From 69decb6af2f6e26373a9c3e2547e54a1c7d8170e Mon Sep 17 00:00:00 2001 From: Panchadip <165953910+Panchadip-128@users.noreply.github.com> Date: Fri, 25 Oct 2024 14:04:29 +0530 Subject: [PATCH 01/18] Create drone nav files --- .../drone nav files | 1 + 1 file changed, 1 insertion(+) create mode 100644 Drone Navigation Detection using Reinforcement Learning techniques/drone nav files diff --git a/Drone Navigation Detection using Reinforcement Learning techniques/drone nav files b/Drone Navigation Detection using Reinforcement Learning techniques/drone nav files new file mode 100644 index 000000000..8b1378917 --- /dev/null +++ b/Drone Navigation Detection using Reinforcement Learning techniques/drone nav files @@ -0,0 +1 @@ + From 360a607fe50a3e0b369e9ec0ffc6945b428ea3bf Mon Sep 17 00:00:00 2001 From: Panchadip <165953910+Panchadip-128@users.noreply.github.com> Date: Fri, 25 Oct 2024 14:04:51 +0530 Subject: [PATCH 02/18] Create img files --- .../Images/img files | 1 + 1 file changed, 1 insertion(+) create mode 100644 Drone Navigation Detection using Reinforcement Learning techniques/Images/img files diff --git a/Drone Navigation Detection using Reinforcement Learning techniques/Images/img files b/Drone Navigation Detection using Reinforcement Learning techniques/Images/img files new file mode 100644 index 000000000..8b1378917 --- /dev/null +++ b/Drone Navigation Detection using Reinforcement Learning techniques/Images/img files @@ -0,0 +1 @@ + From 4b87f6427ceb7fc30096f87c4b911e0dc71ef99a Mon Sep 17 00:00:00 2001 From: Panchadip <165953910+Panchadip-128@users.noreply.github.com> Date: Fri, 25 Oct 2024 14:37:32 +0530 Subject: [PATCH 03/18] Add files via upload --- ...3D Path Finding Cost Suraface schematic.png | Bin 0 -> 145578 bytes .../Images/Drone Nav Graph.png | Bin 0 -> 37896 bytes .../Images/Drone Navigation Graph.png | Bin 0 -> 47651 bytes .../Images/Navigation Graph.png | Bin 0 -> 39639 bytes .../Images/a star graph.png | Bin 0 -> 43972 bytes .../Images/env graph.png | Bin 0 -> 39951 bytes .../Images/pathfinding_heat-map.png | Bin 0 -> 33402 bytes 7 files changed, 0 insertions(+), 0 deletions(-) create mode 100644 Drone Navigation Detection using Reinforcement Learning techniques/Images/3D Path Finding Cost Suraface schematic.png create mode 100644 Drone Navigation Detection using Reinforcement Learning techniques/Images/Drone Nav Graph.png create mode 100644 Drone Navigation Detection using Reinforcement Learning techniques/Images/Drone Navigation Graph.png create mode 100644 Drone Navigation Detection using Reinforcement Learning techniques/Images/Navigation Graph.png create mode 100644 Drone Navigation Detection using Reinforcement Learning techniques/Images/a star graph.png create mode 100644 Drone Navigation Detection using Reinforcement Learning techniques/Images/env graph.png create mode 100644 Drone Navigation Detection using Reinforcement Learning techniques/Images/pathfinding_heat-map.png diff --git a/Drone Navigation Detection using Reinforcement Learning techniques/Images/3D Path Finding Cost Suraface schematic.png b/Drone Navigation Detection using Reinforcement Learning techniques/Images/3D Path Finding Cost Suraface schematic.png new file mode 100644 index 0000000000000000000000000000000000000000..c96a19820439fbfd9b45ebc5cf558afc3327badb GIT binary patch literal 145578 zcmbrlXH-*LxCKfNNEK8%By>Tk(i2KRsS1b+ND~1;0ci@Mx6q^`2uc?fk*0tk5_(HO z>C&YJ=@3E*p}rl@IrrWB{=PLv1_K7k&R%=1Z_aPdxnhlP=`fz-I!8uE#;B*OeVdGo z!Vh>w(b52aQTUnQ2K*rRzO4f%EAQo50e+!!(!8ljM)oC%{@9Kh_?^x}*TS2OjP)7m zMLzwAA3;WT_Fhk0^A5shJqMKOs^huk@qnJ7!>3it=)go;{rk-1#{&cGJ*s>`bd5xnX*{i(g90 ze<1G4`G|fh3i2aANX(7GN~b?AWqUz?iDN)mdqL4#TgS6ls#Sl}qqw&5! zy}j`{s=nRNN3ESgD8IP4yJw6xo$l>_AGHZ6dw2UX@pwsHirofbx5>UJ$d@$fT_V~+>l8@O3o2NM_ZEzH5v1V#`j`UzxLIbtdR6#ap`eRD3F{}qTo z&^RhO`sx4|FK_zIECq`NP+d6siuvc};4|D@+lVx5w_j^;Xvn_dCgLmDRMlraS>9!2 zZ1kCmTY{UklJ5t~cjx==3$cEoN?P;Gd%iX@F6+TqPF;NY!th*fz-G$PW__RkD4tRN zM$lx9n^y}pJG#gA6hAfonmjD*$DH2L4<|MIh9}29m{j3c$+^DMeqICD*w_r>AsNFQ zw5(N=lu{f?&;F-zZg$rAs#5Awe_FG5*eJCCVb!eZz74V4?EV&KC!+ue(<}kPP-tms zjbud*oYprTsroH&&xlC{Z^vDoYd#9oS;C0sRY&nMb1i{iRFMlrDK7X1FZp5#!CQp& zJ@Cz`h0Xe{nu1c>qp!AAj^e{vI?4xE9q0UsQQt45g2vw_sNqwR%#+S*$3?h^wMcYM zDzQHj@MAI9^xf`YXV-o!5i6*ZXdVt~(HCOHe^6}Do8GUf9rtOakMd>TlFDbsnct;A zKtm3P^1AVhJ&UU)6|Z`Gd#6N)DBl|91)r?h)>i7E`8c&M-FXGEM2z-AcYaJ&9FyDF z9&WHV9Yo&bJlL~6d%jlY$e3dh^7+XT;E{A3RxE`E_ZP*Ihs)~BGrkO3) zV`>C*WIU*!