m.text?200:404:j===1223&&(j=204)}}}catch(p){e||g(-1,p)}m&&g(j,k,m,l)},!c.async||h.readyState===4?d():(i=++cc,cb&&(cd||(cd={},f(a).unload(cb)),cd[i]=d),h.onreadystatechange=d)},abort:function(){d&&d(0,1)}}}});var cg={},ch,ci,cj=/^(?:toggle|show|hide)$/,ck=/^([+\-]=)?([\d+.\-]+)([a-z%]*)$/i,cl,cm=[["height","marginTop","marginBottom","paddingTop","paddingBottom"],["width","marginLeft","marginRight","paddingLeft","paddingRight"],["opacity"]],cn,co=a.webkitRequestAnimationFrame||a.mozRequestAnimationFrame||a.oRequestAnimationFrame;f.fn.extend({show:function(a,b,c){var d,e;if(a||a===0)return this.animate(cr("show",3),a,b,c);for(var g=0,h=this.length;g<h;g++)d=this[g],d.style&&(e=d.style.display,!f._data(d,"olddisplay")&&e==="none"&&(e=d.style.display=""),e===""&&f.css(d,"display")==="none"&&f._data(d,"olddisplay",cs(d.nodeName)));for(g=0;g<h;g++){d=this[g];if(d.style){e=d.style.display;if(e===""||e==="none")d.style.display=f._data(d,"olddisplay")||""}}return this},hide:function(a,b,c){if(a||a===0)return this.animate(cr("hide",3),a,b,c);for(var d=0,e=this.length;d<e;d++)if(this[d].style){var g=f.css(this[d],"display");g!=="none"&&!f._data(this[d],"olddisplay")&&f._data(this[d],"olddisplay",g)}for(d=0;d<e;d++)this[d].style&&(this[d].style.display="none");return this},_toggle:f.fn.toggle,toggle:function(a,b,c){var d=typeof a=="boolean";f.isFunction(a)&&f.isFunction(b)?this._toggle.apply(this,arguments):a==null||d?this.each(function(){var b=d?a:f(this).is(":hidden");f(this)[b?"show":"hide"]()}):this.animate(cr("toggle",3),a,b,c);return this},fadeTo:function(a,b,c,d){return this.filter(":hidden").css("opacity",0).show().end().animate({opacity:b},a,c,d)},animate:function(a,b,c,d){var e=f.speed(b,c,d);if(f.isEmptyObject(a))return this.each(e.complete,[!1]);a=f.extend({},a);return this[e.queue===!1?"each":"queue"](function(){e.queue===!1&&f._mark(this);var b=f.extend({},e),c=this.nodeType===1,d=c&&f(this).is(":hidden"),g,h,i,j,k,l,m,n,o;b.animatedProperties={};for(i in a){g=f.camelCase(i),i!==g&&(a[g]=a[i],delete a[i]),h=a[g],f.isArray(h)?(b.animatedProperties[g]=h[1],h=a[g]=h[0]):b.animatedProperties[g]=b.specialEasing&&b.specialEasing[g]||b.easing||"swing";if(h==="hide"&&d||h==="show"&&!d)return b.complete.call(this);c&&(g==="height"||g==="width")&&(b.overflow=[this.style.overflow,this.style.overflowX,this.style.overflowY],f.css(this,"display")==="inline"&&f.css(this,"float")==="none"&&(f.support.inlineBlockNeedsLayout?(j=cs(this.nodeName),j==="inline"?this.style.display="inline-block":(this.style.display="inline",this.style.zoom=1)):this.style.display="inline-block"))}b.overflow!=null&&(this.style.overflow="hidden");for(i in a)k=new f.fx(this,b,i),h=a[i],cj.test(h)?k[h==="toggle"?d?"show":"hide":h]():(l=ck.exec(h),m=k.cur(),l?(n=parseFloat(l[2]),o=l[3]||(f.cssNumber[i]?"":"px"),o!=="px"&&(f.style(this,i,(n||1)+o),m=(n||1)/k.cur()*m,f.style(this,i,m+o)),l[1]&&(n=(l[1]==="-="?-1:1)*n+m),k.custom(m,n,o)):k.custom(m,h,""));return!0})},stop:function(a,b){a&&this.queue([]),this.each(function(){var a=f.timers,c=a.length;b||f._unmark(!0,this);while(c--)a[c].elem===this&&(b&&a[c](!0),a.splice(c,1))}),b||this.dequeue();return this}}),f.each({slideDown:cr("show",1),slideUp:cr("hide",1),slideToggle:cr("toggle",1),fadeIn:{opacity:"show"},fadeOut:{opacity:"hide"},fadeToggle:{opacity:"toggle"}},function(a,b){f.fn[a]=function(a,c,d){return this.animate(b,a,c,d)}}),f.extend({speed:function(a,b,c){var d=a&&typeof a=="object"?f.extend({},a):{complete:c||!c&&b||f.isFunction(a)&&a,duration:a,easing:c&&b||b&&!f.isFunction(b)&&b};d.duration=f.fx.off?0:typeof d.duration=="number"?d.duration:d.duration in f.fx.speeds?f.fx.speeds[d.duration]:f.fx.speeds._default,d.old=d.complete,d.complete=function(a){f.isFunction(d.old)&&d.old.call(this),d.queue!==!1?f.dequeue(this):a!==!1&&f._unmark(this)};return d},easing:{linear:function(a,b,c,d){return c+d*a},swing:function(a,b,c,d){return(-Math.cos(a*Math.PI)/2+.5)*d+c}},timers:[],fx:function(a,b,c){this.options=b,this.elem=a,this.prop=c,b.orig=b.orig||{}}}),f.fx.prototype={update:function(){this.options.step&&this.options.step.call(this.elem,this.now,this),(f.fx.step[this.prop]||f.fx.step._default)(this)},cur:function(){if(this.elem[this.prop]!=null&&(!this.elem.style||this.elem.style[this.prop]==null))return this.elem[this.prop];var a,b=f.css(this.elem,this.prop);return isNaN(a=parseFloat(b))?!b||b==="auto"?0:b:a},custom:function(a,b,c){function h(a){return d.step(a)}var d=this,e=f.fx,g;this.startTime=cn||cp(),this.start=a,this.end=b,this.unit=c||this.unit||(f.cssNumber[this.prop]?"":"px"),this.now=this.start,this.pos=this.state=0,h.elem=this.elem,h()&&f.timers.push(h)&&!cl&&(co?(cl=!0,g=function(){cl&&(co(g),e.tick())},co(g)):cl=setInterval(e.tick,e.interval))},show:function(){this.options.orig[this.prop]=f.style(this.elem,this.prop),this.options.show=!0,this.custom(this.prop==="width"||this.prop==="height"?1:0,this.cur()),f(this.elem).show()},hide:function(){this.options.orig[this.prop]=f.style(this.elem,this.prop),this.options.hide=!0,this.custom(this.cur(),0)},step:function(a){var b=cn||cp(),c=!0,d=this.elem,e=this.options,g,h;if(a||b>=e.duration+this.startTime){this.now=this.end,this.pos=this.state=1,this.update(),e.animatedProperties[this.prop]=!0;for(g in e.animatedProperties)e.animatedProperties[g]!==!0&&(c=!1);if(c){e.overflow!=null&&!f.support.shrinkWrapBlocks&&f.each(["","X","Y"],function(a,b){d.style["overflow"+b]=e.overflow[a]}),e.hide&&f(d).hide();if(e.hide||e.show)for(var i in e.animatedProperties)f.style(d,i,e.orig[i]);e.complete.call(d)}return!1}e.duration==Infinity?this.now=b:(h=b-this.startTime,this.state=h/e.duration,this.pos=f.easing[e.animatedProperties[this.prop]](this.state,h,0,1,e.duration),this.now=this.start+(this.end-this.start)*this.pos),this.update();return!0}},f.extend(f.fx,{tick:function(){for(var a=f.timers,b=0;b<a.length;++b)a[b]()||a.splice(b--,1);a.length||f.fx.stop()},interval:13,stop:function(){clearInterval(cl),cl=null},speeds:{slow:600,fast:200,_default:400},step:{opacity:function(a){f.style(a.elem,"opacity",a.now)},_default:function(a){a.elem.style&&a.elem.style[a.prop]!=null?a.elem.style[a.prop]=(a.prop==="width"||a.prop==="height"?Math.max(0,a.now):a.now)+a.unit:a.elem[a.prop]=a.now}}}),f.expr&&f.expr.filters&&(f.expr.filters.animated=function(a){return f.grep(f.timers,function(b){return a===b.elem}).length});var ct=/^t(?:able|d|h)$/i,cu=/^(?:body|html)$/i;"getBoundingClientRect"in c.documentElement?f.fn.offset=function(a){var b=this[0],c;if(a)return this.each(function(b){f.offset.setOffset(this,a,b)});if(!b||!b.ownerDocument)return null;if(b===b.ownerDocument.body)return f.offset.bodyOffset(b);try{c=b.getBoundingClientRect()}catch(d){}var e=b.ownerDocument,g=e.documentElement;if(!c||!f.contains(g,b))return c?{top:c.top,left:c.left}:{top:0,left:0};var h=e.body,i=cv(e),j=g.clientTop||h.clientTop||0,k=g.clientLeft||h.clientLeft||0,l=i.pageYOffset||f.support.boxModel&&g.scrollTop||h.scrollTop,m=i.pageXOffset||f.support.boxModel&&g.scrollLeft||h.scrollLeft,n=c.top+l-j,o=c.left+m-k;return{top:n,left:o}}:f.fn.offset=function(a){var b=this[0];if(a)return this.each(function(b){f.offset.setOffset(this,a,b)});if(!b||!b.ownerDocument)return null;if(b===b.ownerDocument.body)return f.offset.bodyOffset(b);f.offset.initialize();var c,d=b.offsetParent,e=b,g=b.ownerDocument,h=g.documentElement,i=g.body,j=g.defaultView,k=j?j.getComputedStyle(b,null):b.currentStyle,l=b.offsetTop,m=b.offsetLeft;while((b=b.parentNode)&&b!==i&&b!==h){if(f.offset.supportsFixedPosition&&k.position==="fixed")break;c=j?j.getComputedStyle(b,null):b.currentStyle,l-=b.scrollTop,m-=b.scrollLeft,b===d&&(l+=b.offsetTop,m+=b.offsetLeft,f.offset.doesNotAddBorder&&(!f.offset.doesAddBorderForTableAndCells||!ct.test(b.nodeName))&&(l+=parseFloat(c.borderTopWidth)||0,m+=parseFloat(c.borderLeftWidth)||0),e=d,d=b.offsetParent),f.offset.subtractsBorderForOverflowNotVisible&&c.overflow!=="visible"&&(l+=parseFloat(c.borderTopWidth)||0,m+=parseFloat(c.borderLeftWidth)||0),k=c}if(k.position==="relative"||k.position==="static")l+=i.offsetTop,m+=i.offsetLeft;f.offset.supportsFixedPosition&&k.position==="fixed"&&(l+=Math.max(h.scrollTop,i.scrollTop),m+=Math.max(h.scrollLeft,i.scrollLeft));return{top:l,left:m}},f.offset={initialize:function(){var a=c.body,b=c.createElement("div"),d,e,g,h,i=parseFloat(f.css(a,"marginTop"))||0,j="<div style='position:absolute;top:0;left:0;margin:0;border:5px solid #000;padding:0;width:1px;height:1px;'><div></div></div><table style='position:absolute;top:0;left:0;margin:0;border:5px solid #000;padding:0;width:1px;height:1px;' cellpadding='0' cellspacing='0'><tr><td></td></tr></table>";f.extend(b.style,{position:"absolute",top:0,left:0,margin:0,border:0,width:"1px",height:"1px",visibility:"hidden"}),b.innerHTML=j,a.insertBefore(b,a.firstChild),d=b.firstChild,e=d.firstChild,h=d.nextSibling.firstChild.firstChild,this.doesNotAddBorder=e.offsetTop!==5,this.doesAddBorderForTableAndCells=h.offsetTop===5,e.style.position="fixed",e.style.top="20px",this.supportsFixedPosition=e.offsetTop===20||e.offsetTop===15,e.style.position=e.style.top="",d.style.overflow="hidden",d.style.position="relative",this.subtractsBorderForOverflowNotVisible=e.offsetTop===-5,this.doesNotIncludeMarginInBodyOffset=a.offsetTop!==i,a.removeChild(b),f.offset.initialize=f.noop},bodyOffset:function(a){var b=a.offsetTop,c=a.offsetLeft;f.offset.initialize(),f.offset.doesNotIncludeMarginInBodyOffset&&(b+=parseFloat(f.css(a,"marginTop"))||0,c+=parseFloat(f.css(a,"marginLeft"))||0);return{top:b,left:c}},setOffset:function(a,b,c){var d=f.css(a,"position");d==="static"&&(a.style.position="relative");var e=f(a),g=e.offset(),h=f.css(a,"top"),i=f.css(a,"left"),j=(d==="absolute"||d==="fixed")&&f.inArray("auto",[h,i])>-1,k={},l={},m,n;j?(l=e.position(),m=l.top,n=l.left):(m=parseFloat(h)||0,n=parseFloat(i)||0),f.isFunction(b)&&(b=b.call(a,c,g)),b.top!=null&&(k.top=b.top-g.top+m),b.left!=null&&(k.left=b.left-g.left+n),"using"in b?b.using.call(a,k):e.css(k)}},f.fn.extend({position:function(){if(!this[0])return null;var a=this[0],b=this.offsetParent(),c=this.offset(),d=cu.test(b[0].nodeName)?{top:0,left:0}:b.offset();c.top-=parseFloat(f.css(a,"marginTop"))||0,c.left-=parseFloat(f.css(a,"marginLeft"))||0,d.top+=parseFloat(f.css(b[0],"borderTopWidth"))||0,d.left+=parseFloat(f.css(b[0],"borderLeftWidth"))||0;return{top:c.top-d.top,left:c.left-d.left}},offsetParent:function(){return this.map(function(){var a=this.offsetParent||c.body;while(a&&!cu.test(a.nodeName)&&f.css(a,"position")==="static")a=a.offsetParent;return a})}}),f.each(["Left","Top"],function(a,c){var d="scroll"+c;f.fn[d]=function(c){var e,g;if(c===b){e=this[0];if(!e)return null;g=cv(e);return g?"pageXOffset"in g?g[a?"pageYOffset":"pageXOffset"]:f.support.boxModel&&g.document.documentElement[d]||g.document.body[d]:e[d]}return this.each(function(){g=cv(this),g?g.scrollTo(a?f(g).scrollLeft():c,a?c:f(g).scrollTop()):this[d]=c})}}),f.each(["Height","Width"],function(a,c){var d=c.toLowerCase();f.fn["inner"+c]=function(){var a=this[0];return a&&a.style?parseFloat(f.css(a,d,"padding")):null},f.fn["outer"+c]=function(a){var b=this[0];return b&&b.style?parseFloat(f.css(b,d,a?"margin":"border")):null},f.fn[d]=function(a){var e=this[0];if(!e)return a==null?null:this;if(f.isFunction(a))return this.each(function(b){var c=f(this);c[d](a.call(this,b,c[d]()))});if(f.isWindow(e)){var g=e.document.documentElement["client"+c];return e.document.compatMode==="CSS1Compat"&&g||e.document.body["client"+c]||g}if(e.nodeType===9)return Math.max(e.documentElement["client"+c],e.body["scroll"+c],e.documentElement["scroll"+c],e.body["offset"+c],e.documentElement["offset"+c]);if(a===b){var h=f.css(e,d),i=parseFloat(h);return f.isNaN(i)?h:i}return this.css(d,typeof a=="string"?a:a+"px")}}),a.jQuery=a.$=f})(window);
</script>
<script type="text/javascript">
/* --- Tablesorter: http://tablesorter.com/ --- */
/* Slightly modified for use with Snap2HTML: Removed trim to allow folders to sort at top. Replaced parseInt with parseFloat to fix sort problems with some file sizes */
(function($){$.extend({tablesorter:new
function(){var parsers=[],widgets=[];this.defaults={cssHeader:"header",cssAsc:"headerSortUp",cssDesc:"headerSortDown",cssChildRow:"expand-child",sortInitialOrder:"asc",sortMultiSortKey:"shiftKey",sortForce:null,sortAppend:null,sortLocaleCompare:true,textExtraction:"simple",parsers:{},widgets:[],widgetZebra:{css:["even","odd"]},headers:{},widthFixed:false,cancelSelection:true,sortList:[],headerList:[],dateFormat:"us",decimal:'/\.|\,/g',onRenderHeader:null,selectorHeaders:'thead th',debug:false};function benchmark(s,d){log(s+","+(new Date().getTime()-d.getTime())+"ms");}
this.benchmark=benchmark;function log(s){if(typeof console!="undefined"&&typeof console.debug!="undefined"){console.log(s);}else{alert(s);}}
function buildParserCache(table,$headers){if(table.config.debug){var parsersDebug="";}
if(table.tBodies.length==0)return;var rows=table.tBodies[0].rows;if(rows[0]){var list=[],cells=rows[0].cells,l=cells.length;for(var i=0;i<l;i++){var p=false;if($.metadata&&($($headers[i]).metadata()&&$($headers[i]).metadata().sorter)){p=getParserById($($headers[i]).metadata().sorter);}else if((table.config.headers[i]&&table.config.headers[i].sorter)){p=getParserById(table.config.headers[i].sorter);}
if(!p){p=detectParserForColumn(table,rows,-1,i);}
if(table.config.debug){parsersDebug+="column:"+i+" parser:"+p.id+"\n";}
list.push(p);}}
if(table.config.debug){log(parsersDebug);}
return list;};function detectParserForColumn(table,rows,rowIndex,cellIndex){var l=parsers.length,node=false,nodeValue=false,keepLooking=true;while(nodeValue==''&&keepLooking){rowIndex++;if(rows[rowIndex]){node=getNodeFromRowAndCellIndex(rows,rowIndex,cellIndex);nodeValue=trimAndGetNodeText(table.config,node);if(table.config.debug){log('Checking if value was empty on row:'+rowIndex);}}else{keepLooking=false;}}
for(var i=1;i<l;i++){if(parsers[i].is(nodeValue,table,node)){return parsers[i];}}
return parsers[0];}
function getNodeFromRowAndCellIndex(rows,rowIndex,cellIndex){return rows[rowIndex].cells[cellIndex];}
function trimAndGetNodeText(config,node){return $.trim(getElementText(config,node));}
function getParserById(name){var l=parsers.length;for(var i=0;i<l;i++){if(parsers[i].id.toLowerCase()==name.toLowerCase()){return parsers[i];}}
return false;}
function buildCache(table){if(table.config.debug){var cacheTime=new Date();}
var totalRows=(table.tBodies[0]&&table.tBodies[0].rows.length)||0,totalCells=(table.tBodies[0].rows[0]&&table.tBodies[0].rows[0].cells.length)||0,parsers=table.config.parsers,cache={row:[],normalized:[]};for(var i=0;i<totalRows;++i){var c=$(table.tBodies[0].rows[i]),cols=[];if(c.hasClass(table.config.cssChildRow)){cache.row[cache.row.length-1]=cache.row[cache.row.length-1].add(c);continue;}
cache.row.push(c);for(var j=0;j<totalCells;++j){cols.push(parsers[j].format(getElementText(table.config,c[0].cells[j]),table,c[0].cells[j]));}
cols.push(cache.normalized.length);cache.normalized.push(cols);cols=null;};if(table.config.debug){benchmark("Building cache for "+totalRows+" rows:",cacheTime);}
return cache;};function getElementText(config,node){var text="";if(!node)return"";if(!config.supportsTextContent)config.supportsTextContent=node.textContent||false;if(config.textExtraction=="simple"){if(config.supportsTextContent){text=node.textContent;}else{if(node.childNodes[0]&&node.childNodes[0].hasChildNodes()){text=node.childNodes[0].innerHTML;}else{text=node.innerHTML;}}}else{if(typeof(config.textExtraction)=="function"){text=config.textExtraction(node);}else{text=$(node).text();}}
return text;}
function appendToTable(table,cache){if(table.config.debug){var appendTime=new Date()}
var c=cache,r=c.row,n=c.normalized,totalRows=n.length,checkCell=(n[0].length-1),tableBody=$(table.tBodies[0]),rows=[];for(var i=0;i<totalRows;i++){var pos=n[i][checkCell];rows.push(r[pos]);if(!table.config.appender){var l=r[pos].length;for(var j=0;j<l;j++){tableBody[0].appendChild(r[pos][j]);}}}
if(table.config.appender){table.config.appender(table,rows);}
rows=null;if(table.config.debug){benchmark("Rebuilt table:",appendTime);}
applyWidget(table);setTimeout(function(){$(table).trigger("sortEnd");},0);};function buildHeaders(table){if(table.config.debug){var time=new Date();}
var meta=($.metadata)?true:false;var header_index=computeTableHeaderCellIndexes(table);$tableHeaders=$(table.config.selectorHeaders,table).each(function(index){this.column=header_index[this.parentNode.rowIndex+"-"+this.cellIndex];this.order=formatSortingOrder(table.config.sortInitialOrder);this.count=this.order;if(checkHeaderMetadata(this)||checkHeaderOptions(table,index))this.sortDisabled=true;if(checkHeaderOptionsSortingLocked(table,index))this.order=this.lockedOrder=checkHeaderOptionsSortingLocked(table,index);if(!this.sortDisabled){var $th=$(this).addClass(table.config.cssHeader);if(table.config.onRenderHeader)table.config.onRenderHeader.apply($th);}
table.config.headerList[index]=this;});if(table.config.debug){benchmark("Built headers:",time);log($tableHeaders);}
return $tableHeaders;};function computeTableHeaderCellIndexes(t){var matrix=[];var lookup={};var thead=t.getElementsByTagName('THEAD')[0];var trs=thead.getElementsByTagName('TR');for(var i=0;i<trs.length;i++){var cells=trs[i].cells;for(var j=0;j<cells.length;j++){var c=cells[j];var rowIndex=c.parentNode.rowIndex;var cellId=rowIndex+"-"+c.cellIndex;var rowSpan=c.rowSpan||1;var colSpan=c.colSpan||1
var firstAvailCol;if(typeof(matrix[rowIndex])=="undefined"){matrix[rowIndex]=[];}
for(var k=0;k<matrix[rowIndex].length+1;k++){if(typeof(matrix[rowIndex][k])=="undefined"){firstAvailCol=k;break;}}
lookup[cellId]=firstAvailCol;for(var k=rowIndex;k<rowIndex+rowSpan;k++){if(typeof(matrix[k])=="undefined"){matrix[k]=[];}
var matrixrow=matrix[k];for(var l=firstAvailCol;l<firstAvailCol+colSpan;l++){matrixrow[l]="x";}}}}
return lookup;}
function checkCellColSpan(table,rows,row){var arr=[],r=table.tHead.rows,c=r[row].cells;for(var i=0;i<c.length;i++){var cell=c[i];if(cell.colSpan>1){arr=arr.concat(checkCellColSpan(table,headerArr,row++));}else{if(table.tHead.length==1||(cell.rowSpan>1||!r[row+1])){arr.push(cell);}}}
return arr;};function checkHeaderMetadata(cell){if(($.metadata)&&($(cell).metadata().sorter===false)){return true;};return false;}
function checkHeaderOptions(table,i){if((table.config.headers[i])&&(table.config.headers[i].sorter===false)){return true;};return false;}
function checkHeaderOptionsSortingLocked(table,i){if((table.config.headers[i])&&(table.config.headers[i].lockedOrder))return table.config.headers[i].lockedOrder;return false;}
function applyWidget(table){var c=table.config.widgets;var l=c.length;for(var i=0;i<l;i++){getWidgetById(c[i]).format(table);}}
function getWidgetById(name){var l=widgets.length;for(var i=0;i<l;i++){if(widgets[i].id.toLowerCase()==name.toLowerCase()){return widgets[i];}}};function formatSortingOrder(v){if(typeof(v)!="Number"){return(v.toLowerCase()=="desc")?1:0;}else{return(v==1)?1:0;}}
function isValueInArray(v,a){var l=a.length;for(var i=0;i<l;i++){if(a[i][0]==v){return true;}}
return false;}
function setHeadersCss(table,$headers,list,css){$headers.removeClass(css[0]).removeClass(css[1]);var h=[];$headers.each(function(offset){if(!this.sortDisabled){h[this.column]=$(this);}});var l=list.length;for(var i=0;i<l;i++){h[list[i][0]].addClass(css[list[i][1]]);}}
function fixColumnWidth(table,$headers){var c=table.config;if(c.widthFixed){var colgroup=$('<colgroup>');$("tr:first td",table.tBodies[0]).each(function(){colgroup.append($('<col>').css('width',$(this).width()));});$(table).prepend(colgroup);};}
function updateHeaderSortCount(table,sortList){var c=table.config,l=sortList.length;for(var i=0;i<l;i++){var s=sortList[i],o=c.headerList[s[0]];o.count=s[1];o.count++;}}
function multisort(table,sortList,cache){if(table.config.debug){var sortTime=new Date();}
var dynamicExp="var sortWrapper = function(a,b) {",l=sortList.length;for(var i=0;i<l;i++){var c=sortList[i][0];var order=sortList[i][1];var s=(table.config.parsers[c].type=="text")?((order==0)?makeSortFunction("text","asc",c):makeSortFunction("text","desc",c)):((order==0)?makeSortFunction("numeric","asc",c):makeSortFunction("numeric","desc",c));var e="e"+i;dynamicExp+="var "+e+" = "+s;dynamicExp+="if("+e+") { return "+e+"; } ";dynamicExp+="else { ";}
var orgOrderCol=cache.normalized[0].length-1;dynamicExp+="return a["+orgOrderCol+"]-b["+orgOrderCol+"];";for(var i=0;i<l;i++){dynamicExp+="}; ";}
dynamicExp+="return 0; ";dynamicExp+="}; ";if(table.config.debug){benchmark("Evaling expression:"+dynamicExp,new Date());}
eval(dynamicExp);cache.normalized.sort(sortWrapper);if(table.config.debug){benchmark("Sorting on "+sortList.toString()+" and dir "+order+" time:",sortTime);}
return cache;};function makeSortFunction(type,direction,index){var a="a["+index+"]",b="b["+index+"]";if(type=='text'&&direction=='asc'){return"("+a+" == "+b+" ? 0 : ("+a+" === null ? Number.POSITIVE_INFINITY : ("+b+" === null ? Number.NEGATIVE_INFINITY : ("+a+" < "+b+") ? -1 : 1 )));";}else if(type=='text'&&direction=='desc'){return"("+a+" == "+b+" ? 0 : ("+a+" === null ? Number.POSITIVE_INFINITY : ("+b+" === null ? Number.NEGATIVE_INFINITY : ("+b+" < "+a+") ? -1 : 1 )));";}else if(type=='numeric'&&direction=='asc'){return"("+a+" === null && "+b+" === null) ? 0 :("+a+" === null ? Number.POSITIVE_INFINITY : ("+b+" === null ? Number.NEGATIVE_INFINITY : "+a+" - "+b+"));";}else if(type=='numeric'&&direction=='desc'){return"("+a+" === null && "+b+" === null) ? 0 :("+a+" === null ? Number.POSITIVE_INFINITY : ("+b+" === null ? Number.NEGATIVE_INFINITY : "+b+" - "+a+"));";}};function makeSortText(i){return"((a["+i+"] < b["+i+"]) ? -1 : ((a["+i+"] > b["+i+"]) ? 1 : 0));";};function makeSortTextDesc(i){return"((b["+i+"] < a["+i+"]) ? -1 : ((b["+i+"] > a["+i+"]) ? 1 : 0));";};function makeSortNumeric(i){return"a["+i+"]-b["+i+"];";};function makeSortNumericDesc(i){return"b["+i+"]-a["+i+"];";};function sortText(a,b){if(table.config.sortLocaleCompare)return a.localeCompare(b);return((a<b)?-1:((a>b)?1:0));};function sortTextDesc(a,b){if(table.config.sortLocaleCompare)return b.localeCompare(a);return((b<a)?-1:((b>a)?1:0));};function sortNumeric(a,b){return a-b;};function sortNumericDesc(a,b){return b-a;};function getCachedSortType(parsers,i){return parsers[i].type;};this.construct=function(settings){return this.each(function(){if(!this.tHead||!this.tBodies)return;var $this,$document,$headers,cache,config,shiftDown=0,sortOrder;this.config={};config=$.extend(this.config,$.tablesorter.defaults,settings);$this=$(this);$.data(this,"tablesorter",config);$headers=buildHeaders(this);this.config.parsers=buildParserCache(this,$headers);cache=buildCache(this);var sortCSS=[config.cssDesc,config.cssAsc];fixColumnWidth(this);$headers.click(function(e){var totalRows=($this[0].tBodies[0]&&$this[0].tBodies[0].rows.length)||0;if(!this.sortDisabled&&totalRows>0){$this.trigger("sortStart");var $cell=$(this);var i=this.column;this.order=this.count++%2;if(this.lockedOrder)this.order=this.lockedOrder;if(!e[config.sortMultiSortKey]){config.sortList=[];if(config.sortForce!=null){var a=config.sortForce;for(var j=0;j<a.length;j++){if(a[j][0]!=i){config.sortList.push(a[j]);}}}
config.sortList.push([i,this.order]);}else{if(isValueInArray(i,config.sortList)){for(var j=0;j<config.sortList.length;j++){var s=config.sortList[j],o=config.headerList[s[0]];if(s[0]==i){o.count=s[1];o.count++;s[1]=o.count%2;}}}else{config.sortList.push([i,this.order]);}};setTimeout(function(){setHeadersCss($this[0],$headers,config.sortList,sortCSS);appendToTable($this[0],multisort($this[0],config.sortList,cache));},1);return false;}}).mousedown(function(){if(config.cancelSelection){this.onselectstart=function(){return false};return false;}});$this.bind("update",function(){var me=this;setTimeout(function(){me.config.parsers=buildParserCache(me,$headers);cache=buildCache(me);},1);}).bind("updateCell",function(e,cell){var config=this.config;var pos=[(cell.parentNode.rowIndex-1),cell.cellIndex];cache.normalized[pos[0]][pos[1]]=config.parsers[pos[1]].format(getElementText(config,cell),cell);}).bind("sorton",function(e,list){$(this).trigger("sortStart");config.sortList=list;var sortList=config.sortList;updateHeaderSortCount(this,sortList);setHeadersCss(this,$headers,sortList,sortCSS);appendToTable(this,multisort(this,sortList,cache));}).bind("appendCache",function(){appendToTable(this,cache);}).bind("applyWidgetId",function(e,id){getWidgetById(id).format(this);}).bind("applyWidgets",function(){applyWidget(this);});if($.metadata&&($(this).metadata()&&$(this).metadata().sortlist)){config.sortList=$(this).metadata().sortlist;}
if(config.sortList.length>0){$this.trigger("sorton",[config.sortList]);}
applyWidget(this);});};this.addParser=function(parser){var l=parsers.length,a=true;for(var i=0;i<l;i++){if(parsers[i].id.toLowerCase()==parser.id.toLowerCase()){a=false;}}
