-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathfix_voc.py
154 lines (125 loc) · 4.62 KB
/
fix_voc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import os, sys, glob, re
from libs.pascal_voc_io import PascalVocReader
sys.path.append('..')
from tf_api.utilities import processArguments
def saveBoxesTXT(_type, voc_path, class_dict, out_dir=''):
if _type == 0:
_type_str = 'mAP'
else:
_type_str = 'yolo'
if not voc_path or not os.path.isdir(voc_path):
print('Folder containing the loaded boxes does not exist')
return None
files = glob.glob(os.path.join(voc_path, '*.xml'))
n_files = len(files)
if n_files == 0:
print('No loaded boxes found')
return None
def convert_to_yolo(size, box):
dw = 1. / size[0]
dh = 1. / size[1]
x = (box[0] + box[1]) / 2.0
y = (box[2] + box[3]) / 2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return x, y, w, h
def getint(fn):
basename = os.path.basename(fn)
num = re.sub("\D", "", basename)
try:
return int(num)
except:
return 0
if len(files) > 0:
files = sorted(files, key=getint)
if not out_dir:
out_dir = os.path.join(os.path.dirname(voc_path), _type_str)
if not os.path.isdir(out_dir):
os.makedirs(out_dir)
list_file = None
if _type == 1:
list_path = os.path.join(out_dir, 'list.txt')
list_file = open(list_path, 'w')
print('Loading VOC annotations from {:d} files at {:s}...'.format(n_files, voc_path))
print('Writing {} annotations to {:s}...'.format(_type_str, out_dir))
file_id = 0
n_boxes = 0
for file in files:
file_no_ext = os.path.splitext(os.path.basename(file))[0]
out_file_path = os.path.join(out_dir, '{}.txt'.format(file_no_ext))
out_file = open(out_file_path, 'w')
xml_reader = PascalVocReader(file)
shapes = xml_reader.getShapes()
img_width = xml_reader.width
img_height = xml_reader.height
for shape in shapes:
label, points, _, _, difficult, bbox_source, id_number, score, _, _ = shape
xmin, ymin = points[0]
xmax, ymax = points[2]
def clamp(x, min_value=0.0, max_value=1.0):
return max(min(x, max_value), min_value)
xmin = int(clamp(xmin, 0, img_width-1))
xmax = int(clamp(xmax, 0, img_width-1))
ymin = int(clamp(ymin, 0, img_height-1))
ymax = int(clamp(ymax, 0, img_height-1))
if _type == 0:
out_file.write('{:s} {:d} {:d} {:d} {:d}\n'.format(label, xmin, ymin, xmax, ymax))
else:
class_id = class_dict[label] + 1
bb = convert_to_yolo((xml_reader.width, xml_reader.height), [xmin, xmax, ymin, ymax])
out_file.write('{:d} {:f} {:f} {:f} {:f}\n'.format(class_id, bb[0], bb[1], bb[2], bb[3]))
if _type == 1:
list_file.write('{:s}\n'.format(xml_reader.filename))
n_boxes += 1
file_id += 1
sys.stdout.write('\rDone {:d}/{:d} files with {:d} boxes ({:d}x{:d})'.format(
file_id, n_files, n_boxes, img_width, img_height))
sys.stdout.flush()
out_file.close()
if _type == 1:
list_file.close()
sys.stdout.write('\n')
sys.stdout.flush()
return out_dir
if __name__ == '__main__':
params = {
'list_file': 'vis_list.txt',
'class_names_path': '../labelling_tool/data//predefined_classes_orig.txt',
'type': 0,
# 'file_name': 'videos/grizzly_bear_video.mp4',
'out_dir': '',
'save_dir': '',
'save_file_name': '',
'csv_file_name': '',
'map_folder': '',
'load_path': '',
'n_classes': 4,
'img_ext': 'png',
'batch_size': 1,
'show_img': 0,
'save_video': 1,
'n_frames': 0,
'codec': 'H264',
'fps': 20,
}
processArguments(sys.argv[1:], params)
list_file = params['list_file']
class_names_path = params['class_names_path']
_type = params['type']
out_dir = params['out_dir']
class_names = open(class_names_path, 'r').readlines()
class_dict = {x.strip(): i for (i, x) in enumerate(class_names)}
with open(list_file) as f:
img_paths = f.readlines()
img_paths = [x.strip() for x in img_paths]
for img_path in img_paths:
voc_path = os.path.join(img_path, 'annotations')
seq_out_dir = out_dir
if seq_out_dir:
seq_name = os.path.basename(img_path)
seq_out_dir = os.path.join(seq_out_dir, seq_name)
saveBoxesTXT(_type, voc_path, class_dict, seq_out_dir)