-jh`RlWD&$zs)oEcy6ybj8axX;So$5x%`dUMyUI=nUWdZ7<5#+jYPBZ zMR?$Ui{>I)Q=zN3PH72ZCT{IaW=UG(CsqG-_NqyU=#zv?FgyLhx z%>ND@l<-)$dG}>?DKkaWkQ$JfeL+hv?nn=*^ zLfqnbGweVQ7 zC``+gq0_RW=@8jliWy47}m$nE=A&B^5v z4M&p0*Ao<{GgalN?L#a1iD;e5PMm{#!`{gHbVERu?b+dI6$v=1GHm=Gk8og1AR-O^gPG?FX z<@*6=z!FWD7ZP{TeGfZ5NIDxEXp-Z ziW6SmCuU8DziJXrkDAU@kBW_g!~;4mnvJmJG|`LgjFeeck?J*W zicsEoxVkP1VBb1(FfO7L^0FpAYJF^L2Ed2$TGZmzabMH|?|z7etucSM=5Muw7Uqeg zq4Hh!jirVn2(N`!?gq?RYm=Coff72}Iy>F6&>D7CJ|%>lDH1kT>~wYZhw@IVH=>(P z*P3eZa_k@1uvmwYnUl>@$j<(B+MX8wq49_zQ}FxjsOpLDO~jw>HH+8Sl1m{8 zQM(1r!v^9F0?l{^_$LVc~k+gxqxqSC8LI1+6G67X>kpe+@b+HK82 zp>-jmE7U@bj|s|%fWOd#cG)+>6BJQ%j3aGfzLd<`1=99E`4G2o=(&{HH^?X3x91Al zUc$}UjRXobp+X@zP{@NF!Z*>}^YKjoun zb73d^oPF{JOiXI;euMwl2KLd*7Z5wNTelU;Z+vh2X+)nJJh8jj8;vixpYj|JXP6$`*NNDfluv2jW%}@{!F;ju+PsDM|w|U(J=c z?%%A-cV{GL(_&csS`k!s++lkhX|1abqjOvM?XbTILA}_XbqHKEX(UT8CVMRt6Ss#JWJbi2Pitu@l%W+*}pP9?#k6kG|mThbObqK=BnAiyhVV1xW@h_ZI-@ zqXqLj?qm^IGm#b&bBQ;uDJkjk55TQ*&Zo*_+x#UFNlp(P9E4oZnl<(Hlm5D5Y|}Zg zfPHf*w%iM=p}vunM$~x=8!C%wrj-=|zt<`|zgf70MtQinx@~;M9Y;(bp`%VD`CzCU zU3>wqBOF#ou<{P4DnC5VflJ_xywLDzlo$8yboqDP{vaYOKQIdGz_|To@52>D{W4o) zTy2rDk&U~%`v^;nYe+~_gQ(kCf_q@wek5eGrh#l)dtwjRvV^=NNkYTf>CuMYs!E1v zl8@ZGasTXGfc8#}kB2F~`o3_n;q-8=Dkvyue;Um&Ede#CrnJ$V02xUHIiqv0@(1-2 zw%={5=NmD~)bgpJ?pVD%l|gRQDdaLC9y7*v*L?lzXawDEUw1$5bazlcBlbD{#CGl% zu)p`m<1TP{WyrtVsKc8|HtvwVOijr4Ef>FES-tWNUcDzD7vx8+?0ZTdxC*rGa!xCu zLXV>;Ip?{m$)h1&`vi2VO_nS~FvB+3Z^ZDyxlJ8V^rMI!tnxK^Tqj3_JHeq%>js62 z-Yk|Z<>(H>HM4V4^wZ~|g5E70%JnyCOYUtWW{c}rK4c-SG*DJTtuN(}Mf65ITVb48 z3Q`F?(q8fATemU5&vtb(fL_e)2PeJ^G6hp*J#E> zHoe`tZwjbSYkC!kse=3Bd|J6XFL9+s?zdU)SvKuiUN6%X7G-s3B8E?~8C|iFwa1oa zyz=Rki(!vHGWI=@JgahJnikqrXJ^p+oGUdEK68lzio}`^b|R{A4xaANr^9(2LTQZ5 zlKG58Mn^?t`)MEHFnUAaJUTXNf=CTtRBqwc;Z%0!#zyXZcVwJ4#M5Hvu!=mpkkMH_ zG&kQJhZose;^JWSmC}DmG}wvMjSPFWx$f^%wx0br`!BzU*w-% z(FU(uiAjgD@Yq~TOZV1)&`looCjE1DSh&B&od!FZOL`B|AeAWyn1l!ARFjtxLTpto`F;Z@OA_Z)uu^;}XbY zQ!#i!aow*Kom|m$GTHQX&bhUHFfIq0B`zox`>T%WqNYt;(7GC6Zv^Lzds$LnrT z<@F=eQMjfh96i>P!Xh7+2+na0WYmoMD1i~YkW?z00!FD0nHQ=hI}TErU+nuf5Yev; zv4xMYv9US+8f_^s0eV&~Q%a+YSjvZQvnnf#Wu|3f?#lStB?~er8#7N?g2sU#N_nxAH_*o2<6N{r{cO0GJC*FGvEuJomoUV){t)ul;U<1 z$0OSk1`c~od%?j)WQ%=oE_0=pn4g6EIQQ#Op3Ve?a@WF-Ra+5owka`ec3b^r#EOH3 zruDKnt>{9eXCa6!mP96eDyfK))ujL=QUM+MA6~F?GB4EO2acY4#_>#wmMJ$C-kQL1 zNtcr9WxtGroH`Y4ojn9JC&e(BcZ|tHi>htY)u)uQwmfVmNIdR8*P!4Sy?ptL$ph5* zboeOTL^o%d8O=)&6v|=NwS?Fh!m&tZi~g{s;$&%lSiTb?9~{*}_SiR;Uv=uQdG}{8{o#m-4z!E;|%Ak|5oT1UE#n zx4roCmT%}+MQ*dWZuhP7i+f}op79E9bmY5iSY9{)$A~8l+H|+uY@Q9JGzDtJEZa}K zmIiCPtAN=MZD2Ty;cET!wR;9kU)`5Q@td^jx7BDbg=!3BBy%4gNAMr#!!j9We=T@V zoRi|8DdcVNl4kqHztIyMFw|mTe)m=8E>7Rvl}LtEO)!$M+U~ z9nv_|u6!@4{7id7x|9H!9? zzWAXb0?8h}__iZxS=1rNOY7c>D7K$j`t{ocGRs`)OLu$ecugNsJH!V&d|_OKpbS*; zK}<2Cqxt2CE{y!Un`7eFk79%KH?8t&M)aa0+5#g2<|BdCBA|0yH6Ts%%9wXzP@D7^ z2M62{E1Cj)Fe}H6_{-Yo7J9tZA%f7?FLg_K$Hx1vrwb%X52&MW25fwGpJf(O~LW* z%c!>T0Or~B`nf3XE5%XQylztGeQDxa!oUQn^eyfB)3KUk5Q!;Mm|1D?`^GAA+0M5V zw3M>i^#a_<{L?$o$@BG^g;&M63E{&7e7kLKwZ9)7rJNodbg4hZTzr=k2-T%? zpsoS5J3kEpy@+JNZi|6w5Dd~Dh-(LGG?aw~valN&?a#f6q;(@h zT{Nu5oHO6yUgsCs(sIx+7DoF<{(K0r&L#!G8cE_BL+pK_>oGZdp0 zn>k?dO79Z3C~0Y$oDA6G8&jdWQVuk2Km2qrVH1D4LReWG_Vmf2hSlsd1#WdrHUh1= z)p`CY&Q3AB8?+Y9#-{gl`4*!X9xkV^G$*9f&a1S1dDR37Usp{n)ZSUXVJsR@0t&sRcZN& z2t%8-mU2QjZ5ZM zElQ!!inE6Z@mJBxvN}yJ4dBYayncDdw>imXt6kye)P~ju^LFV*-!;bDIixnuy>V?a zMYsQGDHvywuIjF9#3*+%2u2Pdm5Ng+1EZ6R6qDk%ym7F`zAzJ@ z_h}TP?7W_^Z`f>r_N`MVVAaytQZ>dQn);Fu+Q2+5t!jVfUK6Kj7kEQB9>+QJUNSVm zD>uN;o8d7tE%z*x@PP+g?Ps7_ci9tQ>H&3G|ygj^4<`x+doHWxgx ze+VmoDP3?>}6S2xl|BP#p54O3B|Kk+& z|Nn9d{`bcM(B<*ZaE1da;eS>H(!&V#&!0cCJxI;5cxr<)bW42F@~;sQ%|&UNeXD3= zCqp^=@zYyKIOOr;$6s`$&4~{_{pU}}-;jNs78XYSIy2LQssb}GJuMl>F7*n~XYWmw zEdA?lXfdYf3ORUq^s_?aL!6wP?xLVfzd%7Z)fc{6S39R{Z0Y~!eMEDSv+=}gW6>#s zfRZg}@aoDJ2rT*!a-Xog{BdtS$D@_*qVVp2w>C`s+OX5#=kVxg5n$>Wo12@TME>E1^49G*_&wtgO!HIC=-9`gf9tX%8%vz&=6?s@K$UQ^f?PR9n6OGbR7q zo$>nDd3i#0&m#3@*XqQ}TPm2R6?0~{_);{y{k&oOPFenCG#`f!4!-fI1&%dV!Wasc z%gZG#8UyRBty z8Ew~txzxKq0mu)$Vxi-FEiy3pZc1l3ick`NK zW;In(`a3|g4Oj#^;leYk)deE*ymnAg&8b`NanA7V@W;lz$iZWlvEDRFLzo{@4~&7s8bBQ_HnD{d-qh;lPa~Wn0Zwk+G?