if(a){parsers.push(parser);};};this.addWidget=function(widget){widgets.push(widget);};this.formatFloat=function(s){var i=parseFloat(s);return(isNaN(i))?0:i;};this.formatInt=function(s){var i=parseInt(s);return(isNaN(i))?0:i;};this.isDigit=function(s,config){return/^[-+]?\d*$/.test($.trim(s.replace(/[,.']/g,'')));};this.clearTableBody=function(table){if($.browser.msie){function empty(){while(this.firstChild)
this.removeChild(this.firstChild);}
empty.apply(table.tBodies[0]);}else{table.tBodies[0].innerHTML="";}};}});$.fn.extend({tablesorter:$.tablesorter.construct});var ts=$.tablesorter;ts.addParser({id:"text",is:function(s){return true;},format:function(s){return s.toLocaleLowerCase();},type:"text"});ts.addParser({id:"digit",is:function(s,table){var c=table.config;return $.tablesorter.isDigit(s,c);},format:function(s){return $.tablesorter.formatFloat(s);},type:"numeric"});ts.addParser({id:"ipAddress",is:function(s){return/^\d{2,3}[\.]\d{2,3}[\.]\d{2,3}[\.]\d{2,3}$/.test(s);},format:function(s){var a=s.split("."),r="",l=a.length;for(var i=0;i<l;i++){var item=a[i];if(item.length==2){r+="0"+item;}else{r+=item;}}
return $.tablesorter.formatFloat(r);},type:"numeric"});ts.addParser({id:"url",is:function(s){return/^(https?|ftp|file):\/\/$/.test(s);},format:function(s){return jQuery.trim(s.replace(new RegExp(/(https?|ftp|file):\/\//),''));},type:"text"});ts.addParser({id:"isoDate",is:function(s){return/^\d{4}[\/-]\d{1,2}[\/-]\d{1,2}$/.test(s);},format:function(s){return $.tablesorter.formatFloat((s!="")?new Date(s.replace(new RegExp(/-/g),"/")).getTime():"0");},type:"numeric"});ts.addParser({id:"percent",is:function(s){return/\%$/.test($.trim(s));},format:function(s){return $.tablesorter.formatFloat(s.replace(new RegExp(/%/g),""));},type:"numeric"});ts.addParser({id:"usLongDate",is:function(s){return s.match(new RegExp(/^[A-Za-z]{3,10}\.? [0-9]{1,2}, ([0-9]{4}|'?[0-9]{2}) (([0-2]?[0-9]:[0-5][0-9])|([0-1]?[0-9]:[0-5][0-9]\s(AM|PM)))$/));},format:function(s){return $.tablesorter.formatFloat(new Date(s).getTime());},type:"numeric"});ts.addParser({id:"shortDate",is:function(s){return/\d{1,2}[\/\-]\d{1,2}[\/\-]\d{2,4}/.test(s);},format:function(s,table){var c=table.config;s=s.replace(/\-/g,"/");if(c.dateFormat=="us"){s=s.replace(/(\d{1,2})[\/\-](\d{1,2})[\/\-](\d{4})/,"$3/$1/$2");}else if(c.dateFormat=="uk"){s=s.replace(/(\d{1,2})[\/\-](\d{1,2})[\/\-](\d{4})/,"$3/$2/$1");}else if(c.dateFormat=="dd/mm/yy"||c.dateFormat=="dd-mm-yy"){s=s.replace(/(\d{1,2})[\/\-](\d{1,2})[\/\-](\d{2})/,"$1/$2/$3");}
return $.tablesorter.formatFloat(new Date(s).getTime());},type:"numeric"});ts.addParser({id:"time",is:function(s){return/^(([0-2]?[0-9]:[0-5][0-9])|([0-1]?[0-9]:[0-5][0-9]\s(am|pm)))$/.test(s);},format:function(s){return $.tablesorter.formatFloat(new Date("2000/01/01 "+s).getTime());},type:"numeric"});ts.addParser({id:"metadata",is:function(s){return false;},format:function(s,table,cell){var c=table.config,p=(!c.parserMetadataName)?'sortValue':c.parserMetadataName;return $(cell).metadata()[p];},type:"numeric"});ts.addParser({id:"filesize",is:function(s){return/^.*(bytes|KB|MB|GB|TB)$/.test(s);},format:function(s){if(s.indexOf("bytes")>=0)return parseFloat(s);if(s.indexOf("KB")>=0)return parseFloat(s)*1024;if(s.indexOf("MB")>=0)return parseFloat(s)*1024*1024;if(s.indexOf("GB")>=0)return parseFloat(s)*1024*1024*1024;if(s.indexOf("TB")>=0)return parseFloat(s)*1024*1024*1024*1024;},type:"numeric"});ts.addWidget({id:"zebra",format:function(table){if(table.config.debug){var time=new Date();}
var $tr,row=-1,odd;$("tr:visible",table.tBodies[0]).each(function(i){$tr=$(this);if(!$tr.hasClass(table.config.cssChildRow))row++;odd=(row%2==0);$tr.removeClass(table.config.widgetZebra.css[odd?0:1]).addClass(table.config.widgetZebra.css[odd?1:0])});if(table.config.debug){$.tablesorter.benchmark("Applying Zebra widget",time);}}});})(jQuery);
</script>
<script type="text/javascript">
/* --- Splitter: http://methvin.com/splitter/ --- */
;(function($){$.fn.splitter=function(args){args=args||{};return this.each(function(){var zombie;function startSplitMouse(evt){if(opts.outline)
zombie=zombie||bar.clone(false).insertAfter(A);panes.css("-webkit-user-select","none");bar.addClass(opts.activeClass);A._posSplit=A[0][opts.pxSplit]-evt[opts.eventPos];$(document).bind("mousemove",doSplitMouse).bind("mouseup",endSplitMouse);}
function doSplitMouse(evt){var newPos=A._posSplit+evt[opts.eventPos];if(opts.outline){newPos=Math.max(0,Math.min(newPos,splitter._DA-bar._DA));bar.css(opts.origin,newPos);}else
resplit(newPos);}
function endSplitMouse(evt){bar.removeClass(opts.activeClass);var newPos=A._posSplit+evt[opts.eventPos];if(opts.outline){zombie.remove();zombie=null;resplit(newPos);}
panes.css("-webkit-user-select","text");$(document).unbind("mousemove",doSplitMouse).unbind("mouseup",endSplitMouse);}
function resplit(newPos){newPos=Math.max(A._min,splitter._DA-B._max,Math.min(newPos,A._max,splitter._DA-bar._DA-B._min));bar._DA=bar[0][opts.pxSplit];bar.css(opts.origin,newPos).css(opts.fixed,splitter._DF);A.css(opts.origin,0).css(opts.split,newPos).css(opts.fixed,splitter._DF);B.css(opts.origin,newPos+bar._DA).css(opts.split,splitter._DA-bar._DA-newPos).css(opts.fixed,splitter._DF);if(!$.browser.msie)
panes.trigger("resize");}
function dimSum(jq,dims){var sum=0;for(var i=1;i<arguments.length;i++)
sum+=Math.max(parseInt(jq.css(arguments[i]))||0,0);return sum;}
var vh=(args.splitHorizontal?'h':args.splitVertical?'v':args.type)||'v';var opts=$.extend({activeClass:'active',pxPerKey:8,tabIndex:0,accessKey:''},{v:{keyLeft:39,keyRight:37,cursor:"e-resize",splitbarClass:"vsplitbar",outlineClass:"voutline",type:'v',eventPos:"pageX",origin:"left",split:"width",pxSplit:"offsetWidth",side1:"Left",side2:"Right",fixed:"height",pxFixed:"offsetHeight",side3:"Top",side4:"Bottom"},h:{keyTop:40,keyBottom:38,cursor:"n-resize",splitbarClass:"hsplitbar",outlineClass:"houtline",type:'h',eventPos:"pageY",origin:"top",split:"height",pxSplit:"offsetHeight",side1:"Top",side2:"Bottom",fixed:"width",pxFixed:"offsetWidth",side3:"Left",side4:"Right"}}[vh],args);var splitter=$(this).css({position:"relative"});var panes=$(">*",splitter[0]).css({position:"absolute","z-index":"1","-moz-outline-style":"none"});var A=$(panes[0]);var B=$(panes[1]);var focuser=$('<a href="javascript:void(0)"></a>').attr({accessKey:opts.accessKey,tabIndex:opts.tabIndex,title:opts.splitbarClass}).bind($.browser.opera?"click":"focus",function(){this.focus();bar.addClass(opts.activeClass)}).bind("keydown",function(e){var key=e.which||e.keyCode;var dir=key==opts["key"+opts.side1]?1:key==opts["key"+opts.side2]?-1:0;if(dir)
resplit(A[0][opts.pxSplit]+dir*opts.pxPerKey,false);}).bind("blur",function(){bar.removeClass(opts.activeClass)});var bar=$(panes[2]||'<div></div>').insertAfter(A).css("z-index","100").append(focuser).attr({"class":opts.splitbarClass,unselectable:"on"}).css({position:"absolute","user-select":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none"}).bind("mousedown",startSplitMouse);if(/^(auto|default|)$/.test(bar.css("cursor")))
bar.css("cursor",opts.cursor);bar._DA=bar[0][opts.pxSplit];splitter._PBF=$.boxModel?dimSum(splitter,"border"+opts.side3+"Width","border"+opts.side4+"Width"):0;splitter._PBA=$.boxModel?dimSum(splitter,"border"+opts.side1+"Width","border"+opts.side2+"Width"):0;A._pane=opts.side1;B._pane=opts.side2;$.each([A,B],function(){this._min=opts["min"+this._pane]||dimSum(this,"min-"+opts.split);this._max=opts["max"+this._pane]||dimSum(this,"max-"+opts.split)||9999;this._init=opts["size"+this._pane]===true?parseInt($.curCSS(this[0],opts.split)):opts["size"+this._pane];});var initPos=A._init;if(!isNaN(B._init))
initPos=splitter[0][opts.pxSplit]-splitter._PBA-B._init-bar._DA;if(opts.cookie){if(!$.cookie)
alert('jQuery.splitter(): jQuery cookie plugin required');var ckpos=parseInt($.cookie(opts.cookie));if(!isNaN(ckpos))
initPos=ckpos;$(window).bind("unload",function(){var state=String(bar.css(opts.origin));$.cookie(opts.cookie,state,{expires:opts.cookieExpires||365,path:opts.cookiePath||document.location.pathname});});}
if(isNaN(initPos))
initPos=Math.round((splitter[0][opts.pxSplit]-splitter._PBA-bar._DA)/2);if(opts.anchorToWindow){splitter._hadjust=dimSum(splitter,"borderTopWidth","borderBottomWidth","marginBottom");splitter._hmin=Math.max(dimSum(splitter,"minHeight"),20);$(window).bind("resize",function(){var top=splitter.offset().top;var wh=$(window).height();splitter.css("height",Math.max(wh-top-splitter._hadjust,splitter._hmin)+"px");if(!$.browser.msie)splitter.trigger("resize");}).trigger("resize");}
else if(opts.resizeToWidth&&!$.browser.msie)
$(window).bind("resize",function(){splitter.trigger("resize");});splitter.bind("resize",function(e,size){if(e.target!=this)return;splitter._DF=splitter[0][opts.pxFixed]-splitter._PBF;splitter._DA=splitter[0][opts.pxSplit]-splitter._PBA;if(splitter._DF<=0||splitter._DA<=0)return;resplit(!isNaN(size)?size:(!(opts.sizeRight||opts.sizeBottom)?A[0][opts.pxSplit]:splitter._DA-B[0][opts.pxSplit]-bar._DA));}).trigger("resize",[initPos]);});};})(jQuery);
</script>
<script type="text/javascript">
/* --- jQuery UI v1.8.24: https://github.com/jquery/jquery-ui --- */
/* --- Used by DynaTree --- Only required modules included --- */
/* jquery.ui.core.js */
(function(a,b){function c(b,c){var e=b.nodeName.toLowerCase();if("area"===e){var f=b.parentNode,g=f.name,h;return!b.href||!g||f.nodeName.toLowerCase()!=="map"?!1:(h=a("img[usemap=#"+g+"]")[0],!!h&&d(h))}return(/input|select|textarea|button|object/.test(e)?!b.disabled:"a"==e?b.href||c:c)&&d(b)}function d(b){return!a(b).parents().andSelf().filter(function(){return a.curCSS(this,"visibility")==="hidden"||a.expr.filters.hidden(this)}).length}a.ui=a.ui||{};if(a.ui.version)return;a.extend(a.ui,{version:"1.8.24",keyCode:{ALT:18,BACKSPACE:8,CAPS_LOCK:20,COMMA:188,COMMAND:91,COMMAND_LEFT:91,COMMAND_RIGHT:93,CONTROL:17,DELETE:46,DOWN:40,END:35,ENTER:13,ESCAPE:27,HOME:36,INSERT:45,LEFT:37,MENU:93,NUMPAD_ADD:107,NUMPAD_DECIMAL:110,NUMPAD_DIVIDE:111,NUMPAD_ENTER:108,NUMPAD_MULTIPLY:106,NUMPAD_SUBTRACT:109,PAGE_DOWN:34,PAGE_UP:33,PERIOD:190,RIGHT:39,SHIFT:16,SPACE:32,TAB:9,UP:38,WINDOWS:91}}),a.fn.extend({propAttr:a.fn.prop||a.fn.attr,_focus:a.fn.focus,focus:function(b,c){return typeof b=="number"?this.each(function(){var d=this;setTimeout(function(){a(d).focus(),c&&c.call(d)},b)}):this._focus.apply(this,arguments)},scrollParent:function(){var b;return a.browser.msie&&/(static|relative)/.test(this.css("position"))||/absolute/.test(this.css("position"))?b=this.parents().filter(function(){return/(relative|absolute|fixed)/.test(a.curCSS(this,"position",1))&&/(auto|scroll)/.test(a.curCSS(this,"overflow",1)+a.curCSS(this,"overflow-y",1)+a.curCSS(this,"overflow-x",1))}).eq(0):b=this.parents().filter(function(){return/(auto|scroll)/.test(a.curCSS(this,"overflow",1)+a.curCSS(this,"overflow-y",1)+a.curCSS(this,"overflow-x",1))}).eq(0),/fixed/.test(this.css("position"))||!b.length?a(document):b},zIndex:function(c){if(c!==b)return this.css("zIndex",c);if(this.length){var d=a(this[0]),e,f;while(d.length&&d[0]!==document){e=d.css("position");if(e==="absolute"||e==="relative"||e==="fixed"){f=parseInt(d.css("zIndex"),10);if(!isNaN(f)&&f!==0)return f}d=d.parent()}}return 0},disableSelection:function(){return this.bind((a.support.selectstart?"selectstart":"mousedown")+".ui-disableSelection",function(a){a.preventDefault()})},enableSelection:function(){return this.unbind(".ui-disableSelection")}}),a("<a>").outerWidth(1).jquery||a.each(["Width","Height"],function(c,d){function h(b,c,d,f){return a.each(e,function(){c-=parseFloat(a.curCSS(b,"padding"+this,!0))||0,d&&(c-=parseFloat(a.curCSS(b,"border"+this+"Width",!0))||0),f&&(c-=parseFloat(a.curCSS(b,"margin"+this,!0))||0)}),c}var e=d==="Width"?["Left","Right"]:["Top","Bottom"],f=d.toLowerCase(),g={innerWidth:a.fn.innerWidth,innerHeight:a.fn.innerHeight,outerWidth:a.fn.outerWidth,outerHeight:a.fn.outerHeight};a.fn["inner"+d]=function(c){return c===b?g["inner"+d].call(this):this.each(function(){a(this).css(f,h(this,c)+"px")})},a.fn["outer"+d]=function(b,c){return typeof b!="number"?g["outer"+d].call(this,b):this.each(function(){a(this).css(f,h(this,b,!0,c)+"px")})}}),a.extend(a.expr[":"],{data:a.expr.createPseudo?a.expr.createPseudo(function(b){return function(c){return!!a.data(c,b)}}):function(b,c,d){return!!a.data(b,d[3])},focusable:function(b){return c(b,!isNaN(a.attr(b,"tabindex")))},tabbable:function(b){var d=a.attr(b,"tabindex"),e=isNaN(d);return(e||d>=0)&&c(b,!e)}}),a(function(){var b=document.body,c=b.appendChild(c=document.createElement("div"));c.offsetHeight,a.extend(c.style,{minHeight:"100px",height:"auto",padding:0,borderWidth:0}),a.support.minHeight=c.offsetHeight===100,a.support.selectstart="onselectstart"in c,b.removeChild(c).style.display="none"}),a.curCSS||(a.curCSS=a.css),a.extend(a.ui,{plugin:{add:function(b,c,d){var e=a.ui[b].prototype;for(var f in d)e.plugins[f]=e.plugins[f]||[],e.plugins[f].push([c,d[f]])},call:function(a,b,c){var d=a.plugins[b];if(!d||!a.element[0].parentNode)return;for(var e=0;e<d.length;e++)a.options[d[e][0]]&&d[e][1].apply(a.element,c)}},contains:function(a,b){return document.compareDocumentPosition?a.compareDocumentPosition(b)&16:a!==b&&a.contains(b)},hasScroll:function(b,c){if(a(b).css("overflow")==="hidden")return!1;var d=c&&c==="left"?"scrollLeft":"scrollTop",e=!1;return b[d]>0?!0:(b[d]=1,e=b[d]>0,b[d]=0,e)},isOverAxis:function(a,b,c){return a>b&&a<b+c},isOver:function(b,c,d,e,f,g){return a.ui.isOverAxis(b,d,f)&&a.ui.isOverAxis(c,e,g)}})})(jQuery);;/*! jQuery UI - v1.8.24 - 2012-09-28
/* jquery.ui.widget.js */
(function(a,b){if(a.cleanData){var c=a.cleanData;a.cleanData=function(b){for(var d=0,e;(e=b[d])!=null;d++)try{a(e).triggerHandler("remove")}catch(f){}c(b)}}else{var d=a.fn.remove;a.fn.remove=function(b,c){return this.each(function(){return c||(!b||a.filter(b,[this]).length)&&a("*",this).add([this]).each(function(){try{a(this).triggerHandler("remove")}catch(b){}}),d.call(a(this),b,c)})}}a.widget=function(b,c,d){var e=b.split(".")[0],f;b=b.split(".")[1],f=e+"-"+b,d||(d=c,c=a.Widget),a.expr[":"][f]=function(c){return!!a.data(c,b)},a[e]=a[e]||{},a[e][b]=function(a,b){arguments.length&&this._createWidget(a,b)};var g=new c;g.options=a.extend(!0,{},g.options),a[e][b].prototype=a.extend(!0,g,{namespace:e,widgetName:b,widgetEventPrefix:a[e][b].prototype.widgetEventPrefix||b,widgetBaseClass:f},d),a.widget.bridge(b,a[e][b])},a.widget.bridge=function(c,d){a.fn[c]=function(e){var f=typeof e=="string",g=Array.prototype.slice.call(arguments,1),h=this;return e=!f&&g.length?a.extend.apply(null,[!0,e].concat(g)):e,f&&e.charAt(0)==="_"?h:(f?this.each(function(){var d=a.data(this,c),f=d&&a.isFunction(d[e])?d[e].apply(d,g):d;if(f!==d&&f!==b)return h=f,!1}):this.each(function(){var b=a.data(this,c);b?b.option(e||{})._init():a.data(this,c,new d(e,this))}),h)}},a.Widget=function(a,b){arguments.length&&this._createWidget(a,b)},a.Widget.prototype={widgetName:"widget",widgetEventPrefix:"",options:{disabled:!1},_createWidget:function(b,c){a.data(c,this.widgetName,this),this.element=a(c),this.options=a.extend(!0,{},this.options,this._getCreateOptions(),b);var d=this;this.element.bind("remove."+this.widgetName,function(){d.destroy()}),this._create(),this._trigger("create"),this._init()},_getCreateOptions:function(){return a.metadata&&a.metadata.get(this.element[0])[this.widgetName]},_create:function(){},_init:function(){},destroy:function(){this.element.unbind("."+this.widgetName).removeData(this.widgetName),this.widget().unbind("."+this.widgetName).removeAttr("aria-disabled").removeClass(this.widgetBaseClass+"-disabled "+"ui-state-disabled")},widget:function(){return this.element},option:function(c,d){var e=c;if(arguments.length===0)return a.extend({},this.options);if(typeof c=="string"){if(d===b)return this.options[c];e={},e[c]=d}return this._setOptions(e),this},_setOptions:function(b){var c=this;return a.each(b,function(a,b){c._setOption(a,b)}),this},_setOption:function(a,b){return this.options[a]=b,a==="disabled"&&this.widget()[b?"addClass":"removeClass"](this.widgetBaseClass+"-disabled"+" "+"ui-state-disabled").attr("aria-disabled",b),this},enable:function(){return this._setOption("disabled",!1)},disable:function(){return this._setOption("disabled",!0)},_trigger:function(b,c,d){var e,f,g=this.options[b];d=d||{},c=a.Event(c),c.type=(b===this.widgetEventPrefix?b:this.widgetEventPrefix+b).toLowerCase(),c.target=this.element[0],f=c.originalEvent;if(f)for(e in f)e in c||(c[e]=f[e]);return this.element.trigger(c,d),!(a.isFunction(g)&&g.call(this.element[0],c,d)===!1||c.isDefaultPrevented())}}})(jQuery);;/*! jQuery UI - v1.8.24 - 2012-09-28
/* jquery.ui.position.js */
(function(a,b){a.ui=a.ui||{};var c=/left|center|right/,d=/top|center|bottom/,e="center",f={},g=a.fn.position,h=a.fn.offset;a.fn.position=function(b){if(!b||!b.of)return g.apply(this,arguments);b=a.extend({},b);var h=a(b.of),i=h[0],j=(b.collision||"flip").split(" "),k=b.offset?b.offset.split(" "):[0,0],l,m,n;return i.nodeType===9?(l=h.width(),m=h.height(),n={top:0,left:0}):i.setTimeout?(l=h.width(),m=h.height(),n={top:h.scrollTop(),left:h.scrollLeft()}):i.preventDefault?(b.at="left top",l=m=0,n={top:b.of.pageY,left:b.of.pageX}):(l=h.outerWidth(),m=h.outerHeight(),n=h.offset()),a.each(["my","at"],function(){var a=(b[this]||"").split(" ");a.length===1&&(a=c.test(a[0])?a.concat([e]):d.test(a[0])?[e].concat(a):[e,e]),a[0]=c.test(a[0])?a[0]:e,a[1]=d.test(a[1])?a[1]:e,b[this]=a}),j.length===1&&(j[1]=j[0]),k[0]=parseInt(k[0],10)||0,k.length===1&&(k[1]=k[0]),k[1]=parseInt(k[1],10)||0,b.at[0]==="right"?n.left+=l:b.at[0]===e&&(n.left+=l/2),b.at[1]==="bottom"?n.top+=m:b.at[1]===e&&(n.top+=m/2),n.left+=k[0],n.top+=k[1],this.each(function(){var c=a(this),d=c.outerWidth(),g=c.outerHeight(),h=parseInt(a.curCSS(this,"marginLeft",!0))||0,i=parseInt(a.curCSS(this,"marginTop",!0))||0,o=d+h+(parseInt(a.curCSS(this,"marginRight",!0))||0),p=g+i+(parseInt(a.curCSS(this,"marginBottom",!0))||0),q=a.extend({},n),r;b.my[0]==="right"?q.left-=d:b.my[0]===e&&(q.left-=d/2),b.my[1]==="bottom"?q.top-=g:b.my[1]===e&&(q.top-=g/2),f.fractions||(q.left=Math.round(q.left),q.top=Math.round(q.top)),r={left:q.left-h,top:q.top-i},a.each(["left","top"],function(c,e){a.ui.position[j[c]]&&a.ui.position[j[c]][e](q,{targetWidth:l,targetHeight:m,elemWidth:d,elemHeight:g,collisionPosition:r,collisionWidth:o,collisionHeight:p,offset:k,my:b.my,at:b.at})}),a.fn.bgiframe&&c.bgiframe(),c.offset(a.extend(q,{using:b.using}))})},a.ui.position={fit:{left:function(b,c){var d=a(window),e=c.collisionPosition.left+c.collisionWidth-d.width()-d.scrollLeft();b.left=e>0?b.left-e:Math.max(b.left-c.collisionPosition.left,b.left)},top:function(b,c){var d=a(window),e=c.collisionPosition.top+c.collisionHeight-d.height()-d.scrollTop();b.top=e>0?b.top-e:Math.max(b.top-c.collisionPosition.top,b.top)}},flip:{left:function(b,c){if(c.at[0]===e)return;var d=a(window),f=c.collisionPosition.left+c.collisionWidth-d.width()-d.scrollLeft(),g=c.my[0]==="left"?-c.elemWidth:c.my[0]==="right"?c.elemWidth:0,h=c.at[0]==="left"?c.targetWidth:-c.targetWidth,i=-2*c.offset[0];b.left+=c.collisionPosition.left<0?g+h+i:f>0?g+h+i:0},top:function(b,c){if(c.at[1]===e)return;var d=a(window),f=c.collisionPosition.top+c.collisionHeight-d.height()-d.scrollTop(),g=c.my[1]==="top"?-c.elemHeight:c.my[1]==="bottom"?c.elemHeight:0,h=c.at[1]==="top"?c.targetHeight:-c.targetHeight,i=-2*c.offset[1];b.top+=c.collisionPosition.top<0?g+h+i:f>0?g+h+i:0}}},a.offset.setOffset||(a.offset.setOffset=function(b,c){/static/.test(a.curCSS(b,"position"))&&(b.style.position="relative");var d=a(b),e=d.offset(),f=parseInt(a.curCSS(b,"top",!0),10)||0,g=parseInt(a.curCSS(b,"left",!0),10)||0,h={top:c.top-e.top+f,left:c.left-e.left+g};"using"in c?c.using.call(b,h):d.css(h)},a.fn.offset=function(b){var c=this[0];return!c||!c.ownerDocument?null:b?a.isFunction(b)?this.each(function(c){a(this).offset(b.call(this,c,a(this).offset()))}):this.each(function(){a.offset.setOffset(this,b)}):h.call(this)}),a.curCSS||(a.curCSS=a.css),function(){var b=document.getElementsByTagName("body")[0],c=document.createElement("div"),d,e,g,h,i;d=document.createElement(b?"div":"body"),g={visibility:"hidden",width:0,height:0,border:0,margin:0,background:"none"},b&&a.extend(g,{position:"absolute",left:"-1000px",top:"-1000px"});for(var j in g)d.style[j]=g[j];d.appendChild(c),e=b||document.documentElement,e.insertBefore(d,e.firstChild),c.style.cssText="position: absolute; left: 10.7432222px; top: 10.432325px; height: 30px; width: 201px;",h=a(c).offset(function(a,b){return b}).offset(),d.innerHTML="",e.removeChild(d),i=h.top+h.left+(b?2e3:0),f.fractions=i>21&&i<22}()})(jQuery);;/*! jQuery UI - v1.8.24 - 2012-09-28
/* jquery.effects.core.js */
jQuery.effects||function(a,b){function c(b){var c;return b&&b.constructor==Array&&b.length==3?b:(c=/rgb\(\s*([0-9]{1,3})\s*,\s*([0-9]{1,3})\s*,\s*([0-9]{1,3})\s*\)/.exec(b))?[parseInt(c[1],10),parseInt(c[2],10),parseInt(c[3],10)]:(c=/rgb\(\s*([0-9]+(?:\.[0-9]+)?)\%\s*,\s*([0-9]+(?:\.[0-9]+)?)\%\s*,\s*([0-9]+(?:\.[0-9]+)?)\%\s*\)/.exec(b))?[parseFloat(c[1])*2.55,parseFloat(c[2])*2.55,parseFloat(c[3])*2.55]:(c=/#([a-fA-F0-9]{2})([a-fA-F0-9]{2})([a-fA-F0-9]{2})/.exec(b))?[parseInt(c[1],16),parseInt(c[2],16),parseInt(c[3],16)]:(c=/#([a-fA-F0-9])([a-fA-F0-9])([a-fA-F0-9])/.exec(b))?[parseInt(c[1]+c[1],16),parseInt(c[2]+c[2],16),parseInt(c[3]+c[3],16)]:(c=/rgba\(0, 0, 0, 0\)/.exec(b))?e.transparent:e[a.trim(b).toLowerCase()]}function d(b,d){var e;do{e=(a.curCSS||a.css)(b,d);if(e!=""&&e!="transparent"||a.nodeName(b,"body"))break;d="backgroundColor"}while(b=b.parentNode);return c(e)}function h(){var a=document.defaultView?document.defaultView.getComputedStyle(this,null):this.currentStyle,b={},c,d;if(a&&a.length&&a[0]&&a[a[0]]){var e=a.length;while(e--)c=a[e],typeof a[c]=="string"&&(d=c.replace(/\-(\w)/g,function(a,b){return b.toUpperCase()}),b[d]=a[c])}else for(c in a)typeof a[c]=="string"&&(b[c]=a[c]);return b}function i(b){var c,d;for(c in b)d=b[c],(d==null||a.isFunction(d)||c in g||/scrollbar/.test(c)||!/color/i.test(c)&&isNaN(parseFloat(d)))&&delete b[c];return b}function j(a,b){var c={_:0},d;for(d in b)a[d]!=b[d]&&(c[d]=b[d]);return c}function k(b,c,d,e){typeof b=="object"&&(e=c,d=null,c=b,b=c.effect),a.isFunction(c)&&(e=c,d=null,c={});if(typeof c=="number"||a.fx.speeds[c])e=d,d=c,c={};return a.isFunction(d)&&(e=d,d=null),c=c||{},d=d||c.duration,d=a.fx.off?0:typeof d=="number"?d:d in a.fx.speeds?a.fx.speeds[d]:a.fx.speeds._default,e=e||c.complete,[b,c,d,e]}function l(b){return!b||typeof b=="number"||a.fx.speeds[b]?!0:typeof b=="string"&&!a.effects[b]?!0:!1}a.effects={},a.each(["backgroundColor","borderBottomColor","borderLeftColor","borderRightColor","borderTopColor","borderColor","color","outlineColor"],function(b,e){a.fx.step[e]=function(a){a.colorInit||(a.start=d(a.elem,e),a.end=c(a.end),a.colorInit=!0),a.elem.style[e]="rgb("+Math.max(Math.min(parseInt(a.pos*(a.end[0]-a.start[0])+a.start[0],10),255),0)+","+Math.max(Math.min(parseInt(a.pos*(a.end[1]-a.start[1])+a.start[1],10),255),0)+","+Math.max(Math.min(parseInt(a.pos*(a.end[2]-a.start[2])+a.start[2],10),255),0)+")"}});var e={aqua:[0,255,255],azure:[240,255,255],beige:[245,245,220],black:[0,0,0],blue:[0,0,255],brown:[165,42,42],cyan:[0,255,255],darkblue:[0,0,139],darkcyan:[0,139,139],darkgrey:[169,169,169],darkgreen:[0,100,0],darkkhaki:[189,183,107],darkmagenta:[139,0,139],darkolivegreen:[85,107,47],darkorange:[255,140,0],darkorchid:[153,50,204],darkred:[139,0,0],darksalmon:[233,150,122],darkviolet:[148,0,211],fuchsia:[255,0,255],gold:[255,215,0],green:[0,128,0],indigo:[75,0,130],khaki:[240,230,140],lightblue:[173,216,230],lightcyan:[224,255,255],lightgreen:[144,238,144],lightgrey:[211,211,211],lightpink:[255,182,193],lightyellow:[255,255,224],lime:[0,255,0],magenta:[255,0,255],maroon:[128,0,0],navy:[0,0,128],olive:[128,128,0],orange:[255,165,0],pink:[255,192,203],purple:[128,0,128],violet:[128,0,128],red:[255,0,0],silver:[192,192,192],white:[255,255,255],yellow:[255,255,0],transparent:[255,255,255]},f=["add","remove","toggle"],g={border:1,borderBottom:1,borderColor:1,borderLeft:1,borderRight:1,borderTop:1,borderWidth:1,margin:1,padding:1};a.effects.animateClass=function(b,c,d,e){return a.isFunction(d)&&(e=d,d=null),this.queue(function(){var g=a(this),k=g.attr("style")||" ",l=i(h.call(this)),m,n=g.attr("class")||"";a.each(f,function(a,c){b[c]&&g[c+"Class"](b[c])}),m=i(h.call(this)),g.attr("class",n),g.animate(j(l,m),{queue:!1,duration:c,easing:d,complete:function(){a.each(f,function(a,c){b[c]&&g[c+"Class"](b[c])}),typeof g.attr("style")=="object"?(g.attr("style").cssText="",g.attr("style").cssText=k):g.attr("style",k),e&&e.apply(this,arguments),a.dequeue(this)}})})},a.fn.extend({_addClass:a.fn.addClass,addClass:function(b,c,d,e){return c?a.effects.animateClass.apply(this,[{add:b},c,d,e]):this._addClass(b)},_removeClass:a.fn.removeClass,removeClass:function(b,c,d,e){return c?a.effects.animateClass.apply(this,[{remove:b},c,d,e]):this._removeClass(b)},_toggleClass:a.fn.toggleClass,toggleClass:function(c,d,e,f,g){return typeof d=="boolean"||d===b?e?a.effects.animateClass.apply(this,[d?{add:c}:{remove:c},e,f,g]):this._toggleClass(c,d):a.effects.animateClass.apply(this,[{toggle:c},d,e,f])},switchClass:function(b,c,d,e,f){return a.effects.animateClass.apply(this,[{add:c,remove:b},d,e,f])}}),a.extend(a.effects,{version:"1.8.24",save:function(a,b){for(var c=0;c<b.length;c++)b[c]!==null&&a.data("ec.storage."+b[c],a[0].style[b[c]])},restore:function(a,b){for(var c=0;c<b.length;c++)b[c]!==null&&a.css(b[c],a.data("ec.storage."+b[c]))},setMode:function(a,b){return b=="toggle"&&(b=a.is(":hidden")?"show":"hide"),b},getBaseline:function(a,b){var c,d;switch(a[0]){case"top":c=0;break;case"middle":c=.5;break;case"bottom":c=1;break;default:c=a[0]/b.height}switch(a[1]){case"left":d=0;break;case"center":d=.5;break;case"right":d=1;break;default:d=a[1]/b.width}return{x:d,y:c}},createWrapper:function(b){if(b.parent().is(".ui-effects-wrapper"))return b.parent();var c={width:b.outerWidth(!0),height:b.outerHeight(!0),"float":b.css("float")},d=a("<div></div>").addClass("ui-effects-wrapper").css({fontSize:"100%",background:"transparent",border:"none",margin:0,padding:0}),e=document.activeElement;try{e.id}catch(f){e=document.body}return b.wrap(d),(b[0]===e||a.contains(b[0],e))&&a(e).focus(),d=b.parent(),b.css("position")=="static"?(d.css({position:"relative"}),b.css({position:"relative"})):(a.extend(c,{position:b.css("position"),zIndex:b.css("z-index")}),a.each(["top","left","bottom","right"],function(a,d){c[d]=b.css(d),isNaN(parseInt(c[d],10))&&(c[d]="auto")}),b.css({position:"relative",top:0,left:0,right:"auto",bottom:"auto"})),d.css(c).show()},removeWrapper:function(b){var c,d=document.activeElement;return b.parent().is(".ui-effects-wrapper")?(c=b.parent().replaceWith(b),(b[0]===d||a.contains(b[0],d))&&a(d).focus(),c):b},setTransition:function(b,c,d,e){return e=e||{},a.each(c,function(a,c){var f=b.cssUnit(c);f[0]>0&&(e[c]=f[0]*d+f[1])}),e}}),a.fn.extend({effect:function(b,c,d,e){var f=k.apply(this,arguments),g={options:f[1],duration:f[2],callback:f[3]},h=g.options.mode,i=a.effects[b];return a.fx.off||!i?h?this[h](g.duration,g.callback):this.each(function(){g.callback&&g.callback.call(this)}):i.call(this,g)},_show:a.fn.show,show:function(a){if(l(a))return this._show.apply(this,arguments);var b=k.apply(this,arguments);return b[1].mode="show",this.effect.apply(this,b)},_hide:a.fn.hide,hide:function(a){if(l(a))return this._hide.apply(this,arguments);var b=k.apply(this,arguments);return b[1].mode="hide",this.effect.apply(this,b)},__toggle:a.fn.toggle,toggle:function(b){if(l(b)||typeof b=="boolean"||a.isFunction(b))return this.__toggle.apply(this,arguments);var c=k.apply(this,arguments);return c[1].mode="toggle",this.effect.apply(this,c)},cssUnit:function(b){var c=this.css(b),d=[];return a.each(["em","px","%","pt"],function(a,b){c.indexOf(b)>0&&(d=[parseFloat(c),b])}),d}});var m={};a.each(["Quad","Cubic","Quart","Quint","Expo"],function(a,b){m[b]=function(b){return Math.pow(b,a+2)}}),a.extend(m,{Sine:function(a){return 1-Math.cos(a*Math.PI/2)},Circ:function(a){return 1-Math.sqrt(1-a*a)},Elastic:function(a){return a===0||a===1?a:-Math.pow(2,8*(a-1))*Math.sin(((a-1)*80-7.5)*Math.PI/15)},Back:function(a){return a*a*(3*a-2)},Bounce:function(a){var b,c=4;while(a<((b=Math.pow(2,--c))-1)/11);return 1/Math.pow(4,3-c)-7.5625*Math.pow((b*3-2)/22-a,2)}}),a.each(m,function(b,c){a.easing["easeIn"+b]=c,a.easing["easeOut"+b]=function(a){return 1-c(1-a)},a.easing["easeInOut"+b]=function(a){return a<.5?c(a*2)/2:c(a*-2+2)/-2+1}})}(jQuery);;/*! jQuery UI - v1.8.24 - 2012-09-28
/* jquery.effects.transfer.js */
(function(a,b){a.effects.transfer=function(b){return this.queue(function(){var c=a(this),d=a(b.options.to),e=d.offset(),f={top:e.top,left:e.left,height:d.innerHeight(),width:d.innerWidth()},g=c.offset(),h=a('<div class="ui-effects-transfer"></div>').appendTo(document.body).addClass(b.options.className).css({top:g.top,left:g.left,height:c.innerHeight(),width:c.innerWidth(),position:"absolute"}).animate(f,b.duration,b.options.easing,function(){h.remove(),b.callback&&b.callback.apply(c[0],arguments),c.dequeue()})})}})(jQuery);;
</script>
<script type="text/javascript">
/* --- Dynatree Plugin - v1.2.4 https://github.com/mar10/dynatree --- */
/* --- Slightly modified for use with Snap2HTML(in "_onClick: function(event) {" focus x3 was removed to prevent page from jumping around) */
function _log(e,t){return;if(!_canLog)return;var n=Array.prototype.slice.apply(arguments,[1]),r=new Date,i=r.getHours()+":"+r.getMinutes()+":"+r.getSeconds()+"."+r.getMilliseconds();n[0]=i+" - "+n[0];try{switch(e){case"info":window.console.info.apply(window.console,n);break;case"warn":window.console.warn.apply(window.console,n);break;default:window.console.log.apply(window.console,n)}}catch(s){window.console?s.number===-2146827850&&window.console.log(n.join(", ")):_canLog=!1}}function _checkBrowser(){function n(e){e=e.toLowerCase();var t=/(chrome)[ \/]([\w.]+)/.exec(e)||/(webkit)[ \/]([\w.]+)/.exec(e)||/(opera)(?:.*version|)[ \/]([\w.]+)/.exec(e)||/(msie) ([\w.]+)/.exec(e)||e.indexOf("compatible")<0&&/(mozilla)(?:.*? rv:([\w.]+)|)/.exec(e)||[];return{browser:t[1]||"",version:t[2]||"0"}}var e,t;return e=n(navigator.userAgent),t={},e.browser&&(t[e.browser]=!0,t.version=e.version),t.chrome?t.webkit=!0:t.webkit&&(t.safari=!0),t}function logMsg(e){Array.prototype.unshift.apply(arguments,["debug"]),_log.apply(this,arguments)}var _canLog=!0,BROWSER=jQuery.browser||_checkBrowser(),getDynaTreePersistData=null,DTNodeStatus_Error=-1,DTNodeStatus_Loading=1,DTNodeStatus_Ok=0;(function($){function getDtNodeFromElement(e){return alert("getDtNodeFromElement is deprecated"),$.ui.dynatree.getNode(e)}function noop(){}function versionCompare(e,t){var n=(""+e).split("."),r=(""+t).split("."),i=Math.min(n.length,r.length),s,o,u;for(u=0;u<i;u++){s=parseInt(n[u],10),o=parseInt(r[u],10),isNaN(s)&&(s=n[u]),isNaN(o)&&(o=r[u]);if(s==o)continue;return s>o?1:s<o?-1:NaN}return n.length===r.length?0:n.length<r.length?-1:1}function _initDragAndDrop(e){var t=e.options.dnd||null;t&&(t.onDragStart||t.onDrop)&&_registerDnd(),t&&t.onDragStart&&e.$tree.draggable({addClasses:!1,appendTo:"body",containment:!1,delay:0,distance:4,revert:!1,scroll:!0,scrollSpeed:7,scrollSensitivity:10,connectToDynatree:!0,helper:function(e){var t=$.ui.dynatree.getNode(e.target);return t?t.tree._onDragEvent("helper",t,null,e,null,null):"<div></div>"},start:function(e,t){var n=t.helper.data("dtSourceNode");return!!n},_last:null}),t&&t.onDrop&&e.$tree.droppable({addClasses:!1,tolerance:"intersect",greedy:!1,_last:null})}var Class={create:function(){return function(){this.initialize.apply(this,arguments)}}},DynaTreeNode=Class.create();DynaTreeNode.prototype={initialize:function(e,t,n){this.parent=e,this.tree=t,typeof n=="string"&&(n={title:n}),n.key?n.key=""+n.key:n.key="_"+t._nodeCount++,this.data=$.extend({},$.ui.dynatree.nodedatadefaults,n),this.li=null,this.span=null,this.ul=null,this.childList=null,this._isLoading=!1,this.hasSubSel=!1,this.bExpanded=!1,this.bSelected=!1},toString:function(){return"DynaTreeNode<"+this.data.key+">: '"+this.data.title+"'"},toDict:function(e,t){var n=$.extend({},this.data);n.activate=this.tree.activeNode===this,n.focus=this.tree.focusNode===this,n.expand=this.bExpanded,n.select=this.bSelected,t&&t(n);if(e&&this.childList){n.children=[];for(var r=0,i=this.childList.length;r<i;r++)n.children.push(this.childList[r].toDict(!0,t))}else delete n.children;return n},fromDict:function(e){var t=e.children;if(t===undefined){this.data=$.extend(this.data,e),this.render();return}e=$.extend({},e),e.children=undefined,this.data=$.extend(this.data,e),this.removeChildren(),this.addChild(t)},_getInnerHtml:function(){var e=this.tree,t=e.options,n=e.cache,r=this.getLevel(),i=this.data,s="",o;r<t.minExpandLevel?r>1&&(s+=n.tagConnector):this.hasChildren()!==!1?s+=n.tagExpander:s+=n.tagConnector,t.checkbox&&i.hideCheckbox!==!0&&!i.isStatusNode&&(s+=n.tagCheckbox),i.icon?(i.icon.charAt(0)==="/"?o=i.icon:o=t.imagePath+i.icon,s+="<img src='"+o+"' alt='' />"):i.icon!==!1&&(i.iconClass?s+="<span class=' "+i.iconClass+"'></span>":s+=n.tagNodeIcon);var u="";t.onCustomRender&&(u=t.onCustomRender.call(e,this)||"");if(!u){var a=i.tooltip?' title="'+i.tooltip.replace(/\"/g,""")+'"':"",f=i.href||"#";t.noLink||i.noLink?u='<span style="display:inline-block;" class="'+t.classNames.title+'"'+a+">"+i.title+"</span>":u='<a href="'+f+'" class="'+t.classNames.title+'"'+a+">"+i.title+"</a>"}return s+=u,s},_fixOrder:function(){var e=this.childList;if(!e||!this.ul)return;var t=this.ul.firstChild;for(var n=0,r=e.length-1;n<r;n++){var i=e[n],s=t.dtnode;i!==s?(this.tree.logDebug("_fixOrder: mismatch at index "+n+": "+i+" != "+s),this.ul.insertBefore(i.li,s.li)):t=t.nextSibling}},render:function(e,t){var n=this.tree,r=this.parent,i=this.data,s=n.options,o=s.classNames,u=this.isLastSibling(),a=!1;if(!r&&!this.ul)this.li=this.span=null,this.ul=document.createElement("ul"),s.minExpandLevel>1?this.ul.className=o.container+" "+o.noConnector:this.ul.className=o.container;else if(r){this.li||(a=!0,this.li=document.createElement("li"),this.li.dtnode=this,i.key&&s.generateIds&&(this.li.id=s.idPrefix+i.key),this.span=document.createElement("span"),this.span.className=o.title,this.li.appendChild(this.span),r.ul||(r.ul=document.createElement("ul"),r.ul.style.display="none",r.li.appendChild(r.ul)),r.ul.appendChild(this.li)),this.span.innerHTML=this._getInnerHtml();var f=[];f.push(o.node),i.isFolder&&f.push(o.folder),this.bExpanded&&f.push(o.expanded),this.hasChildren()!==!1&&f.push(o.hasChildren),i.isLazy&&this.childList===null&&f.push(o.lazy),u&&f.push(o.lastsib),this.bSelected&&f.push(o.selected),this.hasSubSel&&f.push(o.partsel),n.activeNode===this&&f.push(o.active),i.addClass&&f.push(i.addClass),f.push(o.combinedExpanderPrefix+(this.bExpanded?"e":"c")+(i.isLazy&&this.childList===null?"d":"")+(u?"l":"")),f.push(o.combinedIconPrefix+(this.bExpanded?"e":"c")+(i.isFolder?"f":"")),this.span.className=f.join(" "),this.li.className=u?o.lastsib:"",a&&s.onCreate&&s.onCreate.call(n,this,this.span),s.onRender&&s.onRender.call(n,this,this.span)}if((this.bExpanded||t===!0)&&this.childList){for(var l=0,c=this.childList.length;l<c;l++)this.childList[l].render(!1,t);this._fixOrder()}if(this.ul){var h=this.ul.style.display==="none",p=!!this.bExpanded;if(e&&s.fx&&h===p){var d=s.fx.duration||200;$(this.ul).animate(s.fx,d)}else this.ul.style.display=this.bExpanded||!r?"":"none"}},getKeyPath:function(e){var t=[];return this.visitParents(function(e){e.parent&&t.unshift(e.data.key)},!e),"/"+t.join(this.tree.options.keyPathSeparator)},getParent:function(){return this.parent},getChildren:function(){return this.hasChildren()===undefined?undefined:this.childList},hasChildren:function(){if(this.data.isLazy)return this.childList===null||this.childList===undefined?undefined:this.childList.length===0?!1:this.childList.length===1&&this.childList[0].isStatusNode()?undefined:!0;return!!this.childList},isFirstSibling:function(){var e=this.parent;return!e||e.childList[0]===this},isLastSibling:function(){var e=this.parent;return!e||e.childList[e.childList.length-1]===this},isLoading:function(){return!!this._isLoading},getPrevSibling:function(){if(!this.parent)return null;var e=this.parent.childList;for(var t=1,n=e.length;t<n;t++)if(e[t]===this)return e[t-1];return null},getNextSibling:function(){if(!this.parent)return null;var e=this.parent.childList;for(var t=0,n=e.length-1;t<n;t++)if(e[t]===this)return e[t+1];return null},isStatusNode:function(){return this.data.isStatusNode===!0},isChildOf:function(e){return this.parent&&this.parent===e},isDescendantOf:function(e){if(!e)return!1;var t=this.parent;while(t){if(t===e)return!0;t=t.parent}return!1},countChildren:function(){var e=this.childList;if(!e)return 0;var t=e.length;for(var n=0,r=t;n<r;n++){var i=e[n];t+=i.countChildren()}return t},sortChildren:function(e,t){var n=this.childList;if(!n)return;e=e||function(e,t){var n=e.data.title.toLowerCase(),r=t.data.title.toLowerCase();return n===r?0:n>r?1:-1},n.sort(e);if(t)for(var r=0,i=n.length;r<i;r++)n[r].childList&&n[r].sortChildren(e,"$norender$");t!=="$norender$"&&this.render()},_setStatusNode:function(e){var t=this.childList?this.childList[0]:null;if(!e){if(t&&t.isStatusNode()){try{this.ul&&(this.ul.removeChild(t.li),t.li=null)}catch(n){}this.childList.length===1?this.childList=[]:this.childList.shift()}}else t?(e.isStatusNode=!0,e.key="_statusNode",t.data=e,t.render()):(e.isStatusNode=!0,e.key="_statusNode",t=this.addChild(e))},setLazyNodeStatus:function(e,t){var n=t&&t.tooltip?t.tooltip:null,r=t&&t.info?" ("+t.info+")":"";switch(e){case DTNodeStatus_Ok:this._setStatusNode(null),$(this.span).removeClass(this.tree.options.classNames.nodeLoading),this._isLoading=!1,this.tree.options.autoFocus&&(this===this.tree.tnRoot&&this.childList&&this.childList.length>0?this.childList[0].focus():this.focus());break;case DTNodeStatus_Loading:this._isLoading=!0,$(this.span).addClass(this.tree.options.classNames.nodeLoading),this.parent||this._setStatusNode({title:this.tree.options.strings.loading+r,tooltip:n,addClass:this.tree.options.classNames.nodeWait});break;case DTNodeStatus_Error:this._isLoading=!1,this._setStatusNode({title:this.tree.options.strings.loadError+r,tooltip:n,addClass:this.tree.options.classNames.nodeError});break;default:throw"Bad LazyNodeStatus: '"+e+"'."}},_parentList:function(e,t){var n=[],r=t?this:this.parent;while(r)(e||r.parent)&&n.unshift(r),r=r.parent;return n},getLevel:function(){var e=0,t=this.parent;while(t)e++,t=t.parent;return e},_getTypeForOuterNodeEvent:function(e){var t=this.tree.options.classNames,n=e.target;if(n.className.indexOf(t.node)<0)return null;var r=e.pageX-n.offsetLeft,i=e.pageY-n.offsetTop;for(var s=0,o=n.childNodes.length;s<o;s++){var u=n.childNodes[s],a=u.offsetLeft-n.offsetLeft,f=u.offsetTop-n.offsetTop,l=u.clientWidth,c=u.clientHeight;if(r>=a&&r<=a+l&&i>=f&&i<=f+c){if(u.className==t.title)return"title";if(u.className==t.expander)return"expander";if(u.className==t.checkbox)return"checkbox";if(u.className==t.nodeIcon)return"icon"}}return"prefix"},getEventTargetType:function(e){var t=e&&e.target?e.target.className:"",n=this.tree.options.classNames;return t===n.title?"title":t===n.expander?"expander":t===n.checkbox?"checkbox":t===n.nodeIcon?"icon":t===n.empty||t===n.vline||t===n.connector?"prefix":t.indexOf(n.node)>=0?this._getTypeForOuterNodeEvent(e):null},isVisible:function(){var e=this._parentList(!0,!1);for(var t=0,n=e.length;t<n;t++)if(!e[t].bExpanded)return!1;return!0},makeVisible:function(){var e=this._parentList(!0,!1);for(var t=0,n=e.length;t<n;t++)e[t]._expand(!0)},focus:function(){this.makeVisible();try{$(this.span).find(">a").focus()}catch(e){}},isFocused:function(){return this.tree.tnFocused===this},_activate:function(e,t){this.tree.logDebug("dtnode._activate(%o, fireEvents=%o) - %o",e,t,this);var n=this.tree.options;if(this.data.isStatusNode)return;if(t&&n.onQueryActivate&&n.onQueryActivate.call(this.tree,e,this)===!1)return;if(e){if(this.tree.activeNode){if(this.tree.activeNode===this)return;this.tree.activeNode.deactivate()}n.activeVisible&&this.makeVisible(),this.tree.activeNode=this,n.persist&&$.cookie(n.cookieId+"-active",this.data.key,n.cookie),this.tree.persistence.activeKey=this.data.key,$(this.span).addClass(n.classNames.active),t&&n.onActivate&&n.onActivate.call(this.tree,this)}else if(this.tree.activeNode===this){if(n.onQueryActivate&&n.onQueryActivate.call(this.tree,!1,this)===!1)return;$(this.span).removeClass(n.classNames.active),n.persist&&$.cookie(n.cookieId+"-active","",n.cookie),this.tree.persistence.activeKey=null,this.tree.activeNode=null,t&&n.onDeactivate&&n.onDeactivate.call(this.tree,this)}},activate:function(){this._activate(!0,!0)},activateSilently:function(){this._activate(!0,!1)},deactivate:function(){this._activate(!1,!0)},isActive:function(){return this.tree.activeNode===this},_userActivate:function(){var e=!0,t=!1;if(this.data.isFolder)switch(this.tree.options.clickFolderMode){case 2:e=!1,t=!0;break;case 3:e=t=!0}this.parent===null&&(t=!1),t&&(this.toggleExpand(),this.focus()),e&&this.activate()},_setSubSel:function(e){e?(this.hasSubSel=!0,$(this.span).addClass(this.tree.options.classNames.partsel)):(this.hasSubSel=!1,$(this.span).removeClass(this.tree.options.classNames.partsel))},_updatePartSelectionState:function(){var e;if(!this.hasChildren())return e=this.bSelected&&!this.data.unselectable&&!this.data.isStatusNode,this._setSubSel(!1),e;var t,n,r=this.childList,i=!0,s=!0;for(t=0,n=r.length;t<n;t++){var o=r[t],u=o._updatePartSelectionState();u!==!1&&(s=!1),u!==!0&&(i=!1)}return i?e=!0:s?e=!1:e=undefined,this._setSubSel(e===undefined),this.bSelected=e===!0,e},_fixSelectionState:function(){var e,t,n;if(this.bSelected){this.visit(function(e){e.parent._setSubSel(!0),e.data.unselectable||e._select(!0,!1,!1)}),e=this.parent;while(e){e._setSubSel(!0);var r=!0;for(t=0,n=e.childList.length;t<n;t++){var i=e.childList[t];if(!i.bSelected&&!i.data.isStatusNode&&!i.data.unselectable){r=!1;break}}r&&e._select(!0,!1,!1),e=e.parent}}else{this._setSubSel(!1),this.visit(function(e){e._setSubSel(!1),e._select(!1,!1,!1)}),e=this.parent;while(e){e._select(!1,!1,!1);var s=!1;for(t=0,n=e.childList.length;t<n;t++)if(e.childList[t].bSelected||e.childList[t].hasSubSel){s=!0;break}e._setSubSel(s),e=e.parent}}},_select:function(e,t,n){var r=this.tree.options;if(this.data.isStatusNode)return;if(this.bSelected===e)return;if(t&&r.onQuerySelect&&r.onQuerySelect.call(this.tree,e,this)===!1)return;r.selectMode==1&&e&&this.tree.visit(function(e){if(e.bSelected)return e._select(!1,!1,!1),!1}),this.bSelected=e,e?(r.persist&&this.tree.persistence.addSelect(this.data.key),$(this.span).addClass(r.classNames.selected),n&&r.selectMode===3&&this._fixSelectionState(),t&&r.onSelect&&r.onSelect.call(this.tree,!0,this)):(r.persist&&this.tree.persistence.clearSelect(this.data.key),$(this.span).removeClass(r.classNames.selected),n&&r.selectMode===3&&this._fixSelectionState(),t&&r.onSelect&&r.onSelect.call(this.tree,!1,this))},select:function(e){return this.data.unselectable?this.bSelected:this._select(e!==!1,!0,!0)},toggleSelect:function(){return this.select(!this.bSelected)},isSelected:function(){return this.bSelected},isLazy:function(){return!!this.data.isLazy},_loadContent:function(){try{var e=this.tree.options;this.tree.logDebug("_loadContent: start - %o",this),this.setLazyNodeStatus(DTNodeStatus_Loading),!0===e.onLazyRead.call(this.tree,this)&&(this.setLazyNodeStatus(DTNodeStatus_Ok),this.tree.logDebug("_loadContent: succeeded - %o",this))}catch(t){this.tree.logWarning("_loadContent: failed - %o",t),this.setLazyNodeStatus(DTNodeStatus_Error,{tooltip:""+t})}},_expand:function(e,t){if(this.bExpanded===e){this.tree.logDebug("dtnode._expand(%o) IGNORED - %o",e,this);return}this.tree.logDebug("dtnode._expand(%o) - %o",e,this);var n=this.tree.options;if(!e&&this.getLevel()<n.minExpandLevel){this.tree.logDebug("dtnode._expand(%o) prevented collapse - %o",e,this);return}if(n.onQueryExpand&&n.onQueryExpand.call(this.tree,e,this)===!1)return;this.bExpanded=e,n.persist&&(e?this.tree.persistence.addExpand(this.data.key):this.tree.persistence.clearExpand(this.data.key));var r=(!this.data.isLazy||this.childList!==null)&&!this._isLoading&&!t;this.render(r);if(this.bExpanded&&this.parent&&n.autoCollapse){var i=this._parentList(!1,!0);for(var s=0,o=i.length;s<o;s++)i[s].collapseSiblings()}n.activeVisible&&this.tree.activeNode&&!this.tree.activeNode.isVisible()&&this.tree.activeNode.deactivate();if(e&&this.data.isLazy&&this.childList===null&&!this._isLoading){this._loadContent();return}n.onExpand&&n.onExpand.call(this.tree,e,this)},isExpanded:function(){return this.bExpanded},expand:function(e){e=e!==!1;if(!this.childList&&!this.data.isLazy&&e)return;if(this.parent===null&&!e)return;this._expand(e)},scheduleAction:function(e,t){this.tree.timer&&(clearTimeout(this.tree.timer),this.tree.logDebug("clearTimeout(%o)",this.tree.timer));var n=this;switch(e){case"cancel":break;case"expand":this.tree.timer=setTimeout(function(){n.tree.logDebug("setTimeout: trigger expand"),n.expand(!0)},t);break;case"activate":this.tree.timer=setTimeout(function(){n.tree.logDebug("setTimeout: trigger activate"),n.activate()},t);break;default:throw"Invalid mode "+e}this.tree.logDebug("setTimeout(%s, %s): %s",e,t,this.tree.timer)},toggleExpand:function(){this.expand(!this.bExpanded)},collapseSiblings:function(){if(this.parent===null)return;var e=this.parent.childList;for(var t=0,n=e.length;t<n;t++)e[t]!==this&&e[t].bExpanded&&e[t]._expand(!1)},_onClick:function(e){var t=this.getEventTargetType(e);if(t==="expander")this.toggleExpand();else if(t==="checkbox")this.toggleSelect();else{this._userActivate();var n=this.span.getElementsByTagName("a");if(!n[0])return!0;}e.preventDefault()},_onDblClick:function(e){},_onKeydown:function(e){var t=!0,n;switch(e.which){case 107:case 187:this.bExpanded||this.toggleExpand();break;case 109:case 189:this.bExpanded&&this.toggleExpand();break;case 32:this._userActivate();break;case 8:this.parent&&this.parent.focus();break;case 37:this.bExpanded?(this.toggleExpand(),this.focus()):this.parent&&this.parent.parent&&this.parent.focus();break;case 39:!this.bExpanded&&(this.childList||this.data.isLazy)?(this.toggleExpand(),this.focus()):this.childList&&this.childList[0].focus();break;case 38:n=this.getPrevSibling();while(n&&n.bExpanded&&n.childList)n=n.childList[n.childList.length-1];!n&&this.parent&&this.parent.parent&&(n=this.parent),n&&n.focus();break;case 40:if(this.bExpanded&&this.childList)n=this.childList[0];else{var r=this._parentList(!1,!0);for(var i=r.length-1;i>=0;i--){n=r[i].getNextSibling();if(n)break}}n&&n.focus();break;default:t=!1}t&&e.preventDefault()},_onKeypress:function(e){},_onFocus:function(e){var t=this.tree.options;if(e.type=="blur"||e.type=="focusout")t.onBlur&&t.onBlur.call(this.tree,this),this.tree.tnFocused&&$(this.tree.tnFocused.span).removeClass(t.classNames.focused),this.tree.tnFocused=null,t.persist&&$.cookie(t.cookieId+"-focus","",t.cookie);else if(e.type=="focus"||e.type=="focusin")this.tree.tnFocused&&this.tree.tnFocused!==this&&(this.tree.logDebug("dtnode.onFocus: out of sync: curFocus: %o",this.tree.tnFocused),$(this.tree.tnFocused.span).removeClass(t.classNames.focused)),this.tree.tnFocused=this,t.onFocus&&t.onFocus.call(this.tree,this),$(this.tree.tnFocused.span).addClass(t.classNames.focused),t.persist&&$.cookie(t.cookieId+"-focus",this.data.key,t.cookie)},visit:function(e,t){var n=!0;if(t===!0){n=e(this);if(n===!1||n=="skip")return n}if(this.childList)for(var r=0,i=this.childList.length;r<i;r++){n=this.childList[r].visit(e,!0);if(n===!1)break}return n},visitParents:function(e,t){if(t&&e(this)===!1)return!1;var n=this.parent;while(n){if(e(n)===!1)return!1;n=n.parent}return!0},remove:function(){if(this===this.tree.root)throw"Cannot remove system root";return this.parent.removeChild(this)},removeChild:function(e){var t=this.childList;if(t.length==1){if(e!==t[0])throw"removeChild: invalid child";return this.removeChildren()}e===this.tree.activeNode&&e.deactivate(),this.tree.options.persist&&(e.bSelected&&this.tree.persistence.clearSelect(e.data.key),e.bExpanded&&this.tree.persistence.clearExpand(e.data.key)),e.removeChildren(!0),this.ul&&this.ul.removeChild(e.li);for(var n=0,r=t.length;n<r;n++)if(t[n]===e){this.childList.splice(n,1);break}},removeChildren:function(e,t){this.tree.logDebug("%s.removeChildren(%o)",this,e);var n=this.tree,r=this.childList;if(r){for(var i=0,s=r.length;i<s;i++){var o=r[i];o===n.activeNode&&!t&&o.deactivate(),this.tree.options.persist&&!t&&(o.bSelected&&this.tree.persistence.clearSelect(o.data.key),o.bExpanded&&this.tree.persistence.clearExpand(o.data.key)),o.removeChildren(!0,t),this.ul&&$("li",$(this.ul)).remove()}this.childList=null}e||(this._isLoading=!1,this.render())},setTitle:function(e){this.fromDict({title:e})},reload:function(e){throw"Use reloadChildren() instead"},reloadChildren:function(e){if(this.parent===null)throw"Use tree.reload() instead";if(!this.data.isLazy)throw"node.reloadChildren() requires lazy nodes.";if(e){var t=this,n="nodeLoaded.dynatree."+this.tree.$tree.attr("id")+"."+this.data.key;this.tree.$tree.bind(n,function(r,i,s){t.tree.$tree.unbind(n),t.tree.logDebug("loaded %o, %o, %o",r,i,s);if(i!==t)throw"got invalid load event";e.call(t.tree,i,s)})}this.removeChildren(),this._loadContent()},_loadKeyPath:function(e,t){var n=this.tree;n.logDebug("%s._loadKeyPath(%s)",this,e);if(e==="")throw"Key path must not be empty";var r=e.split(n.options.keyPathSeparator);if(r[0]==="")throw"Key path must be relative (don't start with '/')";var i=r.shift();if(this.childList)for(var s=0,o=this.childList.length;s<o;s++){var u=this.childList[s];if(u.data.key===i){if(r.length===0)t.call(n,u,"ok");else if(!u.data.isLazy||u.childList!