@G;c=4wX43M1 z+l-5YrM4lU$ZPvgcWngOEyEayo+&XPxC;;V1ElEUKvGkSrJt9VmIgN+bVyVSFI7#iLVGmN zh$W0yb zc-}Eqbg?S$r1a-nn?XjC{wryx#*ABSl~3zhF8o*4ogc8QI50z*+OqyoU4GETBRKe* z@p5<0E**=Eg35GbP`&k)mU)VMQ~2Dew#3B5C9f^AY31H34)WxpuK9E5Ilu;UjRh~^ zR)12{@+teVsNWk)UDBPle4oc`+4mm^6@-P!tqq%Aw>ccF)8iKUT;%j*25LhOiR=i) ziPKA(+r^nBrhh@&07|tFk=PgVlpX##ltKVBE(opn*|I#-g~;YaBH zn7vQ>=1;{L*CthVupe|WoCkI(0I;~^_PeDPagQR;MFYJEhc^rNuQ(E|UO`7|y{aV%&Z zA={~=hCg37|3U%_xIrnuMIuk|2a>rkcjs3GqC|>cl4ugk*5TgTO}zwCMID)h{Ie8`BM*wb_Y*v**};5t_Dv3|@emeM~1 zbB={ilcmv|OGGBnHLAfV_Cx{_u}zETW9FL?UGEOKH!!FMWn=ef2$bTVe97`@@pQ^e z(W;#Nj&~mPzqRs&s!5km8mi00%UZXkmNMy{H*uRP_tP3O2u^$?Gwz!=ou?(KaV2Pjc)u?` zpC{cRuH%*08;^c(b)OJsq}&50C)Yh&=|s(q`1Y*oeafn9YPx@!*JfN{oW;HrDP3urg2yzx=5?a!g*1nbCuZV!FzYGmkO9LIhxLu*S%!i^EIb z*UDeIR5aWx|2BV)*mri^$EnA#OF8JX)j;TG4mr>=*jE~zoRo0)>#@XcxQEnd2OqAm z#%ep99PZ(Nx(Ayk@+b>zBc@W@4Wt_GOcQ&3yA5pctOhi^m;i{?w~@bSRnRiPznNjX zeh?{)V5xtmaKh6#S2FPA&QK}Zi$L&5?-Cv zU9oMnx>t7JQP0lTx7Lc3`N$=pbb4U~EADxK#mz{NEVnXIkD(7Y>r|Dn|Ff}aXyUH! zCv9XnF{?|g7^?XC_|N{%(ltak)NiH79w7HN@6y{IO^jkm*?_&)t2U^yRL$05?3yNR zdOluVh#B8C&j4=*G4Uk#g`Do-I~5xTq8^jtD8!1hL#efkJiNSLo4gT!w{a#2Jf%4% z$dxc5n4&v&Mpuk`9TB0mAdqrvjQWym#%)@#&y~Sh#o(7v^ki!!{Z&nS;WBnof@2Sz zgP4z1C}KLH45N>P?;GRzTBD!d4%guzWHcSWXB;Obj>;If0k6&dYn21t5xY?tZLKVe2%NSdB8ObgvTB-!@op^Q?t7jD9o_iXnZ%n62|AZJD^kc z)a3K`S5qpN^gLz&(p~S)Hw|q?eF`|plXeC8qxIvSqjU+giAbI+)uGD`t9L6Zk*q;~ zo{jt4;P39wQz|?)ai;^TluFPMwXV|SGVd8 z#^M|`kHVFkY_EVlNW5-iUu->+uvZcC`|0b}Pv-CnY~L4YN+bRfTd8le6eUiLCmZgQ zzrJ8+zhs6-a=I3Vj~cbCS~m7PnT+Q1M?Wo|7fxZ4(q8tasUrY|^(Msy2xwZFiFzqh z(`7TRcRqc0h0qXf(_^rIoO`0G^utWL94yYlUc+P}WhOIwRGJ3kQhP$^+$sO`6C~vB z+4YdP9H%BOrAl<%*W(C|@VLsS;NXH>>~pr)B{dgSyxg--|G2gQ;}ih zYm0n%p4mCl2D!$Ga!4R>kjZl$Gw){eC94H7e-I2hRL}FH@*eQoS>Oo=FmC>;Xz)x+n@)fyqu22m3#U6cNjKtJ3Mhs> z#pRyYS)Es?WZ5N*cNRod=^7nJx6MNuRC_|-HO)F>!B+VO&}^;#xjGTOL2U1G!|uc( z5YCg9<0uJ+ZHMc;`dznis~+MN^3FC&K&x*fa`g9vo8E879;qsBNYiQj=;RL2yXIn^ z07wF0nHF29T`87no*IRuPlMy}1rA9Ouf?KbEmS9Ym(M9%a~5f{r1`6p6oWh==Ff!R z-y5HMwRLi1!(hy4XV+nytx{npjAgHX9BL!G7E{;L`!i^=;L<-D!~jaaXmia=rw~rpUmku563Z%|xc=HxgTbPKetb6-4s?NM10#bX zajNVFMgd8Jh@A_6pD`HMt+@_1NWOd>Le(qfCC_U&?7jNcl$p;Mes0BdzUW=jcVkhV zV;-L42+jl_yX(T2%#^OtSoHxj&oUfP6zxCwLC~tIMM_qF=sC)9P%D;yi^$u~G#FjW zT-ilVG&RZ_`J0Cj|0o^ z!8ebuM2uhz4$}^PViy-+b2hyJlU*rlBvt1!=^Gdqg_a^&%dj}-n z^cBS^UCZb*ICNIk0jdPgA2|}+`6!3LpHJ zVy*<5b?e>Nj5zqaIlC^z1LJxm(L+-$qW`p8Fn*SCUqW`d4 z*wm_|smT^d(ue{{xmQ@XiE50vnGGqAbkSV!=dGfM8g|gTK7(UtOWNF2H53htbxgj$ zfy84l56=?{-Itt`H)j2Qz&9P9H=75n78hXw%KeSho2Sb4K}|`m>Cu^B67->{b@2SS zQ(ihLO!soFyuRGEa?J2=9qtUZ(r5=;tTse^PBYm2#`NMDkXNhpUb;n!oMCr|j554? zm34Ymx1h>f*Tb=cmuBbDT&rdD-plR5hlGq9p%;k=2btMy2f9 zzJfXO7K?`aSpG8;teZO~YZet&-aqB{ z`IcLOcwxwwmyc*Aa`l3}m-`_BGmP8{=Dhv@qs{yfREHu#@yq3v&|sgw^5-7TUis+Z zfUba9Q0xOALxCN;!r8h@`k?nwtphGQ=ajWt-lAVgT8op^1mOrCAldv9kQeWFM9sI7 z6_A;Di0Pl|Xv#m#G@Z=Uip^@ISk-EfreU!_1x-hIPdFvq^Nkki#J)oh8N~tVsn1tr zDEIxsLA2vf#|40#^FxlY3v}1KHWfMewW;^l#|25`>*}0lp2mk55!_jv?eW94xroo? z&oBTlcQ2$}7T@jt?K|U!Vf!9`A+G4=ZxYa3;yd55!ha}XtElNOp-G}6FE8)@-rG3I z)Htceu~mg`Ee8si4;~}hbGaz{A>D{sBmSaAQ}BuRbUUxA4;l#LIlo!DRl*HPPO~iJ zB0gA`OZlTR%pQc<8%U^~39df|Qo`tqo{V}G$n*5|vnb|-9FhiP#&4Fp{4 zq%G>95>CILFEB&F7<)F-Vy6IB6*o#|rM;mitIe_BrGBYR`rGob3@^iY%4x7nm3oSS z#ZM)4m$_#bBQD6iG9Si`)HeR|pZOd2O*d4@ zxMCqdm=35A4hOPJXU^VRq(&mkD_oSpD{|WJc)M$ncMB06xNgs1<-mHIuHP=XW)$^D z-s{(0vvIl&qmV<>0Bfk%vU0a!%v>A&=+;a$&ndLVE!- zN4Y2HS5l~ULaFxd|gaWqhR~o2f>RS z;cGGr?E#?eR&!~4VQtIRuMi)^p)pcS84l(V(`EGhSP6fuC8>-s`bfzdvpuhxKr_Km zm=cn|T+IBuu>8kFv3hh=y~&gf#g=d=6VpX<*+;Y~P@KkQJ5O_olWyW{2i`($yHrLE ztht;Ato!g|91Qw6Favi*h@sU7ko6`#L>FRkl0q?hqBDZmkv#Un(Q2)QT}xI;GTpx5 zTl%>N{JfoCfkxCG79MY@79CSiB32a@3;942#&USr4jl(b>3uKZ5WeF-K$`o@7AL{V zrQ^lLduIid;E$xFdfq523DED*iE&?uN!S4${;&RzYCNf91^YIE9`DW1_eX;njSf2m z+CEtm`)pR9#n8aFqvyz%)szF}RZ+uP+NeY$j z{7~s3e@8A$Ui@%`b^uPtYJ(H+(btS+E@0A~sawi*acV}b{@|pJmlfWnp!;Pk+buP- z@GB;t`LPSb#jVH8!a>6(W}E(c{GCQ?>p){7B`xcC!O#=QDC>+JY&@jxRI`!B=H5Lb z$|kNCf;hPYnHxHM`;%;>Zz=VC3#VdLIl&kO3pixvgq#u;uJyc4%zFAAlPK{^he!yR z2TFz|=IC`_U?;0=jRmB-`#Djqf+y{26OUZjjOXl1gvKdg9|v!OYqx+%ekG&oDA(Ud z$s$G`6VJ+(mdvlgImav59y%Itf#Y<_-nQcSdQSsVSiLP$d6(W#jzt|BH_SVzlPVjq z>-PKmuRj~c%y*X)7*>~rgHWFa3eIF?In-LA97<9HZoA)AhdHA1b#*}SOjQ%IOxibJ zo*)%`Tlu9|?APUJXq{y1wkeW0kCtTq(DhJsQuv2?pA(79?kWUv7%bP4g1dOLkUcXz zDS|Q`Eq%G37N<-Yrb`R&;6b|1;9u2_S*dtY(QQA$Qfeq*W(4z+1HZ$Y17?yGjkdp-rTe<&Pp z8|Qjy5dg>??FFgX%z^hX(^QC5i^fr*?2EhY!kL!AocphG-E~M zL}|FKt7KpKBvdm3yQ0}}vd$k3gji@RO-5SjvEA|f<25&b7(Vey;v2p3$o9-Xh0tjB zWA;bTEPp>}m@XCc_~8#zqv??CINLPfz)NRp`OL}hnXh&2h{nuP*4#*;%18_lL#CYM zb1j2seGYoTDn0SS?LMFXGK5=O3kZq(aN%-U>i_B=n=!r0cKl-VaWtEq^bR z#PZW{bOFW6bK$)&wG=jO=I!zULr0hV_JQW1vlKe{v}Q{7h)2mrna*^vVUz$!9{h-!r#a5i%#~$xkY`#%l;m;f{$ih8J z$t9T}+9oNqby#JXg z{Z{ngs)KP;;p9gRq3s&apl2d0g2_+1b%Xi8UyvqW;+u*KSoIx$L|qB`f|O1Te_Mw< zHtLo6&O0BK8-8pe8LY_rO-cnh16O*S@sBCV-z*I;{z&MczdM%gG)E30+kf)#k_D~t z4KbFx#$vEmP)F~nm|*wy9y3YJ{Bkkva!V#m7L%1_Y%U?a(%ZvmQzyVf;{fsg<|oa- zV%;qARM;LLJ%-*1p1(YaKz9uv$tl7ebU9YTiP}! zPf~mvO@-XgRH9c&E@?Ckg%<7g4Pk`XO5pXM1h5NsP!pfY*-KNdlS}6i&M8p9W1VpC z#rfIObOFE8)v|YH39?