==null&&u.childList!==undefined)t.call(n,u,"loaded"),u._loadKeyPath(r.join(n.options.keyPathSeparator),t);else{n.logDebug("%s._loadKeyPath(%s) -> reloading %s...",this,e,u);var a=this;u.reloadChildren(function(i,s){s?(n.logDebug("%s._loadKeyPath(%s) -> reloaded %s.",i,e,i),t.call(n,u,"loaded"),i._loadKeyPath(r.join(n.options.keyPathSeparator),t)):(n.logWarning("%s._loadKeyPath(%s) -> reloadChildren() failed.",a,e),t.call(n,u,"error"))})}return}}t.call(n,undefined,"notfound",i,r.length===0),n.logWarning("Node not found: "+i);return},resetLazy:function(){if(this.parent===null)throw"Use tree.reload() instead";if(!this.data.isLazy)throw"node.resetLazy() requires lazy nodes.";this.expand(!1),this.removeChildren()},_addChildNode:function(e,t){var n=this.tree,r=n.options,i=n.persistence;e.parent=this,this.childList===null?this.childList=[]:t||this.childList.length>0&&$(this.childList[this.childList.length-1].span).removeClass(r.classNames.lastsib);if(t){var s=$.inArray(t,this.childList);if(s<0)throw"<beforeNode> must be a child of <this>";this.childList.splice(s,0,e)}else this.childList.push(e);var o=n.isInitializing();r.persist&&i.cookiesFound&&o?(i.activeKey===e.data.key&&(n.activeNode=e),i.focusedKey===e.data.key&&(n.focusNode=e),e.bExpanded=$.inArray(e.data.key,i.expandedKeyList)>=0,e.bSelected=$.inArray(e.data.key,i.selectedKeyList)>=0):(e.data.activate&&(n.activeNode=e,r.persist&&(i.activeKey=e.data.key)),e.data.focus&&(n.focusNode=e,r.persist&&(i.focusedKey=e.data.key)),e.bExpanded=e.data.expand===!0,e.bExpanded&&r.persist&&i.addExpand(e.data.key),e.bSelected=e.data.select===!0,e.bSelected&&r.persist&&i.addSelect(e.data.key)),r.minExpandLevel>=e.getLevel()&&(this.bExpanded=!0);if(e.bSelected&&r.selectMode==3){var u=this;while(u)u.hasSubSel||u._setSubSel(!0),u=u.parent}return n.bEnableUpdate&&this.render(),e},addChild:function(e,t){if(typeof e=="string")throw"Invalid data type for "+e;if(!e||e.length===0)return;if(e instanceof DynaTreeNode)return this._addChildNode(e,t);e.length||(e=[e]);var n=this.tree.enableUpdate(!1),r=null;for(var i=0,s=e.length;i<s;i++){var o=e[i],u=this._addChildNode(new DynaTreeNode(this,this.tree,o),t);r||(r=u),o.children&&u.addChild(o.children,null)}return this.tree.enableUpdate(n),r},append:function(e){return this.tree.logWarning("node.append() is deprecated (use node.addChild() instead)."),this.addChild(e,null)},appendAjax:function(e){var t=this;this.removeChildren(!1,!0),this.setLazyNodeStatus(DTNodeStatus_Loading);if(e.debugLazyDelay){var n=e.debugLazyDelay;e.debugLazyDelay=0,this.tree.logInfo("appendAjax: waiting for debugLazyDelay "+n),setTimeout(function(){t.appendAjax(e)},n);return}var r=e.success,i=e.error,s="nodeLoaded.dynatree."+this.tree.$tree.attr("id")+"."+this.data.key,o=$.extend({},this.tree.options.ajaxDefaults,e,{success:function(e,n,i){var u=t.tree.phase;t.tree.phase="init",o.postProcess?e=o.postProcess.call(this,e,this.dataType):e&&e.hasOwnProperty("d")&&(e=typeof e.d=="string"?$.parseJSON(e.d):e.d),(!$.isArray(e)||e.length!==0)&&t.addChild(e,null),t.tree.phase="postInit",r&&r.call(o,t,e,n),t.tree.logDebug("trigger "+s),t.tree.$tree.trigger(s,[t,!0]),t.tree.phase=u,t.setLazyNodeStatus(DTNodeStatus_Ok),$.isArray(e)&&e.length===0&&(t.childList=[],t.render())},error:function(e,n,r){t.tree.logWarning("appendAjax failed:",n,":\n",e,"\n",r),i&&i.call(o,t,e,n,r),t.tree.$tree.trigger(s,[t,!1]),t.setLazyNodeStatus(DTNodeStatus_Error,{info:n,tooltip:""+r})}});$.ajax(o)},move:function(e,t){var n;if(this===e)return;if(!this.parent)throw"Cannot move system root";if(t===undefined||t=="over")t="child";var r=this.parent,i=t==="child"?e:e.parent;if(i.isDescendantOf(this))throw"Cannot move a node to it's own descendant";if(this.parent.childList.length==1)this.parent.childList=this.parent.data.isLazy?[]:null,this.parent.bExpanded=!1;else{n=$.inArray(this,this.parent.childList);if(n<0)throw"Internal error";this.parent.childList.splice(n,1)}this.parent.ul&&this.parent.ul.removeChild(this.li),this.parent=i;if(i.hasChildren())switch(t){case"child":i.childList.push(this);break;case"before":n=$.inArray(e,i.childList);if(n<0)throw"Internal error";i.childList.splice(n,0,this);break;case"after":n=$.inArray(e,i.childList);if(n<0)throw"Internal error";i.childList.splice(n+1,0,this);break;default:throw"Invalid mode "+t}else i.childList=[this];i.ul||(i.ul=document.createElement("ul"),i.ul.style.display="none",i.li.appendChild(i.ul)),this.li&&i.ul.appendChild(this.li);if(this.tree!==e.tree)throw this.visit(function(t){t.tree=e.tree},null,!0),"Not yet implemented.";r.isDescendantOf(i)||r.render(),i.isDescendantOf(r)||i.render()},lastentry:undefined};var DynaTreeStatus=Class.create();DynaTreeStatus._getTreePersistData=function(e,t){var n=new DynaTreeStatus(e,t);return n.read(),n.toDict()},getDynaTreePersistData=DynaTreeStatus._getTreePersistData,DynaTreeStatus.prototype={initialize:function(e,t){e===undefined&&(e=$.ui.dynatree.prototype.options.cookieId),t=$.extend({},$.ui.dynatree.prototype.options.cookie,t),this.cookieId=e,this.cookieOpts=t,this.cookiesFound=undefined,this.activeKey=null,this.focusedKey=null,this.expandedKeyList=null,this.selectedKeyList=null},_log:function(e){Array.prototype.unshift.apply(arguments,["debug"]),_log.apply(this,arguments)},read:function(){this.cookiesFound=!1;var e=$.cookie(this.cookieId+"-active");this.activeKey=e===null?"":e,e!==null&&(this.cookiesFound=!0),e=$.cookie(this.cookieId+"-focus"),this.focusedKey=e===null?"":e,e!==null&&(this.cookiesFound=!0),e=$.cookie(this.cookieId+"-expand"),this.expandedKeyList=e===null?[]:e.split(","),e!==null&&(this.cookiesFound=!0),e=$.cookie(this.cookieId+"-select"),this.selectedKeyList=e===null?[]:e.split(","),e!==null&&(this.cookiesFound=!0)},write:function(){$.cookie(this.cookieId+"-active",this.activeKey===null?"":this.activeKey,this.cookieOpts),$.cookie(this.cookieId+"-focus",this.focusedKey===null?"":this.focusedKey,this.cookieOpts),$.cookie(this.cookieId+"-expand",this.expandedKeyList===null?"":this.expandedKeyList.join(","),this.cookieOpts),$.cookie(this.cookieId+"-select",this.selectedKeyList===null?"":this.selectedKeyList.join(","),this.cookieOpts)},addExpand:function(e){$.inArray(e,this.expandedKeyList)<0&&(this.expandedKeyList.push(e),$.cookie(this.cookieId+"-expand",this.expandedKeyList.join(","),this.cookieOpts))},clearExpand:function(e){var t=$.inArray(e,this.expandedKeyList);t>=0&&(this.expandedKeyList.splice(t,1),$.cookie(this.cookieId+"-expand",this.expandedKeyList.join(","),this.cookieOpts))},addSelect:function(e){$.inArray(e,this.selectedKeyList)<0&&(this.selectedKeyList.push(e),$.cookie(this.cookieId+"-select",this.selectedKeyList.join(","),this.cookieOpts))},clearSelect:function(e){var t=$.inArray(e,this.selectedKeyList);t>=0&&(this.selectedKeyList.splice(t,1),$.cookie(this.cookieId+"-select",this.selectedKeyList.join(","),this.cookieOpts))},isReloading:function(){return this.cookiesFound===!0},toDict:function(){return{cookiesFound:this.cookiesFound,activeKey:this.activeKey,focusedKey:this.activeKey,expandedKeyList:this.expandedKeyList,selectedKeyList:this.selectedKeyList}},lastentry:undefined};var DynaTree=Class.create();DynaTree.version="$Version:$",DynaTree.prototype={initialize:function(e){this.phase="init",this.$widget=e,this.options=e.options,this.$tree=e.element,this.timer=null,this.divTree=this.$tree.get(0),_initDragAndDrop(this)},_load:function(e){var t=this.$widget,n=this.options,r=this;this.bEnableUpdate=!0,this._nodeCount=1,this.activeNode=null,this.focusNode=null,n.rootVisible!==undefined&&this.logWarning("Option 'rootVisible' is no longer supported."),n.minExpandLevel<1&&(this.logWarning("Option 'minExpandLevel' must be >= 1."),n.minExpandLevel=1),n.classNames!==$.ui.dynatree.prototype.options.classNames&&(n.classNames=$.extend({},$.ui.dynatree.prototype.options.classNames,n.classNames)),n.ajaxDefaults!==$.ui.dynatree.prototype.options.ajaxDefaults&&(n.ajaxDefaults=$.extend({},$.ui.dynatree.prototype.options.ajaxDefaults,n.ajaxDefaults)),n.dnd!==$.ui.dynatree.prototype.options.dnd&&(n.dnd=$.extend({},$.ui.dynatree.prototype.options.dnd,n.dnd)),n.imagePath||$("script").each(function(){var e=/.*dynatree[^\/]*\.js$/i;if(this.src.search(e)>=0)return this.src.indexOf("/")>=0?n.imagePath=this.src.slice(0,this.src.lastIndexOf("/"))+"/skin/":n.imagePath="skin/",r.logDebug("Guessing imagePath from '%s': '%s'",this.src,n.imagePath),!1}),this.persistence=new DynaTreeStatus(n.cookieId,n.cookie),n.persist&&($.cookie||_log("warn","Please include jquery.cookie.js to use persistence."),this.persistence.read()),this.logDebug("DynaTree.persistence: %o",this.persistence.toDict()),this.cache={tagEmpty:"<span class='"+n.classNames.empty+"'></span>",tagVline:"<span class='"+n.classNames.vline+"'></span>",tagExpander:"<span class='"+n.classNames.expander+"'></span>",tagConnector:"<span class='"+n.classNames.connector+"'></span>",tagNodeIcon:"<span class='"+n.classNames.nodeIcon+"'></span>",tagCheckbox:"<span class='"+n.classNames.checkbox+"'></span>",lastentry:undefined},(n.children||n.initAjax&&n.initAjax.url||n.initId)&&$(this.divTree).empty();var i=this.$tree.find(">ul:first").hide();this.tnRoot=new DynaTreeNode(null,this,{}),this.tnRoot.bExpanded=!0,this.tnRoot.render(),this.divTree.appendChild(this.tnRoot.ul);var s=this.tnRoot,o=n.persist&&this.persistence.isReloading(),u=!1,a=this.enableUpdate(!1);this.logDebug("Dynatree._load(): read tree structure..."),n.children?s.addChild(n.children):n.initAjax&&n.initAjax.url?(u=!0,s.data.isLazy=!0,this._reloadAjax(e)):n.initId?this._createFromTag(s,$("#"+n.initId)):(this._createFromTag(s,i),i.remove()),this._checkConsistency(),!u&&n.selectMode==3&&s._updatePartSelectionState(),this.logDebug("Dynatree._load(): render nodes..."),this.enableUpdate(a),this.logDebug("Dynatree._load(): bind events..."),this.$widget.bind(),this.logDebug("Dynatree._load(): postInit..."),this.phase="postInit",n.persist&&this.persistence.write(),this.focusNode&&this.focusNode.isVisible()&&(this.logDebug("Focus on init: %o",this.focusNode),this.focusNode.focus()),u||(n.onPostInit&&n.onPostInit.call(this,o,!1),e&&e.call(this,"ok")),this.phase="idle"},_reloadAjax:function(e){var t=this.options;if(!t.initAjax||!t.initAjax.url)throw"tree.reload() requires 'initAjax' mode.";var n=this.persistence,r=$.extend({},t.initAjax);r.addActiveKey&&(r.data.activeKey=n.activeKey),r.addFocusedKey&&(r.data.focusedKey=n.focusedKey),r.addExpandedKeyList&&(r.data.expandedKeyList=n.expandedKeyList.join(",")),r.addSelectedKeyList&&(r.data.selectedKeyList=n.selectedKeyList.join(",")),r.success&&this.logWarning("initAjax: success callback is ignored; use onPostInit instead."),r.error&&this.logWarning("initAjax: error callback is ignored; use onPostInit instead.");var i=n.isReloading();r.success=function(n,r,s){t.selectMode==3&&n.tree.tnRoot._updatePartSelectionState(),t.onPostInit&&t.onPostInit.call(n.tree,i,!1),e&&e.call(n.tree,"ok")},r.error=function(n,r,s,o){t.onPostInit&&t.onPostInit.call(n.tree,i,!0,r,s,o),e&&e.call(n.tree,"error",r,s,o)},this.logDebug("Dynatree._init(): send Ajax request..."),this.tnRoot.appendAjax(r)},toString:function(){return"Dynatree '"+this.$tree.attr("id")+"'"},toDict:function(){return this.tnRoot.toDict(!0)},serializeArray:function(e){var t=this.getSelectedNodes(e),n=this.$tree.attr("name")||this.$tree.attr("id"),r=[];for(var i=0,s=t.length;i<s;i++)r.push({name:n,value:t[i].data.key});return r},getPersistData:function(){return this.persistence.toDict()},logDebug:function(e){this.options.debugLevel>=2&&(Array.prototype.unshift.apply(arguments,["debug"]),_log.apply(this,arguments))},logInfo:function(e){this.options.debugLevel>=1&&(Array.prototype.unshift.apply(arguments,["info"]),_log.apply(this,arguments))},logWarning:function(e){Array.prototype.unshift.apply(arguments,["warn"]),_log.apply(this,arguments)},isInitializing:function(){return this.phase=="init"||this.phase=="postInit"},isReloading:function(){return(this.phase=="init"||this.phase=="postInit")&&this.options.persist&&this.persistence.cookiesFound},isUserEvent:function(){return this.phase=="userEvent"},redraw:function(){this.tnRoot.render(!1,!1)},renderInvisibleNodes:function(){this.tnRoot.render(!1,!0)},reload:function(e){this._load(e)},getRoot:function(){return this.tnRoot},enable:function(){this.$widget.enable()},disable:function(){this.$widget.disable()},getNodeByKey:function(e){var t=document.getElementById(this.options.idPrefix+e);if(t)return t.dtnode?t.dtnode:null;var n=null;return this.visit(function(t){if(t.data.key===e)return n=t,!1},!0),n},getActiveNode:function(){return this.activeNode},reactivate:function(e){var t=this.activeNode;t&&(this.activeNode=null,t.activate(),e&&t.focus())},getSelectedNodes:function(e){var t=[];return this.tnRoot.visit(function(n){if(n.bSelected){t.push(n);if(e===!0)return"skip"}}),t},activateKey:function(e){var t=e===null?null:this.getNodeByKey(e);return t?(t.focus(),t.activate(),t):(this.activeNode&&this.activeNode.deactivate(),this.activeNode=null,null)},loadKeyPath:function(e,t){var n=e.split(this.options.keyPathSeparator);return n[0]===""&&n.shift(),n[0]==this.tnRoot.data.key&&(this.logDebug("Removed leading root key."),n.shift()),e=n.join(this.options.keyPathSeparator),this.tnRoot._loadKeyPath(e,t)},selectKey:function(e,t){var n=this.getNodeByKey(e);return n?(n.select(t),n):null},enableUpdate:function(e){return this.bEnableUpdate==e?e:(this.bEnableUpdate=e,e&&this.redraw(),!e)},count:function(){return this.tnRoot.countChildren()},visit:function(e,t){return this.tnRoot.visit(e,t)},_createFromTag:function(parentTreeNode,$ulParent){var self=this;$ulParent.find(">li").each(function(){var $li=$(this),$liSpan=$li.find(">span:first"),$liA=$li.find(">a:first"),title,href=null,target=null,tooltip;if($liSpan.length)title=$liSpan.html();else if($liA.length)title=$liA.html(),href=$liA.attr("href"),target=$liA.attr("target"),tooltip=$liA.attr("title");else{title=$li.html();var iPos=title.search(/<ul/i);iPos>=0?title=$.trim(title.substring(0,iPos)):title=$.trim(title)}var data={title:title,tooltip:tooltip,isFolder:$li.hasClass("folder"),isLazy:$li.hasClass("lazy"),expand:$li.hasClass("expanded"),select:$li.hasClass("selected"),activate:$li.hasClass("active"),focus:$li.hasClass("focused"),noLink:$li.hasClass("noLink")};href&&(data.href=href,data.target=target),$li.attr("title")&&(data.tooltip=$li.attr("title")),$li.attr("id")&&(data.key=""+$li.attr("id"));if($li.attr("data")){var dataAttr=$.trim($li.attr("data"));if(dataAttr){dataAttr.charAt(0)!="{"&&(dataAttr="{"+dataAttr+"}");try{$.extend(data,eval("("+dataAttr+")"))}catch(e){throw"Error parsing node data: "+e+"\ndata:\n'"+dataAttr+"'"}}}var childNode=parentTreeNode.addChild(data),$ul=$li.find(">ul:first");$ul.length&&self._createFromTag(childNode,$ul)})},_checkConsistency:function(){},_setDndStatus:function(e,t,n,r,i){var s=e?$(e.span):null,o=$(t.span);this.$dndMarker||(this.$dndMarker=$("<div id='dynatree-drop-marker'></div>").hide().css({"z-index":1e3}).prependTo($(this.divTree).parent()));if(r==="after"||r==="before"||r==="over"){var u="0 0";switch(r){case"before":this.$dndMarker.removeClass("dynatree-drop-after dynatree-drop-over"),this.$dndMarker.addClass("dynatree-drop-before"),u="0 -8";break;case"after":this.$dndMarker.removeClass("dynatree-drop-before dynatree-drop-over"),this.$dndMarker.addClass("dynatree-drop-after"),u="0 8";break;default:this.$dndMarker.removeClass("dynatree-drop-after dynatree-drop-before"),this.$dndMarker.addClass("dynatree-drop-over"),o.addClass("dynatree-drop-target"),u="8 0"}this.$dndMarker.show().position({my:"left top",at:"left top",of:o,offset:u})}else o.removeClass("dynatree-drop-target"),this.$dndMarker.hide();r==="after"?o.addClass("dynatree-drop-after"):o.removeClass("dynatree-drop-after"),r==="before"?o.addClass("dynatree-drop-before"):o.removeClass("dynatree-drop-before"),i===!0?(s&&s.addClass("dynatree-drop-accept"),o.addClass("dynatree-drop-accept"),n.addClass("dynatree-drop-accept")):(s&&s.removeClass("dynatree-drop-accept"),o.removeClass("dynatree-drop-accept"),n.removeClass("dynatree-drop-accept")),i===!1?(s&&s.addClass("dynatree-drop-reject"),o.addClass("dynatree-drop-reject"),n.addClass("dynatree-drop-reject")):(s&&s.removeClass("dynatree-drop-reject"),o.removeClass("dynatree-drop-reject"),n.removeClass("dynatree-drop-reject"))},_onDragEvent:function(e,t,n,r,i,s){var o=this.options,u=this.options.dnd,a=null,f=$(t.span),l,c;switch(e){case"helper":var h=$("<div class='dynatree-drag-helper'><span class='dynatree-drag-helper-img' /></div>").append($(r.target).closest(".dynatree-title").clone());$("ul.dynatree-container",t.tree.divTree).append(h),h.data("dtSourceNode",t),a=h;break;case"start":t.isStatusNode()?a=!1:u.onDragStart&&(a=u.onDragStart(t)),a===!1?(this.logDebug("tree.onDragStart() cancelled"),i.helper.trigger("mouseup"),i.helper.hide()):f.addClass("dynatree-drag-source");break;case"enter":a=u.onDragEnter?u.onDragEnter(t,n):null,a?a={over:a===!0||a==="over"||$.inArray("over",a)>=0,before:a===!0||a==="before"||$.inArray("before",a)>=0,after:a===!0||a==="after"||$.inArray("after",a)>=0}:a=!1,i.helper.data("enterResponse",a);break;case"over":c=i.helper.data("enterResponse"),l=null;if(c!==!1)if(typeof c=="string")l=c;else{var p=f.offset(),d={x:r.pageX-p.left,y:r.pageY-p.top},v={x:d.x/f.width(),y:d.y/f.height()};c.after&&v.y>.75?l="after":!c.over&&c.after&&v.y>.5?l="after":c.before&&v.y<=.25?l="before":!c.over&&c.before&&v.y<=.5?l="before":c.over&&(l="over"),u.preventVoidMoves&&(t===n?l=null:l==="before"&&n&&t===n.getNextSibling()?l=null:l==="after"&&n&&t===n.getPrevSibling()?l=null:l==="over"&&n&&n.parent===t&&n.isLastSibling()&&(l=null)),i.helper.data("hitMode",l)}l==="over"&&u.autoExpandMS&&t.hasChildren()!==!1&&!t.bExpanded&&t.scheduleAction("expand",u.autoExpandMS);if(l&&u.onDragOver){a=u.onDragOver(t,n,l);if(a==="over"||a==="before"||a==="after")l=a}this._setDndStatus(n,t,i.helper,l,a!==!1&&l!==null);break;case"drop":var m=i.helper.hasClass("dynatree-drop-reject");l=i.helper.data("hitMode"),l&&u.onDrop&&!m&&u.onDrop(t,n,l,i,s);break;case"leave":t.scheduleAction("cancel"),i.helper.data("enterResponse",null),i.helper.data("hitMode",null),this._setDndStatus(n,t,i.helper,"out",undefined),u.onDragLeave&&u.onDragLeave(t,n);break;case"stop":f.removeClass("dynatree-drag-source"),u.onDragStop&&u.onDragStop(t);break;default:throw"Unsupported drag event: "+e}return a},cancelDrag:function(){var e=$.ui.ddmanager.current;e&&e.cancel()},lastentry:undefined},$.widget("ui.dynatree",{_init:function(){if(versionCompare($.ui.version,"1.8")<0)return this.options.debugLevel>=0&&_log("warn","ui.dynatree._init() was called; you should upgrade to jquery.ui.core.js v1.8 or higher."),this._create();this.options.debugLevel>=2&&_log("debug","ui.dynatree._init() was called; no current default functionality.")},_create:function(){var e=this.options;e.debugLevel>=1&&logMsg("Dynatree._create(): version='%s', debugLevel=%o.",$.ui.dynatree.version,this.options.debugLevel),this.options.event+=".dynatree";var t=this.element.get(0);this.tree=new DynaTree(this),this.tree._load(),this.tree.logDebug("Dynatree._init(): done.")},bind:function(){function t(e){e=$.event.fix(e||window.event);var t=$.ui.dynatree.getNode(e.target);return t?t._onFocus(e):!1}this.unbind();var e="click.dynatree dblclick.dynatree";this.options.keyboard&&(e+=" keypress.dynatree keydown.dynatree"),this.element.bind(e,function(e){var t=$.ui.dynatree.getNode(e.target);if(!t)return!0;var n=t.tree,r=n.options;n.logDebug("event(%s): dtnode: %s",e.type,t);var i=n.phase;n.phase="userEvent";try{switch(e.type){case"click":return r.onClick&&r.onClick.call(n,t,e)===!1?!1:t._onClick(e);case"dblclick":return r.onDblClick&&r.onDblClick.call(n,t,e)===!1?!1:t._onDblClick(e);case"keydown":return r.onKeydown&&r.onKeydown.call(n,t,e)===!1?!1:t._onKeydown(e);case"keypress":return r.onKeypress&&r.onKeypress.call(n,t,e)===!1?!1:t._onKeypress(e)}}catch(s){var o=null;n.logWarning("bind(%o): dtnode: %o, error: %o",e,t,s)}finally{n.phase=i}});var n=this.tree.divTree;n.addEventListener?(n.addEventListener("focus",t,!0),n.addEventListener("blur",t,!0)):n.onfocusin=n.onfocusout=t},unbind:function(){this.element.unbind(".dynatree")},enable:function(){this.bind(),$.Widget.prototype.enable.apply(this,arguments)},disable:function(){this.unbind(),$.Widget.prototype.disable.apply(this,arguments)},getTree:function(){return this.tree},getRoot:function(){return this.tree.getRoot()},getActiveNode:function(){return this.tree.getActiveNode()},getSelectedNodes:function(){return this.tree.getSelectedNodes()},lastentry:undefined}),versionCompare($.ui.version,"1.8")<0&&($.ui.dynatree.getter="getTree getRoot getActiveNode getSelectedNodes"),$.ui.dynatree.version="$Version:$",$.ui.dynatree.getNode=function(e){if(e instanceof DynaTreeNode)return e;e.selector!==undefined&&(e=e[0]);while(e){if(e.dtnode)return e.dtnode;e=e.parentNode}return null},$.ui.dynatree.getPersistData=DynaTreeStatus._getTreePersistData,$.ui.dynatree.prototype.options={title:"Dynatree",minExpandLevel:1,imagePath:null,children:null,initId:null,initAjax:null,autoFocus:!0,keyboard:!0,persist:!1,autoCollapse:!1,clickFolderMode:3,activeVisible:!0,checkbox:!1,selectMode:2,fx:null,noLink:!1,onClick:null,onDblClick:null,onKeydown:null,onKeypress:null,onFocus:null,onBlur:null,onQueryActivate:null,onQuerySelect:null,onQueryExpand:null,onPostInit:null,onActivate:null,onDeactivate:null,onSelect:null,onExpand:null,onLazyRead:null,onCustomRender:null,onCreate:null,onRender:null,postProcess:null,dnd:{onDragStart:null,onDragStop:null,autoExpandMS:1e3,preventVoidMoves:!0,onDragEnter:null,onDragOver:null,onDrop:null,onDragLeave:null},ajaxDefaults:{cache:!1,timeout:0,dataType:"json"},strings:{loading:"Loading…",loadError:"Load error!"},generateIds:!1,idPrefix:"dynatree-id-",keyPathSeparator:"/",cookieId:"dynatree",cookie:{expires:null},classNames:{container:"dynatree-container",node:"dynatree-node",folder:"dynatree-folder",empty:"dynatree-empty",vline:"dynatree-vline",expander:"dynatree-expander",connector:"dynatree-connector",checkbox:"dynatree-checkbox",nodeIcon:"dynatree-icon",title:"dynatree-title",noConnector:"dynatree-no-connector",nodeError:"dynatree-statusnode-error",nodeWait:"dynatree-statusnode-wait",hidden:"dynatree-hidden",combinedExpanderPrefix:"dynatree-exp-",combinedIconPrefix:"dynatree-ico-",nodeLoading:"dynatree-loading",hasChildren:"dynatree-has-children",active:"dynatree-active",selected:"dynatree-selected",expanded:"dynatree-expanded",lazy:"dynatree-lazy",focused:"dynatree-focused",partsel:"dynatree-partsel",lastsib:"dynatree-lastsib"},debugLevel:2,lastentry:undefined},versionCompare($.ui.version,"1.8")<0&&($.ui.dynatree.defaults=$.ui.dynatree.prototype.options),$.ui.dynatree.nodedatadefaults={title:null,key:null,isFolder:!1,isLazy:!1,tooltip:null,href:null,icon:null,addClass:null,noLink:!1,activate:!1,focus:!1,expand:!1,select:!1,hideCheckbox:!1,unselectable:!1,children:null,lastentry:undefined};var didRegisterDnd=!1,_registerDnd=function(){if(didRegisterDnd)return;$.ui.plugin.add("draggable","connectToDynatree",{start:function(e,t){var n=$(this).data("ui-draggable")||$(this).data("draggable"),r=t.helper.data("dtSourceNode")||null;if(r)return n.offset.click.top=-2,n.offset.click.left=16,r.tree._onDragEvent("start",r,null,e,t,n)},drag:function(e,t){var n=$(this).data("ui-draggable")||$(this).data("draggable"),r=t.helper.data("dtSourceNode")||null,i=t.helper.data("dtTargetNode")||null,s=$.ui.dynatree.getNode(e.target);if(e.target&&!s){var o=$(e.target).closest("div.dynatree-drag-helper,#dynatree-drop-marker").length>0;if(o)return}t.helper.data("dtTargetNode",s),i&&i!==s&&i.tree._onDragEvent("leave",i,r,e,t,n),s&&(!s.tree.options.dnd.onDrop||(s===i?s.tree._onDragEvent("over",s,r,e,t,n):s.tree._onDragEvent("enter",s,r,e,t,n)))},stop:function(e,t){var n=$(this).data("ui-draggable")||$(this).data("draggable"),r=t.helper.data("dtSourceNode")||null,i=t.helper.data("dtTargetNode")||null,s=n._mouseDownEvent,o=e.type,u=o=="mouseup"&&e.which==1;logMsg("draggable-connectToDynatree.stop: targetNode(from event): %s, dtTargetNode: %s",i,t.helper.data("dtTargetNode")),u||logMsg("Drag was cancelled"),i&&(u&&i.tree._onDragEvent("drop",i,r,e,t,n),i.tree._onDragEvent("leave",i,r,e,t,n)),r&&r.tree._onDragEvent("stop",r,null,e,t,n)}}),didRegisterDnd=!0}})(jQuery);
</script>
<script type="text/javascript">
'use strict';
/* --- Snap2HTML Code --- */
var dirs = []; // contains all directories
/*
Data format:
Each index in "dirs" array is an array representing a directory:
First item in array: "directory path*always 0*directory modified date"
Note that forward slashes are used instead of (Windows style) backslashes
Then, for each each file in the directory: "filename*size of file*file modified date"
Second to last item in array tells the total size of directory content
Last item in array refrences IDs to all subdirectories of this dir (if any).