#vXAqNh*}0D(Dp0si)>~<1M4!o1Sdo^n-t@El1m#^=zKy?e z$R2*>>~Ph12A7TvbMRVy%x(k|uC$}yEj>B?`R+T=74zFFb?Lyjs(^4`#Wty`;t>R&!n~dRCs>S!W_*iakxp zO`GBxrWaZHSO*_w{;pLMuITpSVMjik2{O2At(;k+4xCpjap+xZ(XvU_qpk3V{#w%u zYQTS@8Yqa>)Ymm)K6;}Ru4qIu475_3HM~Byv>QKsu$M{yBz~vmD{Y^+OpABds`Ncu zyY@B4>F**>QKAzZPPv-nf6}#7#=@Y#A|a6a@;4D zHytI~A5+RG!J@%z(AE4KJZZOsrM~e^vi9>K4IpfLOx>kH#V2}465}mB9e(%L<~0}d z^U!&_H5q@f+nko_*H}M>oJvHGFxM>@KSY~+LaF{>oZuT5d>^`@)=yqumc_lyGpN_E zjE~4WSqS1ITK^Kq0eF_QMfC70Ec>16Vsh=oJy7VLRC|gVpQ@U4LMJlv4n&Fu)pN;BoSVL-@ zgjkcHpLfJzevC40kGI(Pg0U<*;EGGNn;v# zuqx6eD-ydHu@9&|AgUY|ZXq45H8B@-?$aNJ0oT44?02he?S-INkTu2X^hjWSHGlJ( zT;|c=O|A%RSm=j7aLwoLXG<4B{8dw+`K}FAeNy(+Cg3d^BfdJD!_UDe-(S*E!|!hk z8Sx*<@oT8UN9ZaBqLA(~KdMVud1zJ7Wh)GrF{!ycGY-M)Jf_s;n;aqI6`i0VMh9<7 zt0oIFIlakZo8C5NB;jl_rIsdLuDFFd1Ka3;wq?ymGiCcZqr@j%ux?<(sOL*Tl#`#= zxE5Hi*h6Lf`=^t^k2ZMp_jf}QpNI#jw}?Be8U>|cO>AM$raTZk2Pm3bYh@LHoOk+H z@u!Rm^WQ=VeYB!%-=lSz+iN)@hx|PwdGm9*$j3rKztd&|JQ}DQCrm4aThD(<=32$% zM0wNgh_6J@`gu>T^4g?!Idss=Ulw<=F;;Z9-qEua9RA%>kOHK5+fX#~eFaoWgkVnY z@@N?cdwcXnK7OdGYX-&TCnBj`xxv5CQpM~)uH*5VSuT?Npe!3L3J3xjpp5Q89zXaYP|wS|z5~i1E1-^L)*2TUQZXYK4V7mnl9ib* zS!4&|G5e1hk|TigBIuQ(yr*m$zBy3EI9K3<9^hCu#O zfS;b3y<)wfb6*U(^i3`5e5&un&5DJj_{FnSh_m4KtR@*b zhc52Fb_2P9Yt3 zFAoirIPZMf1z@4bt_9sibd|HJ35WRKsXS$3N}yQU@yTR24sR=<(Mr%(p7rNY<-18U zU@t=rxu2{4+6Z@HN^ZtkUi{d(?S}T(LuO6^p>8Dk_+Z0DzYaFTMp140`CCu zPuIHV?e6W3Q?nu{(#MV>pZv02>@k=^$?7zuQI(9EG7Gn{I5w?q&Gw4{cU4dvCUaYB zR0Qz_vUEl0V?g+s@F^*q3FHA8I@d!f4mmsq}MG`U;RUHlHMw#*bo62Q?<+L#v-h9j_;*3=w|3x|bkuA( z{d!d--4;ANd8RFzd2%BN5xJYVO#SpPp|dU z5T{kkihS!Y*?jEmTYc0Qyq2=unrKDrh6&gSv4yfMyl{>| z&_+W6{zv7P0#72A2ozBe{#T4p7d@{c3(RX@=~O=0C+j#ybsE^umH(~|AbOQ_<@oUk$vn(n0gg(vJFuk1e9 z=MaYd2B24DO=RP!S!Wz843B2chVNYl0{6HC9+|1? z8cjrrw3aTeYj$o`2ku3=DhNiu_3hrroTZ)~2&SUrv1*>qKH!(h7e%DdDh|E%nG5Sx zeXoGSr=zER1f1(j|7NVy(f)=)ZIYF`2+N+>WQWG2z*)a%TzMF7e#3!6_m<$<8a(kv zMU$2{z;mOcsB@{(KKbK9Q^kxwRWAA>rf9FTe!pG8P4wl^R5zB;k{$|@8-EusGMZ&y z7%y6j4qM*vy0)L(J_Ljoek2l|$KKTS#zUZYS=4GATkJ7P&8od>K`7C*9;ZMfcEP_Q zKq>qX9A=otRhM%o4-uQ&_|~_d?VYCvUdbFyPQIV2_G~DSho5PW9H0nXOn|s3nyXqt z=nYsVyr3SnXS0A_5Oaq5a>%2&#C+8?h^q!GPQvL4=z?YIR5XLZja1p!6PKgyeGP1n zHDli&dCz!f_Gz4AFoISF&bbk>%+s(=y5jTMS~c5Vb93Pb=LenYA-eoRx}pvVw7;Z2 z(SyB)^}4EWTm;wZA1fW$vLlrTmyB-$z}s)Eq5M|JEJT0gKR<(o^kxcO{O|!*h3xG^v~ff|B8Y?;}n}nhU@h zjrO9_e}fMjymH6W3-7+XMcuT&Ef>{!NL%a`)pU+uP&f=2aYf=fyIBv);tKat_WyIeJ*v2!@5&x@paH_p%?EVcy8oM;L*)lIv=tj{J)yVcbaj4LGXaZzzjnvQ4ZY>>c?wJ5_K(1tG|t^QD( z=`r6w+5$(K*ke^m2f&@4vVSK zZNk`0D1AVb7lUn?sk-tMCH$AdJW+g18B@JTo^nh?F4%KXz=BJ=j!vm-+=DrLUQFGO~-80xNc9@5MiHog$oc4Fg&J$F!*qO5R&nwL$BSztvGRE_8v3mA zIN8K@Iz0P1%>}kkprkIqCkEEd^1#*iHG@S+7O7qJ!lh%qJVs?KrHAFTW@r)cCxxk_ zwr1t)BdC!_Bgpv<7#FO{s5H`1RXm&|Nxmo~!JWF{d5#+Dk#ttcRF!?5Hr$ zHflR1fAJswW$-ndw+J2q!VghoFe)%tXU>K*%hU`=ptb1`++c64Xm3@zp0L+Bt6(eq z&4#_eXDBk3D`0q)o5@iTj+uG1K)GkyEbA=Y>Z?%|0zGEXP6H8#J!0g*d_@~AKE{l^ z*}J#m9`x2)vf<3+_EiIyedvQfiKzsf8E#8|nBcV7!8k!bktSfxbs3}x`MB^i5kt1r zw))Ezynz|A8;2*{NmDZaO(j#?G9Qw1uOc#Mf(cDxb%2o#{&0kf3OYFa&Dj^pe@oP_ z943;zEPNJZFIsr)M2{`{nkzr#|2BEn@e}V?;@qS3*$UplG$<;2?CrN!x;*z$5^nc(olClQ_W z-eATh@zCD6(a9@(xwcv_zR*(Hz|J#1M`4v7zlXPvR47xzWK|v%qixicA@ol?hX=y& zL8)Sp^5MKHT`2)HP<%z^klBy*LQ4W^oN487U5$8&F>q=PTT?m!So=VyYeOuHl`NBr zTjTyq!CHGhE+C>NWaV1Je`kDI%)to@#2K9 zso(^dq2#|8|9Cpnp!DNkymmHfxY+lebX?>=2?KU~twhG?vg;@3?~A0w4Ad6{-si(6 z1MLC5J+j>F)dl>XPe1O*)9Jd6URnKGfyV=Xe!YpwQg0J``dRbq&P`&h=_ns-(&(n! zJS*geFh-+rC)sGFipIi6v*T>qp6f1Q+aIen3DC#tu+i+03FuWLX7STFLFKT@ghvKw z2T2|R1Xzzddk+REg&jeMuReuv4)v#AHv#qp?C! znh?6$p^UZi`u!-U62kQ5)C*cy1e9?|H-anhseo%d!-HNc1|@^;NBv(KCBvFx&2C|y z_u5huB4lJ1}f;K88R}1gk^tFb-B{vr192WE%~`EqbdqnjD5I zVzAC)3p|(jQ|J-L-&_4-=t%X)4HcaP>>xS!-Pt|~vkp2Hon>&!RS&*N;)5-smQ_=! zekrn{a!G7d&g4Ptj=UcQVV4N9pPqvk{(yXgxP)E#qb_gM>SogQ+0J!1gY_L{S~Ph7UHQox3{kY;IL;VgT#Bi4CTBm6Ysu&J-)f4G z&DoiyN_qaLZ~}>rv#IE%=)hR>W4lE0fVdgcAMLdoIdYk~8JRJ!giA1AP?$l#LUYDq z^#tw^rcunhql^#UR(XFtN%-?_gcl%|@PV8u2ZS2sS7#&XQiDG`8@32l-P4OD)t>aZ z18kRVaIy31oe@vku&8&hsFUXV#*wJ)x?JM4Y$Yi8m}&XUvzNrL2IyJsTs?)fO-KESnVB4a z2A+*HeWi-uEc}b4VH+ExwMTXsuuNS)Iz{NFo`>-Tlin0!h(ILm8USf&6GeA)Wwj#Wbqauor+|}nX}&Rt3}N|r?B{CXD{OHmlI$2WG$w2 zLw|pVZN2PFM_(Uc%%tLFslJHf4>P*bx5w^G>I{qYQ}HC;Nq0_~v94;R6 z#R?6FoNpG-l<@}7FloNO4nolPPTKx(S)`M6;0w?TG``d8t-x<@YQY6+fkP(GoS%|O zAm2>9Y@hJnJ=L&NznMX-ul46>DqW=pme$O|VNT|X#%ksHSuT3p$`~_a;IGH!R_zN# zd{hfD^J7GtWYK`hk}n7g{^8W%cNs>4RR%X#4jm}f5sZtJ9xz}G;C=zTJ}-LlOxfQH z=KE;>Fz&LAvgzMB)L0y22KW#pm5pB;*Vq@TJ4_n~9}zCIUjJD9X}5?k?Urt&MoRozl8O9c{6N#oxdZ2pTw_MxgTvBe|fc~QZh}Yu0)qBovZh&K6Iyr zkjXBs0GY8YKZ5UFQA!0d_{=T(%%95x;faPet9d_sHE|dcsp&R{#0DY|xctG>G!V?2+Pi)u&x3mD#491WmV=sUr4Neu4E=#hO0*iAF!TK4+a0kfqSz=8XLk zTdMf}tDhMCxj@8Gl#4I`#~h@+fr(x833rf}LS=E}LbuPtV&u^*8)iDhnSH+6W?xg; z;`x)eK^w#AA%yY$cUs!DWZqY|Jmf8>ydrYcC~DOJ|}T&Cr4T<2$ch;3+-cr zZzEaA*3wQdLk+veOAa?J276&W_gUy zxV0(Ii^ipZXDQh7LR=@X6NUc%ImiwKF4PCo$-D-cqvqjJo#!K>jY(EE?hI2yK|6Gr zR(gd&m$+R$_lfyMLtMeLA$ZA)K!=W_Sw?4>jAQIQsIn0A47=|WqNB=-=2<4ts8>C! zC$1Ak_0YG}Tq|_7t2fuc46L1jE4T=#4=e!Fuk&ZyyLfiRDwWs$Ov~Kp!N-i1vJ?Lh zRu=5^SxMXa`c054N-qTIjqY&>J^S+{Dg>={Is4*6`i;_t=>s_3Gvbs%<*>t z#`P))sHD2jUqTRNA*}sEZeIvpe?D9w{<7y$iFFf6y`2}*<+&V%!;*Kt$v0vK+O^f`id0l^dGi5=W%Fs#(lbH4%Za@_B#J^rPQ2 zpN{b!$K}u94Ku;wfjU7vWy6AiM$+OEuP{LH2lTMWn#IVtVo_=&oUOUf zC;=~6`|oLGx`M;?4@1(9uBSxUO)n)%9YGXDNlipZs@Y+@g#gzkO*zY@qPVJYdR#5- z->emlZH@|IM0JC&Nk;m}*?joVUfP6QUI@{(L@m5z zdHBIy%$?lBx7a^!Z%A3ItDI&4?xMf~V82USKIQo1Y0ovf!hlX?Q}q#;0+=}6Whq;- zv7AY6Me8t?5+bI232kzXoj z`O!Br5@pKeYK1Yo5lc`0jRSPJb_@>Tgy{FnP)c~A0e7%HQ%qv96E0pnwKho)MEF`` zWQKT_412to#Kt}oX7l#NVmz&RlcvteN|L_76haEITH*HB2Skli+`6>i8&yzQ)&jyQ zc1&{&lfUue((YXOcGXUWxI>ub2l2y4J(-Q%?EF4ny=FD(cvQklRVP@NpX9&`(FcZ5 zpPJV}r^@JPVFuh0dut_}$Whp4X5eaDYC;G%+TqDUN5F*DVAY}$WlK=Vj^_;WmR{704N@I{QOwG6r0aEPuI%CqvtQ+ zAO>nt@#A7t_N$x1EEspaj40!eP(4@E7U4QIoQdvPqs9F$3k)3TQT>tL+3wzkA5?Y< zjjl*GITZ)(qSv$r&s6#Wt_dasi7w1DzNc&|3gc1vczZT!0q-c4OmfHhsM5qYSWt6% zD@JZc`kZ7kdY_}ND*k9YR=klkcbN1Ev#i5bmbQVEgF*@4wDmd8&C^r}F0e%1hQO2o zot9SNfg;s)Ysvt824993E1`f`VE*>!0j#mer9V_Rk&(Zzml$R%;x3ddUQ)QaA_Ra@ zER5w|-kc>HIPtXG>Co=`U3-M}Yvy`7am;(VIcx?(u}g0T+;r^k zu`rvE3p%I{gJBVaES}b;{R&)yem^?H1DDtb@&Be16~{BgV3@0dipYM-FmJqGA(RtXubvuWi>g(LVdUOUi|Z)Cu~Pbxmu%} zWEuSHcsA@CHk0rt&J%iW$&hn5{ zScBcWrow{1ql24fcVj_FGu7!ioouQ_4gJDJEdif%_P2$U*cE2&q{W;sGUo6;gX$~O zhWqL#=31;0w5S1*U|p%stvv#qEw(@(ET_|)>)hOgAvmW`+uW|rpz%c#>&Q#Dp=VlC)x^eW`@7XG= zC0DG(fAI=UlKL=V5i%qhuI(tNT+UlT>=4|6jh!B32_t}K9G@tshBP*#sU<#jv8dC> zcgAnZ+P+doZ68N3FlmD6aLqng3SoFX<22Hkj3KzpZP?Gtbapc<5R7p1Xn+2#y1~J~ zqi1DVdt_iOsQue(Z`4aH@y7%)QoyH6XTxHs>*pE406#9^uoI>tSL3@a0l+--03uXy zGCjv`GtHa>tSz}wC*yLMW&?oDA`VosPTC?>B{8{mIceUjnN~2UjnoidRtDP{dpbS% zn~`45Or34Z$fLjoDtcOCo66Ql7x)=$pXc=2v$1%KpVG`;2<3lfvlA~UN`A>{D+JEj z>b>OAWem@nZ4x5-Q}>{ma@JI688D!;6aD%PiJwyuNwE4c+Iu9lYa~;SZ%41%7|6E3 zrTo6kfG@mSaY>=?lUlp|;50{5ylY8rPIcitS6V7q;4{x>KhHd>VZuSW@kELB?nE9# zcyun;32;gmo=TA<;rQmX-3Y zu0b3oqY$c_DDVN6p{&BRKAREi@?NtgdMMak%l!fYl2?*~h+Ny5u!EfenGS{4n6)&%QQ58j-PZE(Ko~u8cyjE5!`Qngs zbmUKe1qkWktb1Sg$G|f!yN?9vi@Q>eIV<&|^g#;h6lQR&aaiom+2UUhl*6qw)^}YS zW5YDA{3mH$DS4AGW4GmGF6Muhq6*TVz1|9mZF^WH{j?^?$=KW>AUgVRuBL(bH%}c} zP>toC{tG#v>J-hyy93p3t=#cF?=YD+6I(NNlbb90+hF{d1l$V1U*6^c;@S}Gw5=Rf zPfJF@TU%cDoN6fz=hNOGE)yezoN}%v_{Wp8wT9aGpb&{C|FupsKE}bWJrZU-fx3dw@vDJGTaePrB@;E*%8Z-h!bQ#2~;1FSnkra<`7g}_vLBR|>#$QG;_ zs1s;W{fbPx!F9;k*GI2VzIrrggMl{jB_TYU8=h(m4jZmkeOpgIRp#w5`e}|eBK3y{ zo_7>@j33J|Ll_G1%@f0}5H@EYKejrl<&+j#<(8L^(TZzqYyNkaQ%;Z1ADr5zgH@+~ z`ifZ%3L8cBD19GK*U^(iE#Fpd`c?Pl=%;4 zA3&BtgRf2k{F_~sb5(=VvAk-Sh_qqCKOd7BZ(dulh3uEbexsTQjHN6WRZL(u>YW_Z znSBmoLVG)wbHAh9z>qA+H9Wpq|KI60>2FUtpdC11oUP}Pt7s-!yi~*;_^wg8b%J_! zYL;qk*L&?3Y^ZzO{nbGcAIOZ#Ht5R2DTgZ@ZeWe>SqY<7)8i_17LqL;EhWUS9Q6D6 zFc-N5b8E9vXPbzp9N*r|B&)?m_QtE0U@^94XFz@VI_o4C9r2# z8L~2@KJM~2l!S>BR^5Qbajayd!LQ8(fsU?Ytd`<=#?V2Ikr;I zq4Dx~zd7O-L>(aL`c?J_BShHuMzJSEikDr~`!%7Ut}fHeuX-+8fw4g& zNVwzS*q9zG&kR#x#%wy1o|qq+JEY|y`x|##cgIw3hr7Pcorw1H9garc#%Wr$gx;t- zkhCj1Dn4!uy>Mcd-7AC}|tl-EK!T)xTyoMdG7|_=d&NzU7M4E_IibQbKpkVfJau9CEH( zstD!YO!Deyj6 z(riYLhU1TgK}glfyGq_m{QxB90{f4k*dLK^f4#zAT=TuFUsky?{9Nb&vg1f|=)i<2 zLfiWhYaaw2=xBn|8haBPE94bTjRJF)oga`OgDJ}U?g&F#7dJHA8DSVLZTGBW2|9)Y zI$^ESSp=#cI|9T;fjZumZ`^N$6)Rb*1b^7Ox9vru1@Q1Gc-}iRaNtCcs}d26F0ybj z<3cm6C9gY!y zae3M7c!x&x_6Q&;1+V&TTc|Pq!^r-r=r$u^BKR@oASI@+FYRY*Mg`?=x$c4_(+o+Y z?vvz(TD#WzbHb-An-@<_!HUowLa>0*AM7Ujd$(Bm!6C|F&9?w8JTW(Wy7>@LH>P=| zr++*m=AbI)@ss@m+03@d&_3|-M2(I)Aa%0@+1FA$&a%0p{6GjQM-Ji-!YRIV?S84^ zalrRq<4BT5bRPQ=V=$OG%9i3_p~&zT%K>wRi+bq#J1&}c&!L{^AZiu045hi53(+h- zAJ!i(oWEr=#8%j{q+c}{O;8t6KBa2a^Ar-st)OJ-O_9%6vJ4zr6wy4zIVUUY17)$w zH_a8XF9lXN=Y&||eWGQM3~V@^eWI?43>A* z;PBd~eR@w16=WB3e`Z+3wB~Y9>jh!YNO(mT12U51rYU>Vz z>hAvhdsE;@5`C;`$as%;xn3bFzw8@xhkY%h1t7tZiFER97GC~sle-fxy+qvCS( z6l-p?;H^B07pzmO>Rb=N`|>@I;oP-VjAlhc?gt5PPn=z^)&di+>nFNR$(71w-S+oLmXEpEAA6NB=|vAc?