ID is the item index in dirs array.
Note: Modified date is in UNIX format
*/
// to save space I create aliases for dirs array and push() method on Array object
var D = dirs;
Array.prototype.p = Array.prototype.push;
D.p(["Z:/UofA/PhD/Literature*0*1700679379",".gitignore*273*1594498612","all_papers.md*156477*1700679446","all_papers_msc.md*89310*1544806396","books.txt*34499*1545179967","gitu.sh*181*1634759519","Literature.mm*4526601*1544037672","MSc.lnk*923*1520987846","ReadMe.md*99205*1700678883","References.lnk*764*1651081202","topic_cloud.jpg*293254*1700679148","upd_list.bat*26*1526072131",5201513,"1*2*3*4*5*12*13*14*16*27*34*35*49*50*108*109*110*111*112*113*114*115*116*121*123*124*127*130*131*133*134*135*136*141*182*183*184*185*186*189*190*191*198*199*200*201*202*203*206*207*218*219*226*227*228*259*303*315*316*317*323*324*328*338*345*346"])
D.p(["Z:/UofA/PhD/Literature/3d*0*1656263215","A Closed-Form Solution to Single Underwater Camera Calibration Using Triple Wavelength Dispersion and Its Application to Single Camera 3D Reconstruction tip1709.pdf*4685718*1528932389","Mesh R-CNN 1906.02739 iccv19.pdf*4806512*1581167712","Sparse-to-Dense Depth Prediction from Sparse Depth Samples and a Single Image 1709.07492 icra18.pdf*2963839*1546912889",12456069,""])
D.p(["Z:/UofA/PhD/Literature/active_learning*0*1656263215","Active Learning Literature Survey.pdf*1946080*1565882138",1946080,""])
D.p(["Z:/UofA/PhD/Literature/alignment*0*1656263215","A Robust Method for Mosaicking Sequence Images Obtained from UAV icies10.pdf*721609*1477193202","Face Alignment Across Large Poses A 3D Solution CVPR2016.pdf*5386567*1465506596","Large-pose Face Alignment via CNN-based Dense 3D Model Fitting CVPR2016.pdf*2465018*1465506709","PoseNet A Convolutional Network for Real-Time 6-DOF Camera Relocalization iccv15.pdf*6553499*1453229763",15126693,""])
D.p(["Z:/UofA/PhD/Literature/annotation*0*1656263216","Automatic generation of ground truth for the evaluation of obstacle detection and tracking techniques 1807.05722.pdf*3642512*1540237566","ByLabel A Boundary Based Semi-Automatic Image Annotation Tool wacv18.pdf*9431316*1578328949","Deep Interactive Object Selection ax1603.pdf*4407789*1537202641","Efficiently scaling up crowdsourced video annotation ijcv13.pdf*11534593*1518832866","Human-Assisted Motion Annotation cvpr08.pdf*3490327*1521758402",32506537,""])
D.p(["Z:/UofA/PhD/Literature/autoencoder*0*1656263218",".gitignore*28*1558880998","Masked Autoencoders Are Scalable Vision Learners 2111.06377.pdf*7424207*1637121333",7424235,"6*7*8*9*10*11"])
D.p(["Z:/UofA/PhD/Literature/autoencoder/binary*0*1656263217","Learning deep compact descriptor with bagging auto-encoders for object retrieval icip15.pdf*1487375*1557794266","Learning to Hash with Binary Deep Neural Network ax1607.05140 eccv16.pdf*830986*1557807762","Optimal Binary Autoencoding with Pairwise Correlations iclr17.pdf*2556244*1540237568",4874605,""])
D.p(["Z:/UofA/PhD/Literature/autoencoder/denoising*0*1656263217","On denoising autoencoders trained to minimise binary cross-entropy ax1708.08487.pdf*904502*1557796895","Stacked Denoising Autoencoders 10.pdf*1392544*1557777856",2297046,""])
D.p(["Z:/UofA/PhD/Literature/autoencoder/misc*0*1656263217","Reducing the Dimensionality of Data with Neural Networks science0607.pdf*370654*1557891690","Transforming auto-encoders icann11.pdf*408690*1557933219",779344,""])
D.p(["Z:/UofA/PhD/Literature/autoencoder/notes*0*1656263217","beta-VAE Learning Basic Visual Concepts with a Constrained Variational Framework iclr17.pdf*3497*1558880693","Disentangling by Factorising ax1806.pdf*3727*1558880678",7224,""])
D.p(["Z:/UofA/PhD/Literature/autoencoder/sparse*0*1656263218","A Hierarchical Approach for Handwritten Digit Recognition Using Sparse Autoencoder sl_14.pdf*595106*1557891690","Embarrassingly Shallow Autoencoders for Sparse Data ax1905.03375.pdf*1428573*1557868988","Hashing with binary autoencoders ax1501.00756.pdf*903236*1557778482","Stacked sparse autoencoder and history of binary motion image for human activity recognition sp_mta19.pdf*2542262*1557870529","Training Autoencoders in Sparse Domain aaai17.pdf*524953*1557865579",5994130,""])
D.p(["Z:/UofA/PhD/Literature/autoencoder/variational*0*1656263219",".gitignore*139*1558881026","Auto-Encoding Variational Bayes ax1405.pdf*3926653*1557934258","beta-VAE Learning Basic Visual Concepts with a Constrained Variational Framework iclr17.pdf*34561477*1558811732","Complementary Set Variational Autoencoder for Supervised Anomaly Detection icassp18.pdf*742693*1557793955","Deep Convolutional Inverse Graphics Network ax1506 nis15.pdf*4206440*1558552890","Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders rejected_iclr17.pdf*5372019*1551847335","Disentangling by Factorising ax1806.pdf*6437053*1558835363","Tutorial on Variational Autoencoders ax1606.05908.pdf*880536*1557778536","Understanding disentangling in beta-VAE nipsw17.pdf*4700584*1557965298","Unsupervised Lesion Detection via Image Restoration with a Normative Prior ax181123.pdf*949787*1551847325",61777381,""])
D.p(["Z:/UofA/PhD/Literature/bayesian*0*1656263220","A practical Bayesian framework for backpropagation networks. nc92.pdf*345543*1520730942","Bayesian Learning for Neural Networks thesis_book95.pdf*20097982*1520730962","Bayesian methods for adaptive models thesis_caltech92.pdf*1203083*1520201363","Keeping the neural net- works simple by minimizing the description length of the weights colt93.pdf*164438*1520717087","Variational Inference A Review for Statisticians ax1712.pdf*201375*1520717161","Variational Inference A Review for Statisticians ax1712_2.pdf*1827075*1540237585",23839496,""])
D.p(["Z:/UofA/PhD/Literature/bio_inspired*0*1656263220","A Bio-Inspired Robot with Visual Perception of Affordances eccv14.pdf*502578*1518832856","Human-level concept learning through probabilistic program induction.pdf*1826353*1485208980","Lessons from the Primate Visual System eccv12.pdf*137851*1518832857","Visual parsing after recovery from blindness ps09.pdf*632184*1521823684",3098966,""])
D.p(["Z:/UofA/PhD/Literature/class separability*0*1656263221","A note on the separability index 0812.1107.pdf*235179*1635569339","Data Separability for Neural Network Classifiers and the Development of a Separability Index 2005.13120.pdf*1448971*1635711321","Separability Index in Supervised Learning.pdf*218111*1635569345",1902261,"15"])
D.p(["Z:/UofA/PhD/Literature/class separability/KS Test*0*1656263221","Critical_KS.pdf*84913*1635734083","kstest.pdf*94050*1635734138","SBL701_KS_test_Tables.pdf*1145232*1635734145",1324195,""])
D.p(["Z:/UofA/PhD/Literature/classification*0*1656263226","Accurate and Efficient Image Classification by Exploiting Sparsity Homa_Candidacy.pdf*4344747*1467308012","Anytime recognition of objects and scenes cvpr14.pdf*1446000*1494860786","ImageNet classification with deep convolutional neural networks acm17.pdf*1426026*1544371622","Imagenet classification with deep convolutional neural networks nips12.pdf*1418820*1544210102","ImageNet Classification with Deep Convolutional Neural Networks nips12.pdf*1418820*1456248877","MACH Embarrassingly parallel K-class classification.pdf*308068*1576338228","Multi-Scale Dense Networks for Resource Efficient Image Classification ax1711.pdf*3182270*1518832870","Place Recognition with ConvNet Landmarks Viewpoint-Robust, Condition-Robust, Training-Free rss15.pdf*8022347*1540237654","Selective Search for Object Recognition IJCV2013.pdf*5942297*1540237654","Very Deep Convolutional Networks for Large-Scale Image Recognition iclr15 1409.1556.pdf*200010*1544213168","Visual object-action recognition Inferring object affordances from human demonstration cviu_11.pdf*1770850*1526068438",29480255,"17*18*19*20*21*22*24*25*26"])
D.p(["Z:/UofA/PhD/Literature/classification/activity*0*1656263223","Continuous Learning of Human Activity Models Using Deep Nets eccv14.pdf*1383719*1518832870",1383719,""])
D.p(["Z:/UofA/PhD/Literature/classification/animal*0*1656263223","Learning to Recognize Animals by Watching Documentaries Using Subtitles as Weak Supervision 17.pdf*2106640*1526068187",2106640,""])
D.p(["Z:/UofA/PhD/Literature/classification/cell_classification*0*1656263225","10.1007_978-3-319-46976-8.pdf*48013517*1540237655","A deep convolutional neural network for classification of red blood cells in sickle cell anemia plos_cb_1710.pdf*16443230*1517601063","A Deep Residual Inception Network for HEp-2 Cell Classification SL_dlmia17.pdf*1023844*1540237656","Cells classification with deep learning siu17.pdf*926582*1517601842","Cross-Modal Transfer Learning for HEp-2 Cell Classification Based on Deep Residual Network ism17.pdf*527838*1517601369","Deep convolutional neural network based HEp-2 cell classification icpr1612.pdf*422886*1517601491","Deep Learning in Label-free Cell Classification nature_srep21471 1603.pdf*2528744*1540237656","Deep Learning of Cell Classification Using Microscope Images of Intracellular Microtubule Networks icmla1712.pdf*799059*1517601445","DeepPap Deep Convolutional Networks for Cervical Cell Classification jbhi1711.pdf*1275885*1517601920","DTFD-MIL Double-Tier Feature Distillation Multiple Instance Learning for Histopathology Whole Slide Image Classification cvpr22.pdf*10006813*1656011067","Evaluation of Morphological Features for Breast Cells Classification Using Neural Networks SL_taai.pdf*207886*1540237656","HEp-2 cell classification based on a Deep Autoencoding-Classification convolutional neural network isbi17.pdf*956033*1517601537","HEp-2 cell classification using a deep neural network trained for natural image classification siu16.pdf*255971*1517602038","HEp-2 Cell Classification Using K-Support Spatial Pooling in Deep CNNs SL_dlmia1609.pdf*1049629*1540237657","HEp-2 Cell Image Classification With Deep Convolutional Neural Networks jbhi1703.pdf*1592389*1517601547","HEp-2 specimen classification via deep CNNs and pattern histogram icpr1612.pdf*1310599*1517601544",87340905,""])
D.p(["Z:/UofA/PhD/Literature/classification/efficient*0*1656263225","Learning Efficient Convolutional Networks Through Network Slimming iccv17.pdf*556728*1558295769",556728,""])
D.p(["Z:/UofA/PhD/Literature/classification/evolution*0*1656263225","Large-Scale Evolution of Image Classifiers ax1706 icml17.pdf*3623310*1551970166","Regularized Evolution for Image Classifier Architecture Search ax190216 aaai19.pdf*719617*1551969103",4342927,""])
D.p(["Z:/UofA/PhD/Literature/classification/pipe_defect*0*1656263226","Automated defect classification in sewer closed circuit television inspections using deep convolutional neural networks AiC1807_SD.pdf*2193138*1552339051","Automated detection of sewer pipe defects in closed-circuit television images using deep learning techniques AiC1811_SD.pdf*5665880*1552339052","Autonomous Structural Visual Inspection Using Region-Based Deep Learning for Detecting Multiple Damage Types 171128 Computer-Aided_Civil_and_Infrastructure_Engineering.pdf*2040853*1552415118","CLASSIFICATION OF UNDERWATER PIPELINE EVENTS USING DEEP CONVOLUTIONAL NEURAL NETWORKS icassp17_poster.pdf*246200*1552338053","Deep learning-based damage detection for sewer pipe inspection using faster R-CNN 180414_Full_Paper_ICCCBE2018.pdf*1154869*1552338939","Development and Improvement of Deep Learning Based Automated Defect Detection for Sewer Pipe Inspection Using Faster R-CNN ACSE18_springer.pdf*4050001*1552338680","Sewer damage detection from imbalanced CCTV inspection data using deep convolutional neural networks with hierarchical classification AiC1905_SD.pdf*3157759*1552339063","Small Defect Detection Using Convolutional Neural Network Features and Random Forests eccvw18.pdf*1260740*1552340289","Visual Inspection of Storm-Water Pipe Systems using Deep Convolutional Neural Networks ICINCO_2018_67_CR.pdf*254649*1552346568",20024089,"23"])
D.p(["Z:/UofA/PhD/Literature/classification/pipe_defect/misc*0*1656263226","A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure AEI15_SD.pdf*760799*1552339086","Vision-based Structural Inspection using Multiscale Deep Convolutional Neural Networks ax1805.01055.pdf*800981*1552338485",1561780,""])
D.p(["Z:/UofA/PhD/Literature/classification/svm*0*1656263226","A tutorial on support vector machines for pattern recognition.pdf*667404*1495340656","SVM.pdf*546203*1495339577","svm15.pdf*290302*1495340640",1503909,""])
D.p(["Z:/UofA/PhD/Literature/classification/thermal_imaging*0*1656263226","Deep Thermal Imaging Proximate Material Type Recognition in the Wild through Deep Learning of Spatial Surface Temperature Patterns ax1803.pdf*1506163*1525880186",1506163,""])
D.p(["Z:/UofA/PhD/Literature/classification/video*0*1656263228","Beyond Short Snippets Deep Networks for Video Classification cvpr15.pdf*1045707*1540237657","Deep Learning from Temporal Coherence in Video icml09.pdf*333390*1525991804","Learning Spatiotemporal Features with 3D Convolutional Networks iccv15.pdf*7002419*1648607318","Long-term Recurrent Convolutional Networks for Visual Recognition and Description ax1411.4389 cvpr15.pdf*2808469*1550671251",11189985,""])
D.p(["Z:/UofA/PhD/Literature/compressed_sensing*0*1656263230","A deep learning approach to compressive sensing with convolutional autoencoders.pdf*2191075*1481144158","A Deep Learning Approach to Structured Signal Recovery ax1508.04065.pdf*528013*1557854750","Compressed sensing IT_April06.pdf*495460*1557845037","Deep Learning Sparse Ternary Projections for Compressed Sensing of Images 1708.08311 GlobalSIP17.pdf*399378*1557763401","Output Encoding by Compressed Sensing for Cell Detection with Deep Convnet aaai20.pdf*4198905*1652195347","Perceptual Compressive Sensing ax1802.00176 prcv18.pdf*2393265*1557763564",10206096,"28*29*30*31*32*33"])
D.p(["Z:/UofA/PhD/Literature/compressed_sensing/compressed_input*0*1656263228","Compressed Sensing using Generative Models ax1703.03208.pdf*2565839*1557763217","ConvCSNet A Convolutional Compressive Sensing Framework Based on Deep Learning ax1801.10342.pdf*1459954*1557760475","ISTA-Net Interpretable Optimization-Inspired Deep Network for Image Compressive Sensing_cvpr18.pdf*846658*1557761082","LAPRAN A Scalable Laplacian Pyramid Reconstructive Adversarial Network for Flexible Compressive Sensing Reconstruction ax1807.09388 eccv18.pdf*2770065*1557759398","Learning to invert Signal recovery via Deep Convolutional Networks ax1701.03891.pdf*368977*1557759178","Multi-Scale Deep Compressive Sensing Network ax1809.05717 vcip.pdf*571810*1557754837","ReconNet Non-Iterative Reconstruction of Images from Compressively Sensed Measurements_CVPR_2016.pdf*6642839*1557757490",15226142,""])
D.p(["Z:/UofA/PhD/Literature/compressed_sensing/MRI*0*1656263229","DAGAN Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction tmi18.pdf*11185682*1557762918","Deep residual learning for compressed sensing MRI isbi17.pdf*3074079*1557763897","Learning a Variational Network for Reconstruction of Accelerated MRI Data ax1704.00447.pdf*7058946*1557764424",21318707,""])
D.p(["Z:/UofA/PhD/Literature/compressed_sensing/review*0*1656263230","A Review of Sparse Recovery Algorithms 1812.pdf*9305990*1557710555","A survey of sparse representation algorithms and applications ax16.pdf*882561*1540237666","A Systematic Review of Compressive Sensing Concepts, Implementations and Applications access18.pdf*12766873*1557845126","Algorithms for First-order Sparse Reinforcement Learning phd16.pdf*2711655*1540237667","An Overview on Algorithms for Sparse Recovery.pdf*961222*1557710561","Boss_1.ppt*4472320*1516253418","Compressive Sensing Performance Comparison Of Sparse Recovery Algorithms ax1801.09744.pdf*2051701*1557710540","Greedy Algorithms for Sparse Reinforcement Learning icml2012.pdf*568503*1516253684","Learning Fast Approximations of Sparse Coding icml10.pdf*226490*1520967798","Learning Sparse Representations in Reinforcement Learning with Sparse Coding ax1707.pdf*613113*1540237667","Learning Sparse Representations in Reinforcement Learning with Sparse Coding ijcai17.pdf*534335*1540237667","Sparse Multi-Task Reinforcement Learning.pdf*405900*1516253701","Sparse Recovery Using Sparse Matrices.pdf*215263*1557754649","Tutorial Sparse Recovery Using Sparse Matrices.pdf*1743743*1557710571",37459669,""])
D.p(["Z:/UofA/PhD/Literature/compressed_sensing/sparse_coding*0*1557880620",0,""])
D.p(["Z:/UofA/PhD/Literature/compressed_sensing/sparse_input*0*1656263230","BCS Compressive Sensing for Binary Sparse Signals.pdf*175501*1557778600",175501,""])
D.p(["Z:/UofA/PhD/Literature/compressed_sensing/video*0*1656263230","CSVideoNet A Real-time End-to-end Learning Framework for High-frame-rate Video Compressive Sensing ax1612.05203 wacv18.pdf*1698104*1557807997","Deep Fully-Connected Networks for Video Compressive Sensing ax1603.04930v2 els_dsp18.pdf*12514637*1557763059",14212741,""])
D.p(["Z:/UofA/PhD/Literature/curve_revovery*0*1656263231","A Robust Rigid Skeleton Extraction Method from Noisy Visual Hull Model ijars15.pdf*2568283*1547584928","Analytic Curve Detection from a Noisy Binary Edge Map using Genetic Algorithm.pdf*379720*1547584771",2948003,""])
D.p(["Z:/UofA/PhD/Literature/datasets*0*1698254383","1 year, 1000 km The Oxford RobotCar dataset ijrr16_11.pdf*29326905*1498409255","80 Million Tiny Images A Large Data Set for Nonparametric Object and Scene Recognition pami08.pdf*1472404*1452790093","A benchmark for comparison of cell tracking algorithms bioinformatics14.pdf*321177*1469642573","A Public Video Dataset for Road Transportation Applications (2013) .pdf*1864501*1497013798","Beyond Standard Benchmarks Parameterizing Performance Evaluation in Visual Object Tracking_iccv17.pdf*2035352*1538067334","Cats and Dogs cvpr12.pdf*7796937*1521941446","Data Engineering for Everyone 2102.11447.pdf*962081*1615035096","Microsoft COCO Common Objects in Context ax1502 eccv14.pdf*8007319*1560560758","Objectnet A large-scale bias-controlled dataset for pushing the limits of object recognition models nips19.pdf*17100003*1576166095","Semantic Understanding of Scenes through ADE20K Dataset ax1608.05442 cvpr17 ijcv19.pdf*8009943*1564544728","Semantic Understanding of Scenes through the ADE20K Dataset ax1608.05442.pdf*8009943*1564521320","Sim4CV A Photo-Realistic Simulator for Computer Vision Applications ijcv18.pdf*4177193*1564148410","The Unmanned Aerial Vehicle Benchmark Object Detection and Tracking_eccv18.pdf*5946776*1538354880","Training a Convolutional Neural Network for Multi-Class Object Detection Using Solely Virtual World Data icavss16_8.pdf*1673632*1497013634","Vehicle Tracking by Simultaneous Detection and Viewpoint Estimation iwinac13.pdf*3430264*1518832867",100134430,"36*37*38*39*42*45*46*47*48"])
D.p(["Z:/UofA/PhD/Literature/datasets/agro*0*1698254465","Perception Datasets for Anomaly Detection in Autonomous Driving A Survey 2302.02790.pdf*5909377*1698253637",5909377,""])
D.p(["Z:/UofA/PhD/Literature/datasets/animal*0*1656263235","The iNaturalist Species Classification and Detection Dataset ax1804.pdf*8356534*1548260556","The INaturalist Species Classification and Detection Dataset_cvpr18.pdf*3251557*1557682141","The INaturalist Species Classification and Detection Dataset_cvpr18-supp.pdf*173648*1557682140",11781739,""])
D.p(["Z:/UofA/PhD/Literature/datasets/detection*0*1656263235","DOTA A Large-Scale Dataset for Object Detection in Aerial Images_cvpr18.pdf*1269248*1557595881","Performance Evaluation of Object Detection and Tracking in Video TR2006-041.pdf*134460*1518832867","Performance Evaluation of Object Detection and Tracking in Video.pdf*434068*1518832867","Performance measures for object detection evaluation prl10_7.pdf*2128582*1518832867","The PASCAL Visual Object Classes (VOC) Challenge ijcv_voc09.pdf*8104906*1560573085",12071264,""])
D.p(["Z:/UofA/PhD/Literature/datasets/multi_object_tracking*0*1656263237","CityFlow A City-Scale Benchmark for Multi-Target Multi-Camera Vehicle Tracking and Re-Identification 1903.09254 cvpr19.pdf*6798614*1578846026","Fully Automatic, Real-Time Vehicle Tracking for Surveillance Video crv17.pdf*2778089*1499368999","MOT16 A Benchmark for Multi-Object Tracking ax16_5.pdf*1670119*1518832866","MOTChallenge 2015 Towards a Benchmark for Multi-Target Tracking ax15_8.pdf*3209673*1610780817","PathTrack Fast Trajectory Annotation with Path Supervision iccv17 supplementary.pdf*555261*1577731478","PathTrack Fast Trajectory Annotation with Path Supervision iccv17.pdf*1446424*1577731477","TAO A Large-Scale Benchmark for Tracking Any Object 2005.10356 eccv20.pdf*5169537*1610780817","The Unmanned Aerial Vehicle Benchmark Object Detection and Tracking ax1804.00518 eccv18.pdf*4738992*1587415099","Tracking and Detection Challenge How crowded can it get 1906.04567 cvpr19.pdf*4252165*1574194009","Training a Convolutional Neural Network for Multi-Class Object Detection Using Solely Virtual World Data avss16.pdf*1673632*1594501261","Virtual Worlds as Proxy for Multi-Object Tracking Analysis 1605.06457 cvpr16.pdf*5617009*1594497362","WILDTRACK A Multi-camera HD Dataset for Dense Unscripted Pedestrian Detection_cvpr18.pdf*1256536*1537337989",39166051,"40*41"])
D.p(["Z:/UofA/PhD/Literature/datasets/multi_object_tracking/cell tracking*0*1656263237","A benchmark for comparison of cell tracking algorithms bio_informatics14.pdf*353261*1612203074","An objective comparison of cell-tracking algorithms nature methods 17.pdf*2029185*1612147841","Cell Tracking with Mitosis Detection Dataset Challenge_CVPRW20.pdf*813624*1617135693",3196070,""])
D.p(["Z:/UofA/PhD/Literature/datasets/multi_object_tracking/uav*0*1656263237","Vision Meets Drones Past, Present and Future 2001.06303v2.pdf*4384749*1623090364",4384749,""])
D.p(["Z:/UofA/PhD/Literature/datasets/perception*0*1698778602","Argoverse 2 Next Generation Datasets for Self-Driving Perception and Forecasting nips23.pdf*7667031*1698778679","Argoverse 3D Tracking and Forecasting with Rich Maps cvpr19.pdf*8219499*1698701249","Lyft One Thousand and One Hours Self-driving Motion Prediction Dataset houston21a.pdf*3858586*1698267534","nuScenes A multimodal dataset for autonomous driving cvpr20.pdf*4639282*1698182266","OpenOccupancy A Large Scale Benchmark for Surrounding Semantic Occupancy Perception iccv23.pdf*4922923*1698686885","Scalability in Perception for Autonomous Driving Waymo Open Dataset CVPR20.pdf*1953599*1698779779","TractorEYE Vision-based Real-time Detection for Autonomous Vehicles in Agriculture phd thesis 2017.pdf*8427071*1698266015",39687991,"43*44"])
D.p(["Z:/UofA/PhD/Literature/datasets/perception/planning*0*1698778524","Large scale interactive motion forecasting for autonomous driving The waymo open motion dataset iccv21.pdf*2324483*1698778254","SHIFTS 2.0 EXTENDING THE DATASET OF REAL DISTRIBUTIONAL SHIFTS.pdf*510924*1698702463",2835407,""])
D.p(["Z:/UofA/PhD/Literature/datasets/perception/rgbd*0*1698691282","SceneNN a Scene Meshes Dataset with aNNotations_3dv16.pdf*3891408*1698683626",3891408,""])
D.p(["Z:/UofA/PhD/Literature/datasets/segmentation*0*1656263238","A Benchmark Dataset and Evaluation Methodology for Video Object Segmentation cvpr16.pdf*2152156*1585357264","The SYNTHIA Dataset A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes cvpr16.pdf*8735986*1565473659",10888142,""])
D.p(["Z:/UofA/PhD/Literature/datasets/single_object_tracking*0*1656263239","CDTB A Color and Depth Visual Object Tracking Dataset and Benchmark iccv19.pdf*1789874*1587408581","LaSOT A High-quality Benchmark for Large-scale Single Object Tracking ax1809.07845.pdf*6037359*1538068410","LaSOT A High-quality Benchmark for Large-scale Single Object Tracking ax190327 cvpr19.pdf*8203046*1564093486","Long-term Tracking in the Wild A Benchmark ax180810_eccv18.pdf*1107891*1534166090","Need for Speed A Benchmark for Higher Frame Rate Object Tracking_iccv17.pdf*4329320*1538140552","TrackingNet A Large-Scale Dataset and Benchmark for Object Tracking in the Wild ax1803.10794 eccv18.pdf*4641748*1564092333","TrackingNet A Large-Scale Dataset and Benchmark for Object Tracking in the Wild_eccv18.pdf*1807595*1538354768","UAV123 A Benchmark and Simulator for UAV Tracking eccv16 supp.pdf*2804914*1564148041","UAV123 A Benchmark and Simulator for UAV Tracking eccv16.pdf*8750857*1564148400",39472604,""])
D.p(["Z:/UofA/PhD/Literature/datasets/video_captioning*0*1696294475","ActivityNet A Large-Scale Video Benchmark for Human Activity Understanding cvpr15.pdf*5193608*1596309642","Neural Script Knowledge through Vision and Language and Sound cvpr22.pdf*2009296*1691964251","Towards automatic learning of procedures from web instructional videos aaai18 1703.09788.pdf*2212392*1696294420","Visual genome Connecting language 1602.07332 ijcv17.pdf*8105806*1596315017",17521102,""])
D.p(["Z:/UofA/PhD/Literature/datasets/video_detection*0*1656263240","YouTube-BoundingBoxes A Large High-Precision Human-Annotated Data Set for Object Detection in Video ax170324.pdf*7551779*1540237648",7551779,""])