+q2uW)^Z|_fa5g=E98~W42;8 z{W`uW`;_nM105^NFn;S$)!ZIMhM^fvy(6{h_ncg9y}NNfVD8`{cL`YV2J7EP{V&51 zTw!F(*8xmQQ<}oN!E3i5KmQI8KyS zo%@7LjOlS=Ue)HBHb9Mm@yO>)Q;wVOyxD*7RSkWc|B^PUF=#LPmV`xfhTA)eahLR? z5sQd!Cuqt$aSOD-c_epP9oDM~?7;Y2$EWvAVc`b>>U>C{xLGC34>iZ!I3q|M<= zk`xeZGI2zDMqPAUyXZ;l& zL+EP4eFc$_AgEfHWLT^fuZ|N&ToL1|(K|7R)e3$Cb#eZh1w}YkX4`rzw66X`pD$w{ zE0H_O!wv{ZaLN93Vp&SIxwqKGBklw5V>@6D-6>8uU|zqyQ=`iltiz4c)N0>Z6YSXt zA(kvQ7^dts28ja230Qp7LM}I-D$|>)qJv^{jzLn9EK-{{v0O~%DP07_!cei!3*(dbL2BWE-r==be1nE>D@Z<1=e&oSl}!(r&Ub<26HK;OO~lcmhYb;!%C~K0{<2dTvW_JNN$gv6J!v1AZTo`b zoub3NBNNr>HuXB_En!?8eBl2HUjIw`(M5P|yx~yxn$I}i!{#7`=M<=uJm)c(yhB9%gDb{A%-t zea7AZ2~@h`6p#_QUi% z3QWGg);OSinNdcS3kM#IHOEL>syDh={Wd*Gb{?~C9~Dg(C+6HfsV~X%*R-Q5VrS2s zp?Qt7sD2x#`r_k7k%ZA%9Tv$Z+V(GUy5)#{DZ!hV$uvIu=3n+LMLwt591o6`eM}l% z_6RV{)yg8};DId;DF`Hc%m_<#6<2MED{2)q5zyYv_g|XdCgMH}zVcSlTypz(`V!a| zCG8x*5JTK1FC%Avl^GwRNrszuNBdEQ^=SOv3DttSr2s|461AfcWUYzsm&{~}=Og5r zdA3n0Z@bJaq4Nty*X58iIqW}7(469jSR+<#j!;&|pKUL$#zEY=MU;u$B|ALcIfJwOdcAzNmxo zP4e?rEUFRmqmo8A?$y#WH>%utWRc4IP*Q|l*I8QhbLrxKzi3JqutV@x=C>u?7qs!I z9U?XsdOOKd3%91$GNOa1Dj(>H)Q$f4cLMJgL-GKv``c zhaADjxu#0&eIK4qaKXvVv765L*bUn$60oh+#YKw~U2ko?3MZ#5Wf{j+Oqe}h3D&q} zoC=I(FJyP%F2PJ<2epwXzAqh?#`P~x+fgGD1vf?H{Y{=D&`OJ5)%cuIjT!0=KmssJ zP{(rE7seOV`rtwIffa3L<>x)QGqO_SLg$geR&exd5~1rJgtEYg>d4qLX=mQDx*UoZ zqfr;HI@qqBssA#S!J_?Tv|B|8(ce>X4`k9=>s;fKsD7y~y(e4cYkm}kSM18ogODyF zok+uti`)@F5Yuqed5p!OIQWClNxgY}Sf1*FaW;SKM$@9B?n&FSer8m_8ma^23^pYivHt*e zG^u$x&TP_G$+rBy${MYqN=sGeiHg6ZdaS<}r`ngXtSaCKKM-YkS>C!*uFFLQZ-3h^ zK9g?cjY@bo^_bbR&cS<&9SW2K0>r%DQoPxm<%Syge+)Uo!5>c3=#SL8)(E7g_ZT3i zQ6waOSqw#4iN`sLHFpScdh6-E^`#0{p;iWGF{eJGvX%6Bu12i?fFpA#zM!6r=&H+> zS-!DNc~L}{R?vXwGdQSK!DujR6v^y7b+btJI?(NT=Iln*R??(ksoL7B0@o&pd+Vak zyW8Rtt}te`K}lDZDP0Nikkret_`^*Mn~@vKCH(&QOuBtm-%qjJf^CMk-r~zL<(^j$ zF6i-pt?W*D*7ms08>^~fA$+}q(PXewu9urtf3ShK42vpDo24(6D>Zg)i~5v`(M>(S z(yct9(L=?_{b>lCIiCKg)uIDxYhqw1nBj99&0Mt5UV-&2WdI{yubfiKw$p@EWVuW{ zPF*DDFI!R}KzLE!;3KOyS_0h4f&Sl3guse1u0^)(`R91DT1E(e$vWGp zhL}Gl#)ZJUG>v%r_jO!>I|QwsYwGe7uXc!PqyC8M09?Y_iRS78*k)*(IlX%}gInW5 zUXySB#Im&-ca8qBb;4_SL0X@B<~lEAKbu}+JJA+O5&=PksvAq1tg`(o#|Gn;scfg?AYi5)6r=ti`2755l~ z0vFSzD7V~n`n?KoZYOKE)R%meR=rt`-;BzXjNAG+$acUTQcF>dlHXpagq)1MY;S7f zeQs`G@Fu+^HxP3CY-zB`d89<1M|8*%LsuetFtX*3jBWk~G8g4)o9O`VQ|-EhLC{k>v#_tfChZAJ*8$B!MEs1o?*0kO#yd-h0x~IxxK|&@kES=ICiswfRkk*T78!AV^ zY4!oL7IKXry_3bdE?Vj`(<07FEI%S&Ud*`u0PAhrdvi)f+jd!o6hum>CqfmdReGt} zBh(pKL%TK3j$JhTslS;r&~GLUp^F}HrwGl4M7Q#nX5BzMOfJTf_i*7+!)z`B@h8p` zAyL~eM*A(>U;L%wM^$|J#_MnvYrB>DHIn^DD`XKL(%v-9`_4PNXU3v21SFDV}*Zj>VF1QoVyNqARRCaxPF^pH;`L~CFuY#b*jiQSJ6-FCy1$gH# zY{P@W$A7-%?pjB&h3ok z6AMSo%D4S5p5+uJ9B*61>qn<)?scMggJq*BDTg_lxQk?BVM%mdy4+7ef&>8Vc$eRX zdYPNEbkNS&$MdxDEJ_kSXbSSLA^7)Fk8c~^U-(uVe|u9m`mTaXOGbEsy&waUl+8lh z+)e$7X~aZeNj!bwx4V?$v%-&)3dDMPi<^VtOIw5Y`))q)@}ddv4$P~T39s`(J6%2U zDczOX57`dS+Pv1-i3+rWPCx4T>lV`f+yaN>wW_C$TiM{ubWNh|25>w{sD=*^9(Wrhyz5-{?4oCiwNh4^WwsN(6Ba#}yxI3IL zzJbYDehDwJ@ACQJ#Sv8X!V?daLVhdjTrKZ3ATQ;vxL45vL$V!O&- zNLaijKLT&S03P^ju|;ks96KkOXKAlxu1x?vO4wbbl3eK=R$X||+5RHQbTA`W*WdhN zKoX_*c7WNeG4HDc3NvN{%JHf$(`T-9aTDUR(=|hlxjp1`+nkL0ep+%b>OMOhwcN)3 zlP#kk^ho-6$4n1+6F0;OO41rCdSyM|g6-r#OUqPo$~w}8FCRcdw_04k5Mf7VH2XVx z4w>ER(CD%lM}{O#idPLXnw@ELFaFVMgq6uexs)=OSF}d48DfN5-!~y4OL~b=A|yfD zTqAHqo^9vyu8|`dn8mU74phK8{;tBf{?~A)^)hwGv^!5gbcHTdVA>ld)Y*;b7zBCY zKF!V=O9D}++2E1!?8bs+(2g&Z>MbqF4=e0gDjD{I?JYAC7ss#{1$9>YpLS_iA$F%XR)G>TS~S46S#R4|lOnwuskvlM=e z!%gIoA1fld>+tbl0A2KxT?OGEE#t9RZ{m%de|`bC`v-?B)q)DFK`U|E@^ zzV@0lGNl}BYLsuaf1@*=wKi|cqG$O^t?QH;;ikkFz9y&dG1axM!eKna5GEU z((@02kxtsFz@RTwh$okR=a(6q>`GhKm2XR1h))o)i{PW*2a)W*Pe&WCM&i&~I9uT- za_sWQ`UjH&>?Vu4xWkR+*=oFnB?F6chw%7}+oqmsVQWfmt}E7pEfpuOF*#;ZtW!v6 zzKldWs#m?Cz8i1Lv}O}3{#>@l3BtYJUiz53nHuadeO>PPp#)Y0(@0DYKe^Dol(+v+ zrhpRDqnFKHp2DALFIH{lP0wdm17iG@WgX%HQ$i+>?oGzPHlk)vXC@qee|I}fza|?D zS4pc2!TE*7u$?9q@Prd_P+a%*4SDWJ3GBrNO+GiWKRIp4iTPbxQvRmg6RLAW@Oc4y zXj69Ky<4C+JdTV|#p>j%P&{fdj1bBtl=kch-%5!49Dg}R+yoj)4JKkUpo>#n>Ml{) zx6n70^TtkEi@d0g5Iy||Y!q|6rWhbgQqV}TwYtuGL;iPr-o)>j###;e79;?DehE1x z@$)q-Dttc{erHs(C<>*=Us*s7_c{D_n>^z8IyEsA-f{B8SVN7=+F-6{!PE1c_<)n2 z6>nnBUKZ`=4(|iQ&&$U%Hf5{83dRL}eohmR!{cU+<15Y{N%JdD-beW{Ga84(N2{L^ z%D`qv@3m>AhgOfeG(sCqUr!Jjq@k7R`9iI~e5<{&ksYxnZ4S%z8azx2;tMQYL&JN# z@=^tC-S}vvw1nJ=%}j{|vkm1aCae77a&|L~LMr;n#$NGx`t;4yTz@-cX#7gud2Mv| z^La;yP#Xm^HkLrV-{>3DVHB)ARD3xs@9~+Date0E$wR!