D.p(["Z:/UofA/PhD/Literature/deblurring*0*1656263241","Blind Image Deblurring Using Dark Channel Prior cvpr16.pdf*1569361*1535610434","DeblurGAN Blind Motion Deblurring Using Conditional Adversarial Networks ax1804_cvpr18.pdf*5945963*1535610245","DeblurGAN Blind Motion Deblurring Using Conditional Adversarial Networks cvpr18.pdf*2593552*1535610048","Deblurring Images via Dark Channel Prior tpami1709.pdf*8518481*1535610397","Image Deblurring via Extreme Channels Prior cvpr17.pdf*915760*1535609986",19543117,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning*0*1698499424",".gitignore*59*1601744535","Adaptable Hamiltonian neural networks 2102.13235.pdf*3291507*1615035149","Differentiable Patch Selection for Image Recognition 2104.03059 cvpr21.pdf*10496431*1618670349","DiffusionNet Accelerating the solution of Time-Dependent partial differential equations using deep learning 2011.10015v1.pdf*4818124*1606574546","Federated Quantum Machine Learning 2103.12010.pdf*1436173*1617457831","Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains nips20 2006.10739.pdf*9744803*1698498983","Group Equivariant Convolutional Networks 1602.07576 icml16.pdf*204081*1647877893","Neural message passing for quantum chemistry 1704.01212.pdf*523413*1648586534","Non-local Neural Networks 1711.07971 cvpr18.pdf*2853537*1618951048","Siamese Neural Networks for One-shot Image Recognition.pdf*766340*1651879768",34134468,"51*52*53*54*55*56*57*58*59*60*61*62*63*64*65*66*67*68*69*70*71*72*73*74*75*76*77*78*79*80*81*82*83*84*85*86*87*88*92*93*98*99*106*107"])
D.p(["Z:/UofA/PhD/Literature/deep_learning/adversarial*0*1656263241","The Elephant in the Room 1808.03305.pdf*4589656*1589303137",4589656,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/atrous*0*1656263242","Fast Image Scanning with Deep Max-Pooling Convolutional Neural Networks icip13 ax1302.1700.pdf*947426*1545668421","Multi-Scale Context Aggregation by Dilated Convolutions iclr16 ax1511.07122.pdf*3000738*1545668466",3948164,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/augmentation*0*1656263243","Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation 2012.07177.pdf*1836728*1636770312",1836728,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/batch_normalization*0*1656263243","Batch Normalization Accelerating Deep Network Training by Reducing Internal Covariate Shift ax1503.pdf*189391*1546051611",189391,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/biological*0*1656263243","Towards an integration of deep learning and neuroscience ax1606.03813.pdf*1089238*1541998148","Towards Biologically Plausible Deep Learning ax1502.04156.pdf*689451*1541970822",1778689,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/class_imbalance*0*1656263245","A Review on Ensembles for the Class Imbalance Problem Bagging-, Boosting-, and Hybrid-Based Approaches TSMC1108.pdf*1523145*1597520031","A Survey of Predictive Modelling under Imbalanced Distributions 1505.01658.pdf*1021477*1578923336","A survey on addressing high-class imbalance in big data jbd_sl1811.pdf*1166551*1597519806","Class Imbalance Problem in Data Mining Review 1305.1707.pdf*130503*1597519841","Classification with class imbalance problem A review jsoco1511.pdf*765655*1597519924","Learning from imbalanced data open challenges and future directions pAI_sl1604.pdf*320128*1597519591","Learning from Imbalanced Data tkde0906.pdf*1566415*1597421912","On the combined effect of class imbalance and concept complexity in deep learning 2107.14194.pdf*1582580*1627920545","Survey on deep learning with class imbalance jbd_sl1903.pdf*1987912*1597552937","Training Deep Neural Networks on Imbalanced Data Sets IJCNN15l.pdf*192398*1578923453",10256764,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/compression*0*1656263246","A Gift from Knowledge Distillation Fast Optimization, Network Minimization and Transfer Learning CVPR17.pdf*564739*1554235003","Compression of Deep Neural Networks by combining pruning and low rank decomposition nips18.pdf*326649*1554235836","Domain-adaptive deep network compression ax1709.01041.pdf*551056*1554235046","Domain-Adaptive Deep Network Compression iccv17.pdf*1522795*1562103410","FitNets Hints for Thin Deep Nets ax1505.pdf*266757*1554234949","Learning Efficient Convolutional Networks through Network Slimming ax1708.06519 iccv17.pdf*941739*1554235444","Paying More Attention to Attention Improving the Performance of Convolutional Neural Networks via Attention Transfer ax1702.pdf*1233383*1554235481","Pelee A Real-Time Object Detection System on Mobile Devices ax190118.pdf*364772*1554234858","Pruning Convolutional Neural Networks for Resource Efficient Inference ax1707.pdf*2058685*1554235386","Pruning Filters for Efficient ConvNets ax1608.08710.pdf*4425745*1554235229","ThiNet A Filter Level Pruning Method for Deep Neural Network Compression ICCV17.pdf*1141222*1554235323",13397542,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/curriculum*0*1656263246","A Survey on Curriculum Learning 2010.13166 tpami21.pdf*4186125*1654701232",4186125,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/deformable*0*1656263246","Deformable Convolutional Networks 1703.06211 iccv17.pdf*6845294*1603920731",6845294,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/densenet*0*1656263246","CondenseNet An Efficient DenseNet using Learned Group Convolutions ax1806.pdf*875221*1567975330","Densely Connected Convolutional Networks ax1801 cvpr17.pdf*942387*1538888634",1817608,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/distillation*0*1659585149","Mean teachers are better role models Weight-averaged consistency targets improve semi-supervised deep learning results 1703.01780.pdf*863822*1659545753",863822,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/domain_adaptation*0*1656263246","Deep visual domain adaptation A survey neurocomputing1810_sd.pdf*4112515*1562102832","DINE Domain Adaptation from Single and Multiple Black-box Predictors cvpr22.pdf*1429632*1655929353","Invariant Risk Minimization 1907.02893.pdf*945276*1655922618","Unsupervised Domain Adaptation by Backpropagation icml15.pdf*3378554*1589299885",9865977,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/dropout*0*1656263246","Dropout A Simple Way to Prevent Neural Networks from Overfitting jmlr14.pdf*2887464*1518832864","Dropout as a Bayesian Approximation Appendix ax1605.pdf*459664*1540237645","Dropout as a Bayesian Approximation Representing Model Uncertainty in Deep Learning ax1610.pdf*1098118*1540237645","Improving neural networks by preventing co-adaptation of feature detectors ax1207.pdf*1668895*1540237645","Uncertainty in Deep Learning (PhD Thesis) cambridge1705.pdf*9271160*1540237645",15385301,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/efficient*0*1656263247","Abandoning the Dark Arts Scientific Approaches to Efficient Deep. Learning nipsw19.pdf*26002462*1588694744","An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object Detection AX1904.09730 CVPRW19.pdf*1511627*1577043167","Be Your Own Teacher Improve the Performance of Convolutional Neural Networks via Self Distillation ax1905.08094 iccv19.pdf*1586406*1588694868","EfficientNet_Rethinking model scaling for CNNs.pdf*1170007*1601747683","MobileNets Efficient Convolutional Neural Networks for Mobile Vision Applications ax1704.04861.pdf*941241*1568148161","MobileNetV2 inax Inverted Residuals and Linear Bottlenecks 1801.04381.pdf*1539146*1568148860","Searching for MobileNetV3 ax1905.02244.pdf*538322*1568148904",33289211,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/ensemble*0*1656263247","Distilling the Knowledge in a Neural Network ax1503.02531.pdf*106630*1550671676",106630,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/fourier*0*1656263248","Fast Fourier Transformation for Optimizing Convolutional Neural Networks in Object Recognition 2010.04257v1.pdf*833839*1603551464","Fourier Neural Operator for Parametric Partial Differential Equations 2010.08895v1.pdf*2509681*1603551489",3343520,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/fully_convolutional*0*1656263248","Striving for Simplicity The All Convolutional Net ax1504 iclrw15.pdf*4164494*1546997147",4164494,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/graph*0*1656263248","Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering nips18.pdf*468496*1551329675","Hierarchical graph neural nets can capture long-range interactions 2107.07432v1.pdf*4564830*1627144317","Relational inductive biases, deep learning, and graph networks ax1810.pdf*9421943*1551219620","Semi-Supervised Classification with Graph Convolutional Networks 1609.02907 iclr17.pdf*764647*1611947754",15219916,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/hardware*0*1656263248","11 TeraFLOPs per second photonic convolutional accelerator for deep learning optical neural networks 2011.07393.pdf*2087635*1605968389","ZeRO-Infinity Breaking the GPU Memory Wall for Extreme Scale Deep Learning 2104.07857 Microsoft.pdf*1322978*1619264270",3410613,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/hybrid_hand_crafted*0*1656263249","Combining ConvNets with Hand-Crafted Features for Action Recognition Based on an HMM-SVM Classifier ax1602.00749.pdf*200870*1552873435","Combining Deep and Handcrafted Image Features for Presentation Attack Detection in Face Recognition Systems Using Visible-Light Camera Sensors. sensors-18-00699-v2.pdf*4473975*1552873423","Combining deep learning and hand-crafted features for skin lesion classification ipta06.pdf*999995*1552872945","Evaluating the Utility of Hand-crafted Features in Sequence Labelling ax1808.pdf*361850*1552873413","Object Classification using Ensemble of Local and Deep Features ax1712.04926.pdf*842301*1552873082","Skin Lesion Classification Via Combining Deep Learning Features and Clinical Criteria Representations bax1808.pdf*1175982*1552872972","The Impact of Replacing Complex Hand-Crafted Features with Standard Features for Melanoma Classification Using Both Hand-Crafted and Deep Features intellisys18_spr.pdf*620134*1552873357",8675107,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/hyper_parameters*0*1656263249","A disciplined approach to neural network hyper-parameters Part 1 -- learning rate, batch size, momentum, and weight decay ax1803.09820.pdf*3509947*1566654794","Algorithms for Hyper-Parameter Optimization nips11.pdf*605790*1520875211",4115737,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/inception*0*1656263250","Convolution in Convolution for Network in Network tnnls1805.pdf*2553424*1526046444","Deformable Convolutional Networks ax1706 iccv17.pdf*6956769*1526674833","Going Deeper with Convolutions ax1409 cvpr15.pdf*1216229*1540237645","Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning ax1608 aaai17.pdf*870354*1546921152","Network In Network ax1403.pdf*598203*1540237646","Rethinking the Inception Architecture for Computer Vision ax1512 cvpr16.pdf*520164*1540237646","Xception Deep Learning with Depthwise Separable Convolutions ax170404.pdf*804466*1536681863",13519609,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/large_models*0*1656263251","Designing Network Design Spaces 2003.13678 cvpr20 facebook.pdf*1459822*1619836750","GPipe Efficient Training of Giant Neural Networks using Pipeline Parallelism 181212.pdf*660405*1551924938","Lingvo a Modular and Scalable Framework for Sequence-to-Sequence Modeling ax190221.pdf*491897*1551925132",2612124,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/libraries*0*1691179156","DoubleML -- An Object-Oriented Implementation of Double Machine Learning in Python 2104.03220.pdf*321651*1618066585","Einops Clear and Reliable Tensor Manipulations with Einstein-like Notation iclr22.pdf*237577*1691178706","Kornia an Open Source Differentiable Computer Vision Library for PyTorch 1910.02190.pdf*5457534*1616279863","Technical Report on the CleverHans v2.1.0 Adversarial Examples Library 1610.00768.pdf*170158*1571671354",6186920,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/mixed_precision*0*1656263251","Mixed Precision Training ax1802 iclr18.pdf*1404641*1562516191",1404641,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/nas*0*1656263251","Can weight sharing outperform random architecture search An investigation with TuNAS cvpr20.pdf*743268*1631204802","DARTS Differentiable Architecture Search ax180624.pdf*638432*1540237646","Efficient Neural Architecture Search via Parameter Sharing ax1802.03268.pdf*437408*1527104596","Efficient Neural Architecture Search with Network Morphism ax1806.pdf*429891*1540237646","Learning Transferable Architectures for Scalable Image Recognition ax1804.pdf*8127002*1540237646","MnasNet Platform-Aware Neural Architecture Search for Mobile ax180731.pdf*636236*1536372455","Neural Architect A Multi-objective Neural Architecture Search with Performance Prediction.pdf*497360*1540237646","Neural Architecture Search A Survey.pdf*275714*1536694384","Neural Architecture Search with Reinforcement Learning ax170215.pdf*735601*1540237646","Progressive Neural Architecture Search ax1807 eccv18.pdf*1202372*1540237646","Simple And Efficient Architecture Search for Convolutional Neural Networks ax1711.pdf*1298332*1540237646",15021616,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/notes*0*1656263251","Decoupled Neural Interfaces using Synthetic Gradients ax1608.05343.pdf*8289*1546016243","Do Deep Nets Really Need to be Deep ax1410 nips14.pdf*7216*1546016382","EfficientNet_ Rethinking Model Scaling for Convolutional Neural Networks.pdf*74562*1601747683","Understanding Synthetic Gradients and Decoupled Neural Interfaces ax1703.00522.pdf*8199*1546016353",98266,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/old*0*1656263251","Learning representations by back-propagating errors nature86.pdf*574094*1453831455",574094,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/optimization*0*1699748860","Adam A Method for Stochastic Optimization ax17_1.pdf*584641*1498520660","Adaptive subgradient methods for online learning and stochastic optimization jmlr11.pdf*307882*1498605287","An overview of gradient descent optimization algorithms ax1609.04747.pdf*659026*1547094561","Backpropagation through time what it does and how to do it ieee90.pdf*1143344*1455210772","Categorical Reparameterization with Gumbel-Softmax 1611.01144.pdf*1403159*1574903493","Cockpit A Practical Debugging Tool for Training Deep Neural Networks 2102.06604.pdf*2003189*1613833306","Deep Convolutional Neural Networks with Unitary Weights 2102.11855.pdf*880674*1615035392","Deep learning via Hessian-free optimization.pdf*109241*1459871692","Delving Deep into Rectifiers Surpassing Human-Level Performance on ImageNet Classification ax1502.01852.pdf*2290070*1573057159","Don't Decay the Learning Rate, Increase the Batch Size iclr18.pdf*604169*1541188732","Gradients without Backpropagation 2202.08587.pdf*4389532*1699748804","On the Variance of the Adaptive Learning Rate and Beyond ax1908.03265.pdf*1504984*1569855027","You Only Train Once Loss-Conditional Training of Deep Networks iclr20.pdf*9202449*1591740925",25082360,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/ordinal regression*0*1656263252","Ordinal Regression with Multiple Output CNN for Age Estimation cvpr16.pdf*1068781*1568353569",1068781,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/perception*0*1691863218","Delving into the Devils of Bird's-eye-view Perception A Review, Evaluation and Recipe 2209.05324.pdf*2218216*1692222549","Geometric-aware Pretraining for Vision-centric 3D Object Detection 2304.03105.pdf*4101405*1691863204","OccFormer Dual-path Transformer for Vision-based 3D Semantic Occupancy Prediction iccv23 2304.05316.pdf*13716645*1691862314","Tri-Perspective View for Vision-Based 3D Semantic Occupancy Prediction cvpr23 2302.07817.pdf*32752917*1691862202",52789183,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/regnet*0*1656263252","Designing Network Design Spaces 2003.13678v1.pdf*1459822*1636395620",1459822,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/relation_net*0*1656263252","A simple neural network module for relational reasoning 1706.01427.pdf*1438944*1574210364",1438944,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/resnet*0*1656263253","Aggregated Residual Transformations for Deep Neural Networks ax170411 cvpr17.pdf*1334606*1536341154","Deep Residual Learning for Image Recognition ax1512.pdf*819383*1516912535","Identity Mappings in Deep Residual Networks ax1607_eccv16.pdf*1166414*1535925101","Wider or Deeper Revisiting the ResNet Model for Visual Recognition ax1611.pdf*5734511*1539750986",9054914,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/review*0*1698091180","A Survey of Inductive Biases for Factorial Representation-Learning ax1612.05299.pdf*7307006*1557840114","Deep Learning for Computer Vision A Brief Review cin_hindawi18.pdf*2593812*1525993327","Deep Learning for Computer Vision A Brief Review cin1802 hindawi.pdf*2593812*1579917315","Deep Learning in Neural Networks An Overview.pdf*1169624*1540237644","Deep learning nature1505.pdf*2083627*1494604584","Learning deep architectures for AI tr09.pdf*665021*1557769024","On the opportunities and risks of foundation models ax2108..pdf*13130255*1698091131",29543157,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/stereo_matching*0*1656263253","Efficient Deep Learning for Stereo Matching cvpr16.pdf*10424856*1498581661","MatchNet Unifying feature and metric learning for patch-based matching cvpr15.pdf*751777*1498581744","Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches ax16_5.pdf*3397935*1518832865",14574568,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/synthetic_gradients*0*1656263254","Decoupled Neural Interfaces using Synthetic Gradients ax1608.05343.pdf*5685763*1541969146","Decoupled Parallel Backpropagation with Convergence Guarantee ax1804.10574.pdf*1109667*1542400115","Deep supervised learning using local errors ax1711.06756.pdf*597504*1542400115","Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation ax1308.3432.pdf*403557*1554235581","Understanding Straight-Through Estimator in Training Activation Quantized Neural Nets iclr19_review.pdf*1148035*1554235710","Understanding Synthetic Gradients and Decoupled Neural Interfaces ax1703.00522.pdf*1927436*1542122940",10871962,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/theory*0*1698498419","Building Machines That Learn and Think Like People ax1611.pdf*3751940*1557931053","Counterfactual Explanations for Machine Learning A Review 2010.10596v1.pdf*713989*1603551435","Deep Learning and the Information Bottleneck Principle ax1503.02406 ite15.pdf*370205*1561510052","Do Deep Nets Really Need to be Deep ax1410 nips14.pdf*271689*1546017916","Do Wide and Deep Networks Learn the Same Things Uncovering How Neural Network Representations Vary with Width and Depth 2010.15327v1.pdf*23200298*1604185876","How Neural Networks Extrapolate From Feedforward to Graph Neural Networks 2009.11848.pdf*5298535*1651682137","Interpretable Machine Learning – A Brief History, State-of-the-Art and Challenges 2010.09337v1.pdf*492866*1603551385","Neural Tangent Kernel Convergence and generalization in neural networks nips18.pdf*419058*1698498273","On the Expressive Power of Deep Neural Networks ax1706.pdf*1736710*1548884410","On the Number of Linear Regions of Deep Neural Networks ax1406 nips14.pdf*4846825*1540237643","Opening the black box of Deep Neural Networks via Information ax1703.00810.pdf*3921623*1561509970","Provable Benefits of Overparameterization in Model Compression From Double Descent to Pruning Neural Networks 2012.08749.pdf*893776*1652286898","Provable Bounds for Learning Some Deep Representations icml14.pdf*344333*1540237644","Sensitivity and Generalization in Neural Networks An Empirical Study iclr18.pdf*8520763*1548813249","Shapley Explanation Networks 2104.02297 iclr21.pdf*9619766*1618670003","Underspecification Presents Challenges for Credibility in Modern Machine Learning 2011.03395.pdf*4906403*1606868972","Understanding Deep Neural Networks with Rectified Linear Units ax1707.pdf*1152958*1540237643","Visualizing and understanding convolutional neural networks ECCV2014.pdf*2282352*1544329670",72744089,"89*90*91"])
D.p(["Z:/UofA/PhD/Literature/deep_learning/theory/#old*0*1698498419","Saliency maps and attention selection in scale and spatial coordinates an information theoretic approach iccv95.pdf*552648*1560548075","Understanding the difficulty of training deep feedforward neural networks icas10.pdf*1647622*1520362245",2200270,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/theory/adversarial*0*1698498380","Adversarial examples in the physical world ax1702.pdf*6437171*1571668249","Boosting Adversarial Attacks with Momentum} ax1710.06081 cvpr18.pdf*1789356*1571675665","DeepFool a simple and accurate method to fool deep neural networks 1511.04599.pdf*4918509*1571674234","Defense against Adversarial Attacks Using High-Level Representation Guided Denoiser ax1803.pdf*1256577*1571675479","Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks ax1511.04508.pdf*3204836*1571671764","Ensemble Adversarial Training Attacks and Defenses ax1807.pdf*1133428*1571675306","Explaining and Harnessing Adversarial Examples ax1503.pdf*1036360*1571671896","Intriguing properties of neural networks ax1312.6199.pdf*6565323*1550669965","Practical Black-Box Attacks against Machine Learning ax1703.pdf*6829953*1571670970","Towards Evaluating the Robustness of Neural Networks ax1703.pdf*1257598*1571674312",34429111,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/theory/explainable*0*1698498356","Evaluating Explainable Artificial Intelligence Methods for Multi-label Deep Learning Classification Tasks in Remote Sensing 2104.01375.pdf*3565777*1618669910","Explainable AI current status and future directions 2107.07045v1.pdf*4254012*1627143752","Explainable AI Interpreting, Explaining and Visualizing Deep Learning lncs19_sl.pdf*61134684*1573852521","Grad-CAM Visual Explanations from Deep Networks via Gradient-based Localization ijcv19.pdf*7262053*1578433075",76216526,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/transfer*0*1656263259","Big Transfer (BiT) General Visual Representation Learning ax2005.pdf*3422323*1591883769","Bringing Impressionism to Life with Neural Style Transfer in Come Swim arxiv17.pdf*5603928*1484934457","Domain Adaptive Neural Networks for Object Recognition ax1409.6041.pdf*2837538*1554235109","How transferable are features in deep neural networks nips14.pdf*496016*1518832895","Transfer Learning handbook09.pdf*180577*1565638460","Unsupervised Image-to-Image Translation Networks ax180215.pdf*5367639*1540237684",17908021,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/transformer*0*1700249302","An Image is Worth 16x16 Words Transformers for Image Recognition at Scale 2010.11929.pdf*3557626*1691285113","Attention is All you Need nips17.pdf*576757*1691285113","Axial Attention in Multidimensional Transformers 1912.12180.pdf*1648508*1697911434","Emerging Properties in Self-Supervised Vision Transformers 2104.14294 facebook.pdf*30927117*1619835658","Exploring Self-attention for Image Recognition 2004.13621 cvpr20.pdf*243035*1598728379","On the relationship between self- attention and convolutional layers 1911.03584 iclr20.pdf*1460818*1691182319","Pervasive Attention 2D Convolutional Neural Networks for Sequence-to-Sequence Prediction 1808.03867 conll18.pdf*1882046*1594416196","Quantifying Attention Flow in Transformers 2005.00928.pdf*3973255*1658336060","Scaling Vision Transformers to Gigapixel Images via Hierarchical Self-Supervised Learning 2206.02647.pdf*21565961*1655652086","Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples 2104.13963 facebook.pdf*635757*1619834083","Swin Transformer Hierarchical Vision Transformer using Shifted Windows 2103.14030.pdf*1239729*1691261896","Transformer visualization via dictionary learning contextualized embedding as a linear superposition of transformer factors 2103.15949.pdf*2821852*1617458049",70532461,"94*95*96*97"])