>H@Y3bGeg=OgF^q0iOWc= z6jN(`^o~ghddfgN=jzmyoRJIE?+}V&&xRiMZ%f6J5)x7tB9|Aegmf!Phb04jNE;L52!4485EBG=S9ni`Rv2^TGGDDkHMA zOp5fvstLZo;e~gXUx(aVxI<2ec()=-R)(xU^jw{%FC(5o4zbzmFFBH*4?ykMBwKZ- z?i}q`ZKlR&OzT6X*~9>#s-83d`H9zRXEUT}B!+D6tDjUkHH?@9|Mg#*3)9$wA3Nvt z_Sr1Ul@?V8!39)$KvqSLmRJdNIX%>#kH2IlXTiaLQv0H1A|K*?Ymn7o4wa+4xxqx0 zxk;%$Q3-h+t1ibCj*R3tbSQoJj#6iEYjyr*pa}%J=aYT)?LZo(FPY_A**pX|B&EU_ zC&-OX(**>SQT6#;dxSi<*IKX|XfIv5mtJ+C)-NAwU1vgJP) zIjF99S>bAkn8-gw?YoNg1~*O-Myn^c^mxAjU8CDf))fnCiaesa--h9p4RX{(959rT zfE_>hi)L)9+tw2?5x^jmKBz%UbNy)AawIA@0^>B(9G+pCMRZdu$&vMWCwRw}T#~b$7>|TE6{hF*GDWuDMIq$h0ho!7YdxEu(V=t&y(MRN$y30B9rh8t@O7GW zx6^A8@$~sl7k|H!p19}R!a3s7@R9SC;Nq^h2b#WI@Ytsdo7v0C9s%c|9HE3C1j!*X zY+Kg|dp7MsMuIIbl8qpidmNAqkYW@c^4a|_JPlbw2~lMoa#|lyW_^lG>Zf1Jr35Rw zNEM(U>ECHzOES6^zzSy=V{=L{61hg1Z3c4gLhDE)EuirkrlbJ^VlRMy#ahK51&_PM zEmwqO^uVxH4fZjOom%DZ1pRk! z$_N+d4vPKA-893tW%10~c4?&U^cr_WQ-!M0qIa_#%%CO`%FDu%#v#g**Y}NiDXrN( zdlZ^#QP#9w+F|W_TNb;KQfg8884t_}Khbfi0TmE0*2CKCwIn%^3@55KNL3NC zEb&&*=zs1o9ZCi|S;`exr@W*y*(wuBf-`R2nx)8FUY}3GGD}aKC5cb=9KttW(A{&_ zu_*F^G9=TtV&R#avZDEdK0sV&%jh9dC&ab%gbDM1-)4!Wp5(qe$*B#Ym)JW+n(^ zbWx#w^lqzZfrI2f@9d9mSOeri$$PhTzBWy!A=8WcRIl?hyEy?KAZ=;sjkf zGX8w>1!!YoQN%3|FKoIe0Cv?f3N@(lz6l zHQ%q<#M-36x&ycas5!u3do~RoEt~z>CO?h7mJjOtuV11fk$%Cx!Gd3vm(^r|vNt0a zJ0)p=sG{>$HLv{D9-KX@*r+z0I5DsN^W5zT+XLGil&Tr_3s!+JZm~(kh1@|1l}vp~ zVot0Xi7VamwHxkclTBYsWgiFTxhWT#TDk7M#VJ&RnQv2Xb$~}Pi@+A;L2`m)!E;VZ zB=i6y-B4Y?(pP`Tea4gJq{GCr zlK|X>8fWM~b!xW3Pa1P67i0@E+>#nec3EDRx!;!Oc9&)?c@C{RSAoYKn+h5zFi5%A z<%`u5yFXw_e;%YFOvNFqB`K$UhE^Yxt~Yuze~Dy3p=k{ukECli4U6fRdG{Xn9ItOp zCwYjQ9DS-_g?^tS*J65HTbiaFv0eD8a~5+q?g_s_=u!%78EK(o>lklZ-eN~z0$8Gj zUJ|887cp?o9f80Z7293*8*d>$CNQ4V0;wpz|u68Vw{X)2qpVwI<7^hKt~ z#xuNy9-*e!xYzMwJUyZ5FDOQ`8dPmm8r3epF!AIYj1>D?-Uz%wTH09i(>{>Li$}DS z8fO-3`42L*#NoiOM7xJoMC9H^g--O)4=N$hEz1Q(WX6+9C0O_G7j@t7OYa(eQplO# z%iDzt@A9hP_hDaO&t6pFKDjFv%pq>L7H{k)`VXt7q>LkE-q`Mvb`5#)7O$N9DMrpa zr*H-Dc)FqRRfraxd3s4(%eh`pWq66cU(BD6H(#sc1$f`FwM-V1`YSu&d*0J*9@WBBS`&q3taxU?YXwp&jqt6-hF0q*GgAc8J^zT`W0d7P8sgW_3hlA5m zvoS3Cf@#@|yI6G;Z*`ZEBiGMe40)=;CUgA8o6K(_AO6qRJ9mSLrS?Y7<{b*!j zZLi!R01JCXjP^L7n3u0tA65v$&q?lQ57e_kG((Tpc4LkozZ_r)q%z~79|lsAU2MB* zMyIa#t8dFI?L0rgt*+A7Y?s!`N*lFI1P2&`{tb&q(X!) ze=TT${!Tuz52TbtW*vZJpwG*kqOk}Cqe7v+BF*15)XS~RMGLFXE{>MvLv*^MZfMOh6tu0O(WCOE^=2(Hif z=awM6__32B`ZvtR%b%w<+6s!5+&i12F62Q;s;)gm!gBC@McqWEI?fa#q}qE~Y{oSc zi_BAPGl7?giJWSh@s-zM2M^=~RCOHhFl%kJ8*kwaTsZdW+C*bBH2HU-JJ@GlWXe*> zy&QzMjqtO7GjpJW!qONX+xkQ}>Ot7`-`#QB86tItko3bOghk+~fZlsXpm+m~cCmUR4 zREnNF16n8wUraHNI9^GW2}#1KhO%FIL~dHq3PNSpr`*yzUf1!s=WO)MPx#@L#P_UdVgMN$( zm#R5`8VUX*7)!9r9n9{-zb3GJKTWe_pm79Y5he5pp|;t>gzq?_Ggm_1ut2&zuniE) zQPW>0Qd@?!74-+a2?C!|QycH~hGr5h@EpL0%FL3#6zlw=lp1X>yWP}vc*s7;e)ivs zX{158ebRmtzx2x?yoL24bw|`yDHv35_ySz76ZnYor>ZbVs*2?g$kn_DNqBS_75*qL zZvSn}U3*?v?ApazW-Skp8lBDSo5s%ccK&;-eCSYbx_HRMT9WKQw*5}N!MU`eQ~3C zcD(LBowBL-pg`G78QP@*IRgUcxz%K~e1`fX>#n1A$WsL?aG6av5%`S>ol(ap9G0Oa z>DH4}Ymh+hr~y=`!Rs;|-1BYqwlPl>pqXRlg|I@xJ6E1)^7l*)_y!j_`BK;0mkOFW zVd@w4Y^7WoJlPR3jnW?F040^KH?O0E^-p)e{6QjG(C?qiOlO(sIf19Q1&1 zBfbXgu`D`dn2jb|rS#}`EC|H)R7>32l2eZiuLaq`R0=HBv0e|yT}QCU^?AP0z*a?1 zN8>c}1q=tXm*TPYmRp(=2Pbvb-0Wp@%(pyCR=h9!wxv{%dRZWO>z zSY^%0esW+SQZ)3B?Qt{6GstSm+PT9Le0gU0ei(0m&n2;aqXVtaumC83NAUo$9SXE!`Hir@ud483AV zCfWD(0mBcW{BI9xnOSlvH{y4Gv3g1q-R_*fl^LiKLc=HBKC>s!{MhUC72ys7t_ZcU z+j}NCRFm>$yu{h%eXCw8v?Tjd9Y=8-9=9qT7=Uj-2!g#)-SG3zd&3)EGy7jHV1np( z`=3ZTq4>=$h(2e!s}~{JDZ=pJ!w7$Yr<>^(ts?*b0gFL&zCwgt685d+WQ6M~$)l`| z+TZhrLwQLGnBzpDhaoh1wQ25c7 z$d7s|St-nWl8Z5vGv!x8jvnaSCi}y~xijU1FkfFZE&IpYC73?W4B*N<8HJ6ChoU0= z(drYWNGff}aa2aIqc8CH9j; z<&s?*2-H$>dapJ7Qo{5FN(4^_o6?eJh*88dGFu;SAM2OZ zBL{r(;(5VJ(SAepHV=oSQ%;piJQ*XDIZhI(1rn<=0Z}B(cwIR(Vu;?EIigosKhhSX z@qio(*DjZ*Q2gS^X8G~{)v{&$sP8M6iv>m$su<2~o`rm!+nw`sw!GReW9 zqE|T@L0|a=)z5y}k46UVfE}m=XkV{fvUL#qMzU24HipRvE6LfEdE2&a*1?i5o8`zQ zzjY+90YFEo_l}N7aQq~A7=JuF%y^j@GxNasmkKSHAKs@*f_9}nN#bS@K<=1v)ze_0 zEjh|*OX`U-VfIK}A@F!AQ9g6w)`M%MKUVlgxW&Mj85v8aWo3U#dgN>~ko{ZK63n*9 z!Ej23;@r$3Ez+proeh@ykYSGjM^uc_95(mF*NTY&wK(|(k}rAY0UND-RxEJZ;PrMSuMVLkgwQD-7)YL<qZdx4<(dAtw5CrJ{Ca+%HG7g>RU4}Vqs`Mnc1%plSoApa&oU!` zxeum+nZC&&A?6qqxG{jNtQt8WH}6|7Pai#)J6j)M>@cR0cP4TeQu0q(wad6CcZx+v z5IiQjJn;ZeH>8i$6?AShqF!}#wLv>@R9o-o%O$pl)#OaT@j?@2!TX2&;e5f<2kAqP zlhX%rE2Izk4&No8-jTdI1D%6W);u}#sCZuv`BHFg-2;wU0}1!cDo}dNe#^aw4wyoO zu-c#vX-f#63O_lA^*Ynhz9^+FA+Y3sK=LqTkodW_zfq7(f6M;0G8hk6d=p+C1!6!r~TuHJ!y1Q z(~~zH=mYMLEy50=tI^X;#&JF%m)K_}C~yMOstE0peo)9};n+E3x{*m<=yL|S_YDsQ z9|s-A!Fyu#7;F?