D.p(["Z:/UofA/PhD/Literature/deep_learning/transformer/#tutorials*0*1700268963","a-PyTorch-Tutorial-to-Image-Captioning.html*71968*1700249430","a-PyTorch-Tutorial-to-Image-Captioning.md*34310*1591156056","a-PyTorch-Tutorial-to-Machine-Translation.html*163378*1700249334","a-PyTorch-Tutorial-to-Machine-Translation.md*101339*1699719573","Relative Positional Encoding - Jake Tae (11_17_2023 11_57_34 AM).html*707101*1700247454",1078096,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/transformer/graph*0*1696523847","Relational Attention Generalizing Transformers for Graph-Structured Tasks iclr23.pdf*663982*1696522842",663982,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/transformer/review*0*1699506119","An Introduction to Transformers 2304.10557.pdf*731406*1699497368","Transformers in Vision A Survey 2101.01169.pdf*7655745*1679689553",8387151,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/transformer/video*0*1698514610","TimeSformer Is Space-Time Attention All You Need for Video Understanding icml21.pdf*8708681*1698359244","Video Swin Transformer cvpr22.pdf*1523363*1698699177","Vivit A video vision transformer iccv21.pdf*4608852*1698682455",14840896,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/unsorted*0*1656263259","Adaptive deconvolutional networks for mid and high level feature learning iccv11.pdf*4299716*1544329670","Convolutional neural networks on graphs with fast localized spectral filtering nips16.pdf*496290*1518832864","Deep Learning A Critical Appraisal ax1801.00631.pdf*264408*1545427524","Deep Networks with Stochastic Depth arxiv16.pdf*989025*1483422266","End-To-End Memory Networks nips15.pdf*657504*1540237644","Evaluating the Robustness of Neural Networks An Extreme Value Theory Approach ax180131 iclr18.pdf*1208772*1540237643","Geometric deep learning going beyond Euclidean data ax1705.pdf*5517877*1518832865","Learning Explanatory Rules from Noisy Data ax1711.04574.pdf*928306*1545428220","Neural GPUs Learn Algorithms iclr16.pdf*140029*1540237644","Neural Machine Translation by Jointly Learning to Align and Translate iclr15.pdf*449756*1540237644","Sequence to Sequence Learning with Neural Networks nips14.pdf*112084*1456419739","Squeeze-and-Excitation Networks ax1804 cvpr18.pdf*1411924*1536683774","SqueezeNext Hardware-Aware Neural Network Design ax180827.pdf*947384*1536536886","Weight Uncertainty in Neural Networks ax1505 icml15.pdf*628773*1520716938",18051848,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/unsupervised*0*1656263262",".gitignore*29*1546018754","Classifier Crafting Turn Your ConvNet into a Zero-Shot Learner! 2103.11112.pdf*13961887*1617458076","Emerging Properties in Self-Supervised Vision Transformers 2104.14294.pdf*30740507*1646950059","Self-supervised Pretraining of Visual Features in the Wild 2103.01988 facebook.pdf*461796*1646411825","Unsupervised Learning of Visual Features by Contrasting Cluster Assignments 2006.09882 nips20.pdf*702914*1647007527",45867133,"100*101*102*103*104*105"])
D.p(["Z:/UofA/PhD/Literature/deep_learning/unsupervised/motion_prediction*0*1656263260","Unsupervised Learning of Long-Term Motion Dynamics for Videos ax1704.pdf*7763986*1546018677",7763986,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/unsupervised/notes*0*1656263260","Learning Features by Watching Objects Move ax170412 cvpr17.pdf*7931*1546016548",7931,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/unsupervised/pixel_prediction*0*1656263260","Context Encoders Feature Learning by Inpainting ax1604.07379.pdf*9820362*1546089344",9820362,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/unsupervised/review*0*1656263261","Representation Learning A Review and New Perspectives ax1404 tpami13.pdf*1540338*1546018721",1540338,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/unsupervised/segmentation*0*1656263261","Learning Features by Watching Objects Move ax170412 cvpr17.pdf*9384513*1540237664",9384513,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/unsupervised/time_series*0*1656263262","Deep Temporal Clustering Fully Unsupervised Learning of Time-Domain Features ax1802.01059.pdf*2841066*1540237685","Unsupervised Feature Learning from Time Series ijcai.pdf*691092*1528330076",3532158,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/vgg*0*1656263262","Very Deep Convolutional Networks for Large-Scale Image Recognition ax1409.1556.pdf*200010*1585353564",200010,""])
D.p(["Z:/UofA/PhD/Literature/deep_learning/weak_supervision*0*1656263263","Self-Training with Weak Supervision 2104.05514.pdf*1621708*1618670074",1621708,""])
D.p(["Z:/UofA/PhD/Literature/deep_reinforcement_learning*0*1656263264","A Deep Reinforcement Learning Library for Fast Prototyping and Benchmarking 2011.07537v1.pdf*3401839*1606574642","Active Object Localization With Deep Reinforcement Learning iccv15.pdf*2259343*1453229553","Asynchronous Methods for Deep Reinforcement Learning ax16_6.pdf*2302720*1498575648","Benchmarking Deep Reinforcement Learning for Continuous Control icml16.pdf*1228584*1485847237","Continuous Adaptation via Meta-Learning in Nonstationary and Competitive Environments ax180223 iclr18.pdf*2357094*1540237604","Continuous control with deep reinforcement learning iclr16 ax1602.pdf*626230*1520117470","Continuous Deep Q-Learning with Model-based Acceleration ax1603.pdf*1708226*1517439972","Deep Reinforcement Learning An Overview ax17_1.pdf*428068*1518832877","DEEP REINFORCEMENT LEARNING AN OVERVIEW ax1709.pdf*1117257*1518832877","Deep Reinforcement Learning that Matters ax1711.pdf*9471156*1517442315","Deep Reinforcement Learning with Double Q-learning corr15 ax15_12.pdf*789062*1499650788","Deterministic Policy Gradient Algorithms icml14.pdf*411675*1540237605","Dueling Network Architectures for Deep Reinforcement Learning ax16_5.pdf*688509*1499650837","End-to-End Training of Deep Visuomotor Policies arxiv16_4.pdf*6263022*1518832872","Human-level control through deep reinforcement learning nature1502.pdf*4400586*1517450062","Imagination-Augmented Agents for Deep Reinforcement Learning ax180214.pdf*1210028*1540237606","Kickstarting Deep Reinforcement Learning ax1803.03835.pdf*1652104*1541963401","Mastering the game of Go with deep neural networks and tree search nature16_1.pdf*2690748*1518832877","Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning ax1712.pdf*2527582*1518832878","Playing Atari with Deep Reinforcement Learning nips13 ax13_9.pdf*485528*1518832878","Proximal Policy Optimization Algorithms ax1708.pdf*2923532*1517442357","Rainbow Combining Improvements in Deep Reinforcement Learning ax1710.pdf*1536440*1517442367","Reinforcement and Deep Reinforcement Machine Learning sl rhml17.pdf*934404*1518832878","Stable reinforcement learning with recurrent neural networks SL jcta11.pdf*383523*1494438631","Temporal Difference Models Model-Free Deep RL for Model-Based Control iclr18_ur.pdf*1667564*1518832879","Three DeepRL Seminars - asingh1@ualberta.ca - University of Alberta Mail.mht*1193604*1517450432","Training Larger Networks for Deep Reinforcement Learning 2102.07920.pdf*5740398*1614429152","Trust Region Policy Optimization ax17_4.pdf*1030008*1518832879",61428834,""])
D.p(["Z:/UofA/PhD/Literature/denoising*0*1656263264","Patch-based video denoising with optical flow estimation tip16.pdf*491086*1516853279","Polyview Fusion A Strategy to Enhance Video-Denoising Algorithms tip12.pdf*4976515*1516854030",5467601,""])
D.p(["Z:/UofA/PhD/Literature/document_recognition*0*1656263264","A Meaningful Information Extraction System for Interactive Analysis of Documents icdar19.pdf*915342*1610507807","Attend, Copy, Parse End-to-end information extraction from documents icdar19.pdf*182488*1610507970","Graphical Object Detection in Document Images icdar19.pdf*1695515*1610507704","Table Detection in Invoice Documents by Graph Neural Networks icdar19.pdf*377530*1610507861",3170875,""])
D.p(["Z:/UofA/PhD/Literature/dynamic_programming*0*1656263264","Automatic differentiation in machine learning a survey ax1802.pdf*608106*1540237647","Demystifying Differentiable Programming ShiftReset the Penultimate Backpropagator 180327.pdf*1211562*1537367755","Differentiable Programming for Image Processing and Deep Learning in Halide siggraph18.pdf*6777250*1540237647",8596918,""])
D.p(["Z:/UofA/PhD/Literature/event_camera*0*1656263265","Dynamic Vision Sensors for Human Activity Recognition ax1803.04667 acpr17.pdf*2204726*1550233855","Event-based Vision meets Deep Learning on Steering Prediction for Self-driving Cars ax1804.01310 cvpr18.pdf*3192495*1550233091","PRED18 Dataset and Further Experiments with DAVIS Event Camera in Predator-Prey Robot Chasing 1807.03128.pdf*598746*1550233221",5995967,""])
D.p(["Z:/UofA/PhD/Literature/evolution_strategies*0*1656263265","Deep Neuroevolution Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning ax180420.pdf*1560016*1538073776",1560016,""])
D.p(["Z:/UofA/PhD/Literature/few_shot_learning*0*1656263265","Low-Shot Learning with Imprinted Weights ax1804 cvpr18.pdf*876240*1554169654","Matching Networks for One Shot Learning ax171229.pdf*2917198*1534903572","Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks 1703.03400 icml17.pdf*3979868*1588195218","Prototypical Networks for Few-shot Learning ax1707.pdf*587621*1540237648","Webly Supervised Learning Meets Zero-shot Learning A Hybrid Approach for Fine-grained Classification cvpr18.pdf*886045*1565711254",9246972,""])
D.p(["Z:/UofA/PhD/Literature/general_value_functions*0*1656263268","horde1.pdf*2849222*1476937604","HSR12_Abeyruwan.pdf*1525990*1518832868","Sherstan_2014_AIROBOT.pdf*1596485*1476937614","Sherstan_2016_AGI_preprint.pdf*255170*1476937609",6226867,""])
D.p(["Z:/UofA/PhD/Literature/generative*0*1700678015","#Group meeting Wed Jun 6 1pm Daniel on generative models.pdf*17139*1528057259","A Note on the Inception Score icmlw18 1801.01973.pdf*4603953*1604076061","Neural distribution estimation as a two-part problem phd 2023.pdf*15370067*1687637038","SEDS a Framework to Generate Stable, Adaptive, Reactive, and Human-Like Robot Reaching Motions 13_1.pdf*3176015*1518832869",23167174,"117*118*119*120"])
D.p(["Z:/UofA/PhD/Literature/generative/3d*0*1700677984","Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling.pdf*8061912*1480463785","pi-gan periodic implicit generative adversarial networks for 3d-aware image synthesis CVPR 2021.pdf*8274670*1659547035","Render for CNN Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views iccv.pdf*7708027*1465506612",24044609,""])
D.p(["Z:/UofA/PhD/Literature/generative/diffusion*0*1700678057","Denoising Diffusion Implicit Models iclr21.pdf*10857218*1699898967","Denoising Diffusion Probabilistic Models nips20.pdf*10267274*1686251488","Diffusion Models Beat GANs on Image Synthesis 2105.05233.pdf*39795106*1700529039","Diffusion Models in Vision A Survey 2209.04747.pdf*14686075*1700586736","Generative Modeling by Estimating Gradients of the Data Distribution 1907.05600 nips19.pdf*8113050*1686251611","High-Resolution Image Synthesis with Latent Diffusion Models cvpr22 2112.10752.pdf*40842586*1686251441","Improved Denoising Diffusion Probabilistic Models icml21.pdf*12442086*1699990035","Understanding Diffusion Models A Unified Perspective 2208.11970.pdf*5033664*1700534651",142037059,""])
D.p(["Z:/UofA/PhD/Literature/generative/GAN*0*1700678015","An empirical study on evaluation metrics of generative adversarial networks 1806.07755.pdf*879163*1604166455","Are GANs Created Equal A Large-Scale Study nips18 1711.10337.pdf*4634371*1604076151","Generative Adversarial Nets arxiv14.pdf*530482*1493938254","Improved Techniques for Training GANs ax1606.pdf*2349963*1540237570","Infogan Interpretable representation learning by information maximizing generative adversarial nets ax1606.03657 nips16.pdf*3597069*1557933331","Pros and Cons of GAN Evaluation Measures 1802.03446.pdf*7792727*1604031667","Training Generative Adversarial Networks with Limited Data 2006.06676 nips20.pdf*43309687*1607477011","Tutorial Generative Adversarial Networks arxiv16 NIPS16.pdf*10913043*1518832868","UNROLLED GENERATIVE ADVERSARIAL NETWORKS iclr17 1611.02163.pdf*5542435*1604089133",79548940,""])
D.p(["Z:/UofA/PhD/Literature/generative/unpaired image translation*0*1656263267","Contrastive Learning for Unpaired Image-to-Image Translation 2007.15651.pdf*8753460*1647274322",8753460,""])
D.p(["Z:/UofA/PhD/Literature/graph_theory*0*1656263268","Algorithm 447 Efficient algorithms for graph manipulation acm73.pdf*739684*1498408470","An efficient heuristic procedure for partitioning graphs 1970.pdf*750239*1498947719","The Junction Tree Algorithm.pdf*60082*1498432469","The Junction Tree Algorithms.pdf*135561*1498432465","The partition problem mp93.pdf*1495236*1498675540",3180802,"122"])
D.p(["Z:/UofA/PhD/Literature/graph_theory/crf*0*1656263268","An Introduction to Conditional Random Fields.pdf*754681*1518832869","Conditional Random Fields An Introduction cambridge04.pdf*112257*1498408848","Integer Linear Programming Inference for Conditional Random Fields icml05.pdf*241426*1498408928","Tutorial on Conditional Random Fields for Sequence Prediction.pdf*1829121*1498408924",2937485,""])
D.p(["Z:/UofA/PhD/Literature/HMM*0*1656263268","The Forward-Backward Algorithm.pdf*133662*1484580163",133662,""])
D.p(["Z:/UofA/PhD/Literature/image_captioning*0*1699633944","Deep Visual-Semantic Alignments for Generating Image Descriptionsv cvpr15.pdf*5190227*1595476316","Neural Baby Talk 1803.09845 cvpr18.pdf*5697672*1596142695","Show and Tell A Neural Image Caption Generator 1411.4555.pdf*673479*1595476322","Show, Attend and Tell Neural Image Caption Generation with Visual Attention xuc15.pdf*3126761*1478118554",14688139,"125*126"])
D.p(["Z:/UofA/PhD/Literature/image_captioning/diffusion*0*1699381785","Analog Bits Generating Discrete Data using Diffusion Models with Self-Conditioning iclr23.pdf*2577381*1700149574",2577381,""])
D.p(["Z:/UofA/PhD/Literature/image_captioning/transformer*0*1699634331","Beyond a Pre-Trained Object Detector Cross-Modal Textual and Visual Context for Image Captioning cvprr22.pdf*1424750*1699381919","End-to-End Transformer Based Model for Image Captioning aaai22.pdf*1151587*1699380914","ExpansionNet v2 Block Static Expansion in fast end to end training for Image Captioning ax2208.pdf*15695654*1699381306","GIT A Generative Image-to-text Transformer for Vision and Language ax2212.pdf*16681745*1699382536","GRIT Faster and Better Image captioning Transformer Using Dual Visual Features eccv22.pdf*7867919*1699416751","Improving Image Captioning by Leveraging Intra- and Inter-layer Global Representation in Transformer Network aaai21.pdf*2538904*1699382399","Meshed-Memory Transformer for Image Captioning CVPR20.pdf*10121186*1699381393","mPLUG Effective and Efficient Vision-Language Learning by Cross-modal Skip-connections emnlp22.pdf*794012*1699382054","SeqTR A Simple yet Universal Network for Visual Grounding eccv22.pdf*11733791*1699715072","UniTAB Unifying Text and Box Outputs for Grounded Vision-Language Modeling eccv22.pdf*4650151*1699633899",72659699,""])
D.p(["Z:/UofA/PhD/Literature/image_matching*0*1656263269","AnchorNet A Weakly Supervised Network to Learn Geometry-sensitive Features For Semantic Matching ax1704.pdf*4889238*1521480236","Learning Image Matching by Simply Watching Video eccv16.pdf*10517938*1540237649","Local Convolutional Features With Unsupervised Training for Image Retrieval iccv15.pdf*3821370*1453229303",19228546,"128*129"])
D.p(["Z:/UofA/PhD/Literature/image_matching/siamese_networks_and_learned_similarity*0*1656263269","Deep metric learning using Triplet network.pdf*6360867*1518832886","Learning a Similarity Metric Discriminatively, with Application to Face Verification 05.pdf*313804*1468333515","Siamese Neural Networks for One-Shot Image Recognition msc-thesis.pdf*1437286*1468333531","Siamese Neural Networks for One-shot Image Recognition.pdf*766340*1468333526",8878297,""])
D.p(["Z:/UofA/PhD/Literature/image_matching/similarity_metric*0*1656263269","Best-buddies similarity for robust template matching cvpr15.pdf*10909834*1518832886","Large scale online learning of image similarity through ranking jmlr10.pdf*1167567*1497294897",12077401,""])
D.p(["Z:/UofA/PhD/Literature/image_processing*0*1699380960","Relations between the statistics of natural images and the response properties of cortical cells 87.pdf*3903831*1544015443","Statistics of natural images Scaling in the woods 94.pdf*1357466*1544015471",5261297,""])
D.p(["Z:/UofA/PhD/Literature/interpolation*0*1656263269",".gitignore*13*1546019293","Context-aware Synthesis for Video Frame Interpolation cvpr18 ax1803.10967.pdf*1389250*1546018263","Phase-based frame interpolation for video cvpr15.pdf*18256714*1520137929","Video Frame Interpolation via Adaptive Convolution ax1703.pdf*1731401*1520542502","Video Frame Interpolation via Adaptive Separable Convolution iccv17.pdf*3594224*1520338751",24971602,"132"])
D.p(["Z:/UofA/PhD/Literature/interpolation/notes*0*1656263269","Video Frame Interpolation via Adaptive Convolution ax1703.pdf*3016362*1520565602",3016362,""])
D.p(["Z:/UofA/PhD/Literature/labeling*0*1656263270","Efficiently Scaling up Crowdsourced Video Annotation ijcv12.pdf*11532806*1548280549","LabelMe a database and web-based tool for image annotation. ijcv08.pdf*4194785*1548275339",15727591,""])
D.p(["Z:/UofA/PhD/Literature/machine_learning*0*1656263270","Online passive-aggressive algorithms jmlr06.pdf*372767*1497295210",372767,""])
D.p(["Z:/UofA/PhD/Literature/manifold embedding*0*1635623867",0,""])
D.p(["Z:/UofA/PhD/Literature/misc*0*1656263272","A simple method for fitting of bounding rectangle to closed regions pr07.pdf*736749*1518832870","Algorithms for the assignment and transportation problems jsiam57.pdf*732132*1495303669","Bronstein, Bronstein, Kimmel - Numerical Geometry of Nonrigid Shapes.pdf*7606287*1625019174","Google’s Hybrid Approach to Research.pdf*74118*1573533973","Hartley, Zisserman - Multiple View Geometry in Computer Vision.pdf*10734979*1625008855","Numerical Geometry of Images 2004.pdf*18933921*1625015246","The General Theory of General Intelligence A Pragmatic Patternist Perspective 2103.15100.pdf*2402958*1618066566","The Multiplicative Weights Update Method A Meta-Algorithm and Applications toc1205.pdf*391335*1540237649",41612479,"137*138*139*140"])
D.p(["Z:/UofA/PhD/Literature/misc/gpu_programming*0*1656263271","A GPU-Enabled Solver For Time-Constrained Linear Sum Assignment Problems.pdf*278169*1589042470","GPU-accelerated Hungarian algorithms for the Linear Assignment Problem pc1609.pdf*791307*1589042699","GPU-Based Heuristic Solver for Linear Sum Assignment Problems Under Real-time Constraints 1106.5694.pdf*310815*1589042366",1380291,""])
D.p(["Z:/UofA/PhD/Literature/misc/line_intersections*0*1656263271","python - Numpy and line intersections - Stack Overflow.mht*907037*1516517045","x06-sweepline.pdf*104636*1516508260",1011673,""])
D.p(["Z:/UofA/PhD/Literature/misc/math*0*1656263271","BODY and SOUL MATHEMATICAL SIMULATION TECHNOLOGY.pdf*26315558*1625008866","Computational Differential Equations.pdf*8619300*1625008867","Counting Binary Matrices with Given Row and Column Sums 1987.pdf*506802*1628175901",35441660,""])
D.p(["Z:/UofA/PhD/Literature/misc/radon_transform*0*1656263272","Reconstruction from projections.pdf*1373213*1544665784","The Finite Radon Transform - Ball State University.pdf*5184852*1544882769","The Radon Transform - Theory and Implementation PhD Thesis.pdf*6722715*1544665781","The Radon Transform report07.pdf*242912*1544665760","The Radon Transform.pdf*1310790*1544665871",14834482,""])
D.p(["Z:/UofA/PhD/Literature/MOT*0*1656263290",".gitignore*191*1611518918","Lifted Disjoint Paths with Application in Multiple Object Tracking 2006.14550 icml20 mot_all_winner.pdf*589267*1595089973","Multi-Object Tracking with Multiple Cues and Switcher-Aware Classification 1901.06129.pdf*1851763*1595162472","Quasi-Dense Similarity Learning for Multiple Object Tracking 2006.06664v3.pdf*9405182*1623089506","Rethinking the competition between detection and ReID in Multi-Object Tracking 2010.12138v2.pdf*4489912*1623089670",16336315,"142*143*144*145*146*147*148*149*150*151*152*153*154*155*156*157*158*159*160*161*162*163*164*165*166*167*168*169*170*172*173*174*175*176*177*178*179*180*181"])
D.p(["Z:/UofA/PhD/Literature/MOT/3d*0*1656263274","3D Multi-Object Tracking A Baseline and New Evaluation Metrics 1907.03961v5.pdf*1390174*1623088882","3D Traffic Scene Understanding from Movable Platforms pami14.pdf*6232422*1558885421","End-to-end Learning of Multi-sensor 3D Tracking by Detection 1806.11534 icra18.pdf*7489014*1647197652","GNN3DMOT Graph Neural Network for 3D Multi-Object Tracking with Multi-Feature Learning 2006.07327v1.pdf*1604739*1623089225","JRMOT A Real-Time 3D Multi-Object Tracker and a New Large-Scale Dataset ax2002.08397.pdf*6780517*1594412493",23496866,""])
D.p(["Z:/UofA/PhD/Literature/MOT/approx_diff*0*1656263274","Deep Affinity Network for Multiple Object Tracking ax1810.11780 tpami19.pdf*6283068*1650172253","FAMNet Joint Learning of Feature, Affinity and Multi-Dimensional Assignment for Online Multiple Object Tracking iccv19.pdf*1150495*1650174911","How To Train Your Deep Multi-Object Tracker 1906.06618v3 cvpr20.pdf*3330568*1650226021",10764131,""])
D.p(["Z:/UofA/PhD/Literature/MOT/association*0*1656263275","Data Association for Multi-Object Tracking via Deep Neural Networks sensord1902.pdf*20025278*1579925543","Deep Learning for Bipartite Assignment Problems 1908_MPhil.pdf*717953*1579925358","Multi-target Tracking by Rank-1 Tensor Approximation cvpr13.pdf*947455*1575765800","Online Multi-Object Tracking based on Hierarchical Association Framework cvprw16_7.pdf*1334055*1544538993","Online multi-object tracking by detection based on generative appearance models cviu16_11.pdf*2240222*1544539124","Rank-1 Tensor Approximation for High-Order Association in Multi-target Tracking ijcv19.pdf*2786045*1575764710","Towards Real-Time Multi-Object Tracking ax1909.12605v1.pdf*711993*1579926769",28763001,""])
D.p(["Z:/UofA/PhD/Literature/MOT/baseline*0*1656263275","Aerial multi-object tracking by detection using deep association networks ax1909.01547.pdf*2636116*1569163937","Deep SORT Simple Online Realtime Tracking with a Deep Association Metric ax1703.07402 icip17.pdf*1195975*1558325991","High-Speed Tracking-by-Detection Without Using Image Information avss17.pdf*334051*1544408890","Simple Online and Realtime Tracking ax1707 icip16.pdf*142304*1567191987",4308446,""])
D.p(["Z:/UofA/PhD/Literature/MOT/batch*0*1656263275","A Multi-cut Formulation for Joint Segmentation and Tracking of Multiple Objects ax16_9 [best MT on MOT15].pdf*4676240*1540237668","Continuous energy minimization for multitarget tracking tpami14.pdf*2129705*1495372860","Learning an image-based motion context for multiple people tracking cvpr14.pdf*879673*1495372895","Multiple Object Tracking Using K-Shortest Paths Optimization tpami11.pdf*1664693*1495372785","Multi-target tracking by lagrangian relaxation to min-cost network flow cvpr13.pdf*1293184*1495372827","Multi-target Tracking by Rank-1 Tensor Approximation cvpr13.pdf*938301*1655266518",11581796,""])
D.p(["Z:/UofA/PhD/Literature/MOT/bayesian*0*1656263275","Multi-Class Multi-Object Tracking using Changing Point Detection ax16_8.pdf*5150963*1544538615",5150963,""])
D.p(["Z:/UofA/PhD/Literature/MOT/cell*0*1656263424","Accurate cell tracking and lineage construction in live-cell imaging experiments with deep learning bioax19.pdf*2207589*1614090929","An Objective Comparison of Cell Tracking Algorithms nature methods 2017.pdf*2016170*1621443752","DeLTA Automated cell segmentation, tracking, and lineage reconstruction using deep learning ploscb200413.pdf*1393326*1613493500","Global linking of cell tracks using the viterbi algorithm_tmi1504.pdf*2699203*1617135693","Robust single-particle tracking in live-cell time-lapse sequences. Nature methods, 2008.pdf*903004*1618692587",9219292,""])
D.p(["Z:/UofA/PhD/Literature/MOT/compressed*0*1656263276","MV-YOLO Motion Vector-aided Tracking by Semantic Object Detection ax1806.pdf*1624693*1544536748",1624693,""])
D.p(["Z:/UofA/PhD/Literature/MOT/context*0*1656263276","Learning an image-based motion context for multiple people tracking cvpr14.pdf*3848852*1494861036","Learning Optimal Parameters for Multi-target Tracking with Contextual Interactions ax1610 ijcv16.pdf*7708326*1537481253",11557178,""])
D.p(["Z:/UofA/PhD/Literature/MOT/deep_learning*0*1656263276","Deep Continuous Conditional Random Fields with Asymmetric Inter-object Constraints for Online Multi-object Tracking ax1806.01183.pdf*1397955*1540237675","Improving Online Multiple Object tracking with Deep Metric Learning ax1806.07592.pdf*3728078*1540237675","Multi-Class Multi-Object Tracking using Changing Point Detection ax160830 eccv16.pdf*5198734*1526666525","Multi-Object Tracking with Multiple Cues and Switcher-Aware Classification ax1901.06129.pdf*1791822*1576503123","Online Multi-Object Tracking Using CNN-based Single Object Tracker with Spatial-Temporal Attention Mechanism 1708.02843 iccv17.pdf*763889*1574574170","Online multi-object tracking with dual matching attention networks 1902.00749 eccv18.pdf*2770454*1574818626","Real-time Multiple People Tracking with Deeply Learned Candidate Selection and Person Re-Identification ax1809.04427.pdf*417953*1540237676","Tracking millions of humans Elsevier_17.pdf*6610749*1507064735","Tracking without bells and whistles ax1903.05625 iccv19.pdf*4105637*1647667737",26785271,""])
D.p(["Z:/UofA/PhD/Literature/MOT/detector_fusion*0*1656263276","A Novel Multi-Detector Fusion Framework for Multi-Object Tracking ax17_9.pdf*5158442*1540237673",5158442,""])
D.p(["Z:/UofA/PhD/Literature/MOT/dictionary_learning*0*1656263277","Spatiotemporal KSVD Dictionary Learning for Online Multi-target Tracking ax1807.02143.pdf*814821*1544539398",814821,""])
D.p(["Z:/UofA/PhD/Literature/MOT/embedded*0*1656263277","Deep Learning-Based Multiple Object Visual Tracking on Embedded System for IoT and Mobile Edge Computing Applications 1808.01356.pdf*6247220*1540237676",6247220,""])
D.p(["Z:/UofA/PhD/Literature/MOT/end to end*0*1649706373",0,""])
D.p(["Z:/UofA/PhD/Literature/MOT/energy*0*1656263277","Continuous energy minimization for multitarget tracking tpami14_1.pdf*2110873*1544538103",2110873,""])
D.p(["Z:/UofA/PhD/Literature/MOT/ensemble*0*1656263277","A fast multi-object tracking system using an object detector ensemble ax1908.04349 ColCACI19.pdf*3518260*1569163776","To track or to detect an ensemble framework for optimal selection. eccv12.pdf*7445647*1574451024",10963907,""])
D.p(["Z:/UofA/PhD/Literature/MOT/graph*0*1656263279","A Graph Transduction Game for Multi-target Tracking ax1806.07227.pdf*1410520*1540237673","GSM Graph Similarity Model for Multi-Object Tracking ijcai20.pdf*3384949*1595162535","Joint Object Detection and Multi-Object Tracking with Graph Neural Networks 2006.13164 icra21.pdf*733216*1623085851","Subgraph decomposition for multi-object tracking cvpr15.pdf*2887711*1498935881","TGCN Time Domain Graph Convolutional Network for Multiple Objects Tracking 2101.01861.pdf*718660*1612148833",9135056,""])
D.p(["Z:/UofA/PhD/Literature/MOT/joint_detection*0*1656263279","A Simple Baseline for Multi-Object Tracking 2004.01888.pdf*1772679*1606614375","DEFT Detection Embeddings for Tracking, 2102.02267.pdf*5398957*1650124327","Detect to Track and Track to Detect_iccv17.pdf*2483165*1595258567","End-to-End Multi-Object Tracking with Global Response Map 2007.06344.pdf*4257429*1649694628","FairMOT On the Fairness of Detection and Re-Identification in Multiple Object Tracking 2004.01888v5.pdf*7963756*1623085279","Integrated Object Detection and Tracking with Tracklet-Conditioned Detection 1811.11167.pdf*876087*1607893934","Joint Object Detection and Multi-Object Tracking with Graph Neural Networks 2006.13164.pdf*779988*1649049014","MOTS Multi-Object Tracking and Segmentation ax1904 cvpr19.pdf*8995239*1576371878","RetinaTrack Online Single Stage Joint Detection and Tracking 2003.13870 cvpr20.pdf*3822278*1648604357","Towards Real-Time Multi-Object Tracking ax1909.12605v1 1909.12605 eccv20.pdf*4820192*1648585254","Tracking Beyond Detection Learning a Global Response Map for End-to-End Multi-Object Tracking tip21.pdf*6728660*1649694634","Tracking Objects as Points 2004.01177 eccv20.pdf*3584489*1595258033",51482919,""])
D.p(["Z:/UofA/PhD/Literature/MOT/metrics*0*1656263280","Evaluating Multi-Object Tracking cvpr05.pdf*865382*1612311095","Evaluating multiple object tracking performance the clear mot metrics eurasip08.pdf*3747824*1609562170","HOTA A Higher Order Metric for Evaluating Multi-object Tracking sl_open_2010_ijcv2008.pdf*3686931*1652034606","Local Metrics for Multi-Object Tracking 2104.02631.pdf*1700697*1618951180","Multiple object tracking performance metrics and evaluation in a smart room environment eccvw06.pdf*2388304*1596125155","Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking 1609.01775 eccvw16.pdf*5970826*1623810128","The clear 2006 evaluation..pdf*9503976*1609562829",27863940,""])
D.p(["Z:/UofA/PhD/Literature/MOT/mht*0*1656263280","An Algorithm for Tracking Multiple Targets TAC1979.pdf*1198626*1655241033","An efficient implementation of Reid’s multiple hypothesis tracking algorithm and its evaluation for the purpose of visual tracking pami96.pdf*2510915*1655241149","Forty Years of Multiple Hypothesis Tracking.pdf*535172*1655241550","Fundamentals and Advances in Multiple-Hypothesis Tracking .pdf*5698409*1655240651","Multiple hypothesis tracking revisited iccv15.pdf*1147488*1497618742","The Maximum Weight Independent Set Problem for Data Association in Multiple Hypothesis Tracking 2009.pdf*1025223*1655243533",12115833,""])
D.p(["Z:/UofA/PhD/Literature/MOT/misc*0*1656263281","Cyclist Detection, Tracking, and Trajectory Analysis in Urban Traffic Video Data msc_thes1708.pdf*2416990*1540237677","Measurement-wise Occlusion in Multi-object Tracking ax1805.08324.pdf*1689059*1544538533","Multiple object tracking with context awareness ax1411 1610 phd.pdf*10379233*1579916718","Multiple Object Tracking with Kernelized Correlation Filters in Urban Mixed Traffic crv17.pdf*929943*1499368112","PoseTrack Joint Multi-Person Pose Estimation and Tracking_cvpr17.pdf*978226*1537338454",16393451,""])
D.p(["Z:/UofA/PhD/Literature/MOT/multi_camera*0*1656263281","Robust Multi-Modality Multi-Object Tracking 1909.03850 iccv19.pdf*8496826*1575335821",8496826,""])
D.p(["Z:/UofA/PhD/Literature/MOT/network_flow*0*1656263281","Deep Network Flow for Multi-Object Tracking cvpr17.pdf*2172722*1548566382","Deep Network Flow for Multi-Object Tracking cvpr17_supplemental.pdf*3105563*1537765914","FollowMe Efficient Online Min-Cost Flow Tracking with Bounded Memory and Computation ax1412 iccv15.pdf*1016112*1537638414","Learning a Neural Solver for Multiple Object Tracking 1912.07515 cvpr20.pdf*10234001*1648603547","Multi-commodity network flow for tracking multiple people tpami14.pdf*1993964*1540237677","Near-online multi-target tracking with aggregated local flow descriptor iccv15.pdf*1998269*1540237677","On Pairwise Costs for Network Flow Multi-Object Tracking cvpr15.pdf*2316053*1537710153","Target identity-aware network flow for online multiple target tracking cvpr15.pdf*2694321*1497615806",25531005,""])
D.p(["Z:/UofA/PhD/Literature/MOT/notes*0*1656263282","A Simple Baseline for Multi-Object Tracking 2004.01888.pdf*105213*1606614855","A_Multi-cut_Formulation_for_Joint_Segmentation_and_Tracking_of_Multiple_Objects.pdf*6910195*1499035014","Collaborative Deep Reinforcement Learning for Multi-Object Tracking_eccv18.pdf*205081*1575126914","Deep Affinity Network for Multiple Object Tracking ax1810.11780 tpami19.pdf*200218*1581991130","Deep Network Flow for Multi-Object Tracking cvpr17.pdf*10247*1548595649","Eliminating Exposure Bias and Metric Mismatch in Multiple Object Tracking cvpr19.pdf*191560*1578805107","Exploit the Connectivity Multi-Object Tracking with TrackletNet ax1811.07258 mm19.pdf*201736*1578164843","FAMNet Joint Learning of Feature, Affinity and Multi-Dimensional Assignment for Online Multiple Object Tracking iccv19.pdf*197975*1576502580","High-Speed Tracking-by-Detection Without Using Image Information avss17.pdf*2609*1558882477","HOTA A Higher Order Metric for Evaluating Multi-object Tracking sl_open_2010_ijcv2008.pdf*109630*1611518481","Integrated Object Detection and Tracking with Tracklet-Conditioned Detection 1811.11167.pdf*103687*1607893813","Learning a Neural Solver for Multiple Object Tracking 1912.07515 cvpr20.pdf*109651*1609102638","Learning_to_Track_Online_Multi-object_Tracking_by_Decision_Making__iccv15.pdf*21482*1498694653","mdp_tracking.pdf*1372027*1544472790","MOTS Multi-Object Tracking and Segmentation ax1904 cvpr19.pdf*193889*1576502614","Multi-object Tracking with Neural Gating Using Bilinear LSTM_eccv18.pdf*210986*1576502562","NOMT.pdf*11146093*1498691704","Online Multi-Object Tracking Using CNN-based Single Object Tracker with Spatial-Temporal Attention Mechanism 1708.02843 iccv17.pdf*199077*1574562858","Online multi-object tracking with dual matching attention networks 1902.00749 eccv18.pdf*195086*1574819635","Simple Online and Realtime Tracking ax1707 icip16.pdf*3501*1558887835","Simple Unsupervised Multi-Object Tracking 2006.02609.pdf*104296*1607191403","Towards Real-Time Multi-Object Tracking ax1909.12605v1.pdf*178627*1595259274","Tracking by Animation Unsupervised Learning of Multi-Object Attentive Trackers cvpr19 ax1809.03137.pdf*200735*1574993678","Tracking Objects as Points 2004.01177.pdf*113516*1595257717","Tracking without bells and whistles ax1903.05625 iccv19.pdf*193357*1580850000","Tracking_The_Untrackable_Learning_To_Track_Multiple_Cues_with_Long-Term_Dependencies.pdf*19745*1498694430","Unsupervised Person Re-identification by Deep Learning Tracklet Association 1809.02874 eccv18.pdf*93681*1607191218",22593900,""])
D.p(["Z:/UofA/PhD/Literature/MOT/old*0*1656263283","Global data association for multi-object tracking using network flows cvpr08.pdf*5054627*1537677886","Learning to associate HybridBoosted multi-target tracker for crowded scene cvpr09.pdf*3383482*1495246133","Markov chain monte carlo data association for multi-target tracking tac09.pdf*1635789*1494861669","MCMC-based particle filtering for tracking a variable number of interacting targets tpami05.pdf*448354*1494860918","Multiple Object Tracking using K-Shortest Paths pami11.pdf*5369000*1469726459","Multi-target tracking by online learned discriminative appearance models. cvpr10.pdf*1121726*1494860998","Online multi-target tracking by large margin structured learning accv12.pdf*1329027*1494860959","People-Tracking-by-Detection and People-Detection-by-Tracking_cvpr08.pdf*9314870*1579916520",27656875,""])
D.p(["Z:/UofA/PhD/Literature/MOT/PF*0*1656263283","Online Multi-target Tracking with Strong and Weak Detections eccv16.pdf*5080221*1544539312",5080221,""])
D.p(["Z:/UofA/PhD/Literature/MOT/reid*0*1656263284","Torchreid A Library for Deep Learning Person Re-Identification in Pytorch 1910.10093.pdf*494745*1607190626",494745,""])
D.p(["Z:/UofA/PhD/Literature/MOT/reidentification*0*1656263284","Attention A Big Surprise for Cross-Domain Person Re-Identification ax1905.12830.pdf*2596615*1576800199","Unsupervised Person Re-identification by Deep Learning Tracklet Association 1809.02874 eccv18.pdf*3096825*1582486574",5693440,""])
D.p(["Z:/UofA/PhD/Literature/MOT/review*0*1656263285","A Survey on Leveraging Deep Neural Networks for Object Tracking itsc17.pdf*227707*1579917040","A Survey on Leveraging Deep Neural Networks for Object Tracking ppt.pdf*2910803*1537712873","Deep Learning in Video Multi-Object Tracking A Survey ax1907.12740.pdf*2655730*1609548881","Machine Learning Methods for Solving Assignment Problems in Multi-Target Tracking ax1802.06897.pdf*2178864*1577732481","Multiple Object Tracking A Literature Review 1409.7618 ax220211 AI21.pdf*1424901*1647195491","Real-Time Multiple Object Tracking - A Study on the Importance of Speed ax17_10 thesis.pdf*2364329*1507064885","The State of the Art in Multiple Object Tracking Under Occlusion in Video Sequences 2003-ACIVS.pdf*735827*1580057740","Tracking the Trackers An Analysis of the State of the Art in Multiple Object Tracking ax17_4.pdf*2385073*1574310549",14883234,"171"])
D.p(["Z:/UofA/PhD/Literature/MOT/review/dubious*0*1656263285","A Review of Detection and Tracking of Object from Image and Video Sequences ijcirv13n5_07.pdf*474546*1588887154","A Unified Pipeline for Multiple Object Tracking proj report.pdf*40368911*1588887138","Multiple Object Detection and Tracking A Survey 1802.pdf*1279615*1588887119",42123072,""])
D.p(["Z:/UofA/PhD/Literature/MOT/RL*0*1656263285","Collaborative Deep Reinforcement Learning for Multi-Object Tracking_eccv18.pdf*9721276*1575077709","Learning to Track Online Multi-object Tracking by Decision Making iccv15.pdf*859671*1573257143","Learning to Track Online Multi-Object Tracking by Decision Making_iccv15 supplementary.pdf*152137*1495245809","Multi-Agent_Deep_Reinforcement_Learning_for_Multi-Object_Tracker.pdf*11112397*1655655255","Multiobject Tracking in Videos Based on LSTM and Deep Reinforcement Learning hindawi1803.pdf*40049858*1655662429",61895339,""])
D.p(["Z:/UofA/PhD/Literature/MOT/rnn*0*1656263287","Deep tracking in the wild End-to-end tracking using recurrent neural networks ijrr17.pdf*5748068*1583003643","Eliminating Exposure Bias and Metric Mismatch in Multiple Object Tracking cvpr19.pdf*2383416*1578804804","End-to-End Tracking and Semantic Segmentation Using Recurrent Neural Networks 1604.05091.pdf*4332452*1583003677","Multi-object Tracking with Neural Gating Using Bilinear LSTM_eccv18.pdf*547898*1576438520","Multiple Object Tracking in Videos Based on LSTM hindawi.pdf*4048530*1537710152","Online Multi-Target Tracking Using Recurrent Neural Networks 1604.03635 aaai17.pdf*2094954*1575336828","Tracking of Humans in Video Stream Using LSTM Recurrent Neural Network mml_thes1708.pdf*18597651*1525991734","Tracking The Untrackable Learning To Track Multiple Cues with Long-Term Dependencies ax17_4_iccv17.pdf*1021234*1596133604",38774203,""])
D.p(["Z:/UofA/PhD/Literature/MOT/segmentation*0*1656263287","Joint tracking and segmentation of multiple targets cvpr15.pdf*3864998*1649696809","Learning Multi-Object Tracking and Segmentation from Automatic Annotations cvpr20.pdf*7213731*1649792815","MOTS Multi-Object Tracking and Segmentation CVPR19.pdf*2135639*1569134792","Segment as points for efficient online multi-object tracking and segmentation eccv20.pdf*3038021*1649795763","Track To Detect and Segment An Online Multi-Object Tracker cvpr21.pdf*4097264*1649711575","Track, then Decide Category-Agnostic Vision-based Multi-Object Tracking 1712.07920 icra18.pdf*8779466*1569162941",29129119,""])
D.p(["Z:/UofA/PhD/Literature/MOT/siamese*0*1656263287","Learning by tracking Siamese CNN for robust target association ax1608 cvprw16.pdf*1228763*1576520874","Multi-Object Tracking with Quadruplet Convolutional Neural Networks cvpr17.pdf*736332*1531923371","Online Multi-Object Tracking with Historical Appearance Matching and Scene Adaptive Detection Filtering ax1805.10916 avss18.pdf*615782*1576520718","SiamMOT Siamese Multi-Object Tracking 2105.11595v1.pdf*6411090*1623090276",8991967,""])
D.p(["Z:/UofA/PhD/Literature/MOT/tracklet*0*1656263287","Exploit the Connectivity Multi-Object Tracking with TrackletNet ax1811.07258 mm19.pdf*4503297*1578164449","Long-term Tracking with Deep Tracklet Association yip2005.pdf*5040562*1608926497","Non-Markovian Globally Consistent Multi-Object Tracking_iccv17.pdf*1415034*1538358794","SMOT Single-Shot Multi Object Tracking 2010.16031v1.pdf*6813089*1650121267","Spatial-Temporal Relation Networks for Multi-Object Tracking 1904.11489.pdf*4248348*1574214247","The way they move Tracking multiple targets with similar appearance iccv13.pdf*898360*1544405090","Tracking multi-object using tracklet and Faster R-CNN icdsc16_9.pdf*865438*1540237678","Tracklet association by online target-specific metric learning and coherent dynamics estimation tpami17.pdf*695154*1497618124","Tracklet Association Tracker An End-to-End Learning-based Association Approach for Multi-Object Tracking ax1808.01562.pdf*1965061*1609275185",26444343,""])
D.p(["Z:/UofA/PhD/Literature/MOT/traffic*0*1656263288","Multiple Object Tracking in Urban Traffic Scenes with a Multiclass Object Detector ax1809.02073.pdf*1708176*1544538701",1708176,""])
D.p(["Z:/UofA/PhD/Literature/MOT/transformers*0*1698246357","Global Tracking Transformers cvpr22 2203.13250.pdf*3115730*1698328894","Looking Beyond Two Frames End-to-End Multi-Object Tracking Using Spatial and Temporal Transformers 2103.14829.pdf*4339402*1650064262","MOTR End-to-End Multiple-Object Tracking with Transformer ax220309.pdf*2303029*1650000770","TrackFormer Multi-Object Tracking with Transformers 2101.02702.pdf*1589456*1649811353","TransTrack Multiple Object Tracking with Transformer 2012.15460.pdf*12373428*1649709275","Unified Transformer Tracker for Object Tracking 2203.15175 cvpr22.pdf*23485255*1649870821","ViTT Vision Transformer Tracker sensors-21 mdpi.pdf*1274480*1649876879",48480780,""])
D.p(["Z:/UofA/PhD/Literature/MOT/tubes*0*1656263290","Chained-Tracker Chaining Paired Attentive Regression Results for End-to-End Joint Multiple-Object Detection and Tracking 2007.14557 eccv20.pdf*12024430*1649006598","Simultaneous Detection and Tracking with Motion Modelling for Multiple Object Tracking 2008.08826 eccv20.pdf*6632232*1649646105","TrackNet Simultaneous Object Detection and Tracking and Its Application in Traffic Video Analysis 1902.01466.pdf*8707437*1649138323","TubeTK Adopting Tubes to Track Multi-Object in a One-Step Training Model 2006.05683 cvpr20.pdf*2746990*1649049014",30111089,""])
D.p(["Z:/UofA/PhD/Literature/MOT/uav*0*1656263290","Aerial multi-object tracking by detection using deep association networks ax1909.01547.pdf*2636116*1569164636",2636116,""])
D.p(["Z:/UofA/PhD/Literature/MOT/unsupervised*0*1656263290","Self-Supervised Multi-Object Tracking with Cross-Input Consistency nips21.pdf*1095913*1647723682","Simple Unsupervised Multi-Object Tracking 2006.02609.pdf*501867*1647725067","Tracking by Animation Unsupervised Learning of Multi-Object Attentive Trackers cvpr19 ax1809.03137.pdf*8888504*1575003966","Unsupervised Person Re-identification by Deep Learning Tracklet Association 1809.02874 eccv18.pdf*1199050*1538354852",11685334,""])
D.p(["Z:/UofA/PhD/Literature/motion_prediction*0*1656263273","MOTION ESTIMATION USING CONVOLUTIONAL NEURAL NETWORKS.pdf*3854751*1590854529","Towards Natural and Accurate Future Motion Prediction of Humans and Animals CVPR19.pdf*1920422*1590854506","Transformer Networks for Trajectory Forecasting ax2003.08111.pdf*1130481*1590868192",6905654,""])
D.p(["Z:/UofA/PhD/Literature/neuro_dynamic_programming*0*1656263290","Comparing neuro-dynamic programming algorithms for the vehicle routing problem with stochastic demands cor00.pdf*541254*1494183803","Neuro-Dynamic Programming An Overview 1995 Slides.pdf*343050*1494183708","Neuro-Dynamic Programming An Overview 1995.pdf*342481*1494183715",1226785,""])
D.p(["Z:/UofA/PhD/Literature/Neurosymbolic Programming*0*1656263290","Learning Differentiable Programs with Admissible Neural Heuristics nips20 2007.12101.pdf*686267*1650479763","Neurosymbolic Programming.pdf*5422402*1650469765","Task Programming Learning Data Efficient Behavior Representations cvpr21.pdf*1733550*1650480261",7842219,""])
D.p(["Z:/UofA/PhD/Literature/NLP*0*1700152364","A Generalist Agent TMLR22.pdf*7338692*1652714979","A Survey of Deep Learning Techniques for Neural Machine Translation 2002.07526.pdf*2263779*1595860533","Neural Machine Translation in Linear Time ax1610.10099.pdf*2160032*1590930534","Opinion _ Noam Chomsky_ The False Promise of ChatGPT - The New York Times (3_8_2023 9_38_45 PM).html*1773914*1678336726","Training language models to follow instructions with human feedback 2203.02155.pdf*1797405*1678337764",15333822,""])
D.p(["Z:/UofA/PhD/Literature/optical_flow*0*1656263292","Beyond Pixels Exploring New Representations and Applications for Motion Analysis phd_mit09.pdf*23837300*1540237649","Deep discrete flow accv16.pdf*8333569*1520342071","Deep End2End Voxel2Voxel Prediction ax1511 cvprw16.pdf*9041306*1520342192","DeepFlow Large Displacement Optical Flow with Deep Matching iccv13.pdf*3848135*1498860426","DeepMatching Hierarchical Deformable Dense Matching ijcv16.pdf*10247759*1520342424","Dense Optical Flow Prediction From a Static Image iccv15.pdf*2218368*1520447432","FlowNet 2.0 Evolution of Optical Flow Estimation with Deep Networks cvpr17.pdf*7544342*1590760348","FlowNet Learning Optical Flow With Convolutional Networks iccv15.pdf*16721955*1590520990","Optical Flow Estimation using a Spatial Pyramid Network ax161121.pdf*6028066*1540237650","PWC-Net CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume ax1709.02371 cvpr18.pdf*5190013*1556845229",93010813,"187*188"])
D.p(["Z:/UofA/PhD/Literature/optical_flow/evaluation*0*1656263292","A Database and Evaluation Methodology for Optical Flow iccv07.pdf*1658759*1520464846","A database and evaluation methodology for optical flow ijcv11.pdf*5148345*1518832888","A naturalistic open source movie for optical flow evaluation eccv12.pdf*3930176*1540237650",10737280,""])
D.p(["Z:/UofA/PhD/Literature/optical_flow/non_dl*0*1656263293","A Duality Based Approach for Realtime TV-L1 Optical Flow dagm07.pdf*851025*1520449619","A Filter Formulation for Computing Real Time Optical Flow ral16.pdf*1222504*1502860251","An Efficient Event-Based Optical Flow Implementation in CC++ and CUDA report2015_7.pdf*6121909*1518832888","An Improved Algorithm for TV-L1 Optical Flow sgavmn09.pdf*4320955*1520448112","EpicFlow Edge-Preserving Interpolation of Correspondences for Optical Flow ax1505 cvpr15.pdf*2870595*1526673623","Fast Optical Flow using Dense Inverse Search eccv16.pdf*1358018*1520458208","Flow Fields Dense Correspondence Fields for Highly Accurate Large Displacement Optical Flow Estimation iccv15.pdf*867751*1520458274","High accuracy optical flow estimation based on a theory for warping eccv04.pdf*295416*1520447500","Large displacement optical flow cvpr09.pdf*3877727*1498860433","Large displacement optical flow descriptor matching in variational motion estimation tpami11.pdf*3273625*1520447687","Learning to Extract Motion from Videos in Convolutional Neural Networks ax1601.pdf*6058224*1540237651","Motion Detail Preserving Optical Flow Estimation tpami12.pdf*2692684*1520447080","Motion detail preserving optical flow estimation. cvpr10.pdf*3154946*1520445713","Parallel Implementation of a Robust Optical Flow Technique techreport CTIM_1_2012.pdf*5693232*1496179335","PatchBatch a Batch Augmented Loss for Optical Flow ax1604 cvpr16.pdf*352995*1520341934","SimpleFlow A non-iterative, sublinear optical flow algorithm cgf12.pdf*9649568*1520444502","TV-L1 Optical Flow Estimation ipol13.pdf*881244*1540237652",53542418,""])
D.p(["Z:/UofA/PhD/Literature/optimization*0*1656263294","A Review on Bilevel Optimization From Classical to Evolutionary Approaches and Applications ax1705.pdf*3789392*1540237652","An overview of bilevel optimization AOR2007.pdf*483335*1540237652","Bilevel Optimization with Nonsmooth Lower Level Problems ssvm2015.pdf*684092*1537582190","ConstrainedAssignment.pdf*518499*1628086844","Evolution Strategies as a Scalable Alternative to Reinforcement Learning ax1709.pdf*277340*1508861668","Linear Programming.pdf*1643286*1537481290",7395944,""])
D.p(["Z:/UofA/PhD/Literature/outlier detection*0*1656263294","Snake Validation A PCA-Based Outlier Detection Method spl09.pdf*1502340*1634762619",1502340,""])
D.p(["Z:/UofA/PhD/Literature/perception*0*1699548763","ImVoxelNet Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection wacv22 2106.01178.pdf*26554436*1693338114","Reimagining_an_autonomous_vehicle ax2108 wayve.pdf*286816*1698962508","Robust Self-Supervised Extrinsic Self-Calibration 2308.02153 iros23.pdf*2123013*1691614861","TractorEYE Vision-based Real-time Detection for Autonomous Vehicles in Agriculture PhD Thesis 2017.pdf*8375347*1699128883",37339612,"192*193*194*195*196*197"])
D.p(["Z:/UofA/PhD/Literature/perception/fusion*0*1699212833","Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object Detection cvprw23 2205.14951.pdf*14551704*1698337288","BEVFusion A Simple and Robust LiDAR-Camera Fusion Framework nips22 2205.13790.pdf*2438324*1698334785","BEVFusion Multi-Task Multi-Sensor Fusion with Unified Bird's-Eye View Representation icra23 2205.13542.pdf*10711876*1698283921","LiDAR-as-Camera_for_End-to-End_Driving mdpi sensors Mar 2023.pdf*4216857*1699124798","TransFuser Imitation with Transformer-Based Sensor Fusion for Autonomous Driving cvpr21 pami23.pdf*54001344*1699288563","TransFusion Robust LiDAR-Camera Fusion for 3D Object Detection with Transformers cvpr22 2203.11496.pdf*6121557*1698503994",92041662,""])
D.p(["Z:/UofA/PhD/Literature/perception/lidar*0*1699123361","PointPillars Fast Encoders for Object Detection from Point Clouds cvpr19 1812.05784.pdf*5374398*1698353299",5374398,""])
D.p(["Z:/UofA/PhD/Literature/perception/multri camera*0*1698962574","BEVDet High-performance Multi-camera 3D Object Detection in Bird-Eye-View 2112.11790.pdf*500324*1698596815","BEVFormer Learning Bird's-Eye-View Representation from Multi-Camera Images via Spatiotemporal Transformers eccv22.pdf*4626609*1698620629","Lift, Splat, Shoot Encoding Images From Arbitrary Camera Rigs by Implicitly Unprojecting to 3D.eccv20 2008.05711.pdf*5266919*1698872137","M2BEV Multi-Camera Joint 3D Detection and Segmentation with Unified Birds-Eye View Representation 2204.05088.pdf*15716237*1698521734","PETR Position Embedding Transformation for Multi-View 3D Object Detection eccv22 .pdf*4264013*1698871073","PETRv2 A Unified Framework for 3D Perception from Multi-Camera Images iccv23.pdf*1051830*1699212388","TBP-Former Learning Temporal Bird's-Eye-View Pyramid for Joint Perception and Prediction in Vision-Centric Autonomous Driving cvpr23.pdf*4356269*1698854350",35782201,""])
D.p(["Z:/UofA/PhD/Literature/perception/path planning*0*1699548765","GPT-Driver Learning to Drive with GPT ax2310.01415.pdf*1586246*1699663155",1586246,""])
D.p(["Z:/UofA/PhD/Literature/perception/radar fusion*0*1698850797","A Simple Baseline for BEV Perception Without LiDAR 2206.07959v1.pdf*1192709*1698850723",1192709,""])
D.p(["Z:/UofA/PhD/Literature/perception/review*0*1698691232","3D Object Detection for Autonomous Driving A Survey 2106.10823.pdf*4200088*1698599252","Computer Vision in Self-Steering Tractors machines-10-00129.pdf*8550786*1698267224","Delving into the Devils of Bird's-eye-view Perception A Review, Evaluation and Recipe.pdf*2223200*1693605148",14974074,""])
D.p(["Z:/UofA/PhD/Literature/preprocessing*0*1656263294","Scale-space and edge detection using anisotropic diffusion tpami90.pdf*1302293*1497480776",1302293,""])