$AtAQez%`k*GE+s7FG6 z(OCRXqc9i=r(&e(+){xc6W@pEAOv{sa1kRoehN3l0%6nKgIa^Oqz!e29b^fD$IOWK zU?9~i$)g>Wh;qyYWQRHt-se3eUPDra4zS^PSZ+PAPM#jxSM^6}@rbZ=*34*w?Uv|e z14R z6NOVOxHg?kET6`wlj&?490BoLA)x>nIQ2mCXisK25L=Wno<#^AgM@n1CXhS+N0HYX zD6^70$~Y6~Vy;)!^x|pO&~{6ENTek+Rlh`Hx%5Yaw*HNTMS*TfOa^5vlCo`{GW8pZM&zKG zSS{}8lw&YPh9LQ^XUYMSJ@hPwa;AwhaYvLuBN)8*l0H4^ z2}<%Pm-FOJ+Shs}dHJBB2b^*D>MrfoDd-vp%Pud(loEzlcLjZZjMj)%ymEZd% zn_T}}-};u#9emGw-XrgO-}~gMtFE&A<*~;ev*m+mmV$;Rc^GFUcpSV}rJ#+E7YfCp z?7bLpO&XaHC9hnA_&!46SLf!#OY+KDrCTm22c(v|Gl(Iz5Fan;LEur?DDZkDc@R7f z`h6ynM;~KcAgt6CBgFo9^f7fS27R${`Q?!<^4P$x+?m<{qLVU2uRGKwp`al_fkJYj z+DxCHB1d9LNttm}&tS1aG?kSWStuPXX=x3#$$^Ou8BJsx%8Q3jazV03;*o$vlh22k zsRLo#1LI?|tg}m&L8j`6=xMliHj37PCa^PJ2Ok5Nz5FSMhX%7y;xQ zO1qvtc?@0#WIm7^+L}$AsS8AwJ(%d@Vhu?ula>vmN96iF&&qg>ym(%)p>Q-Al-^*k zA**3CIA->6;TK~A;jN>s63>mLdIzg+S#Z*tT_(MOW8`o&A<+iQ#akHYl8G^q$>@|9 zFCT-3?Cdp!YN?Um0^-W2dYp+D&lY*oH}XjG_8!=bZc#R|FXvdiSp{_M|eULJKNgu8CtIxG8p z<_EYgvQEgB@j!$O?tvE%&*Hn^{ccM>OF_U~ym6+!IZ$K_v<`YO(_kn3M&qGC3W;fR zJ+2GEp^7Pz!Nq9AZ;$#NRjD;B*tLB(N%tUONVW6lXz%zNuY6*xN z?shx|5Ogo7E1%QW$P(T=`npsc2#?6k2iD5>cR!swQy=IKwaEFsof7QaW(LXhB#39! zW)f$~vx6gb8>XEOjP_P(k&}|g%UJ7}j7wOO(ikL_vY(zkL5>W?Wi&c_Nd45_h4Kd% zT`F%n<4l{YS8JNbszk;No(?=8l>%cFGKJ@m1Ko&jX5xvLgL~@)Q}ur}2p?s^@S>wj zHN4FLh&XllfY0H z>QzX2{RGOBoP)J%*V>sX8%;vqX7gOqwv?0d)-&?UM_t+C0oOaTF*eg=5>P6*KKtT5 z)VCvdrhdRm(~aX12_!Eu0{+6j3`$7isgP_P3pW(O11+ZPXSJLldxpj(J=!4)(#GHi z8skCY3xXYTa3m~~@wr3k2PVelx{d4Pw(VObma3m^NGeUJ)T2TkFoyPuE3U8`Gc)nT zAToa0n-8yw9~<8m1L|Js`qw+uPBn`MZ#p1P5V?E;%m027JZ#cE_uM15-FBP&=5PL{ z+<4=Sa{cw!TTkJ4zx!Rg(zaAIOz$92Gz8=h1`P@sXexknktUP|Axd4c49P*6=q#~X z(0f%wQ7H&(;i zI3~&QR_RW5OGlvoR(j{-xXeK?3;Mm;NFJd{-T0Oq3ls<;KHTxu9>|4~Qa`{w@ZRCoA_T#Vnb0((rx2lT1d<0R z9}@$VKFiVhpYSdF9^uI=M@doh^&^L5G)nll8o_` zkVKL#a$vHtwjBX&hR7WsTp|PEsF7nc0W`8a9!W@iJR}|QF6j!?UydlC-6>oDXj~G> z!pAuEJ2){eckS9CKisrl#^Ob8kK;2`uT~q3RrE6BmYhKJG?Q_j#DOs+kBW2H3Z1mG zDKq*VPaj6RT-~ZVuNL*MH_(>!NjYti&ZcEJIU>)Ft&|)3ekwmbdW)=?SZmw3D^%O( zpjV6J(T+q9bukCB&4dQ03-%a0T`C%aPdhg%Zs6nlZ3QMr!OCDi-uuARUzWWIz&zyz59|dleQj#3l_9 zh<8eNu(FG!N&zcskCP=b&MM|2$p-Z!bbI&iUGk&N8)VeTb)%7Uzk%^(94p}?uNF@q z2l|ZvA%vu$Fv%mVOT+@NABM9O(&x2B^BJ@QM=5r|{8GkJq2l7*Cl1Cfjm45cwXYGNl!W+#(407c8tW-3F zm1Z#IAB94{pFfc4JV*|S`Fzf7P)SZLp#w$-P$fVzvnn}4Ak-UzTWpR2?N-Th`T@u+ zs{yGivm`ut%#`p3lnWHq%Ax(TaqNi18f0bXSTZh0!XZQSmPk0Z)DVR>yCq2@p*_$h z3o>0YIQc?v7DOl#O-p>j5WQHZET|)*XEc$tWJ8vOrb^t4P(6Bg?%XanY}q77%~(zs zNm9y%j`w2paJ7Ij#wfEWLnrM_V0jM-WTidjM+c%4(1RFMyng5j?1H8P&4hZcf3-nd z6hrc&>8R|B?vtlSpOFU)xqEQ*&pu%ANYVx zJHYcy+g^I1R2+xxABAdGw&Bi6(8Ifo(CTXdEk6vpwB(1RyNsYJ5#2jJf zpy}`Kwia2uBq$TDlM>4&Obu(J?jV_+*>+hLUn)BW{9B;YW5)0AUU;#*>GU(@q@G@B z^=Se#8wejUmWTl0d1z#)A&2Pcf$l}`V%)I}9K7cojsSEEdW8ui#BsiYEo}%XY9z=z zc}`_h5=lpFNOmYOB)g+~WP5mr98DaRr1@+ngaRRX$1%SyFIsqo^tM!I+p?L!B0W}g z|Ih#YkG%G^udUiPYJQ_(rtsx@@|ck^J0l;1_v}Fj(Wxhb2dF0p$|rvYSqiuY^<|cd zawZgU_St7!f?E#31M11E7f=@J3b`W;1KHCMjh_S$OeA9RaQ_ZD7^&UruTs$!XqRv# zZ6Am~I+2pj$O7py1O)O|@90RiNqekqPJ#!>S7VEk!GW|aO!Y{o)UJ+r@j|H!w)vDm%DcEkVA%e6r1N)3hHUhmkaa)DLRl8JpD|p$$x^lKm zL81fbQtx8G`3AL7YGWC1u}n-xQ)99}dO)5TTPe34y+eL*_ zBFU8WkH@8Ra*^}|I_sL~5mrv70*1KdP80xoo|VOYN0YKB)oTfEEounCT$WiRF;f=5 z5l$xMhnqLZ&D*!g;mL`4zZjz&pwpNXqASrK=u5mgtls4_qC${8Ce1hv_#cmtl09@y zJ?O(~fw~5Q0lPwWA~hi!CN|1VeYeQ}9{i5n-hZcTkL-{{wlEzT3w)E5 z-&~6~ngPf`EFG7<$$fH5|84T0`@beP_T3~KCpXDtx;R<4=?uXRxw7{P=?Zn`&ejgp z4O;?m6gZMshrp}Da(NaRFw4Rv&p>U2&O)(pl8>++6*zNC*WZWM=~-Inf^JibAjI^Qfa$+a!a&RmISL84(gRIS!l>=9^ZQ1Lt7~0LAt!h)$-Tp~rO(}E)>#R1 zTT4$K_oROzv*h5BUr9)1x+it`RX(m0O(tc--w<<>yC#H=K(s0Ni>Tvc-}X;edIi&htR{M$}kB< zFQcpU8N7b!rD`CP&B&4X5qV-{h1}G4tK59_HhFsTSs4fo%1C!UxL?5b>dIRBv5{rHq3G#c4b8w|=ES~7d{;NcWY$HeHOipUdKN?Sm?@GU zg7=c&vF{&sXZ2g9W+9YQ6@E2AKePP}xrPixlq)1Jzpj)|%jgFP6Fz6ay z4GF6M$7gx5EU-|bv9t}(&ICT2h@>Ss(ITD6F6pQPrHc_rM-5quPwf*|4v>UcA}wPR zX-Q3lq$gR~ee`+*-O`$Bmx%(NQR@e&-$*PbPaHZR-`}uaHVqE=z8Hh?q&jLoL)(B? zyn9~4hnG+754u>xyO2Kg7KD#T3*lZ!A3Gk@n|*?`@mR5S6C32N!F%NA19!_KBafQ@ z*UO&hUc2>4I#9lBb%Z+Pw9eDy#EuheUS2(bzQDG?9U9q-2O7KdIY4U2gJAG5Xo#Wf z2AB*yKMj2~fKU}$W)()l(hyvfjV@_NKr5+?YvIWw8J0d~M$COtqVzR0uKc?4zh8aN zH3lMKxnuiQIXD`Y$XGxYWqRs@1kD9nh3C2QgotE{{+c>J6UbkijASG^*&-du4(Y6M z9Tyv-WV&4co?yPszPQ56DBq58DlkSyXX2eng^~sa!R`u&||9F6+IdrcbxX2b=<11D9|l zuf||7Fi;>k(EKe8EVK(Q z5~;%40*~G#9=*wsA$pxPBYJr8xPK}!6;AdO@wCWzBp|Jk4nrgtm{#(4LbM>zA#p=a z$D_4*Y+NLjlzaE?mK(QhvP7?x1uL^*CX&ZhpFBG9nCy(~l5jdKnF{Qq z$N+cTranMhJ5OE>;2l(S0t17Y4wLkqmwC#CMuJ-9yg@-$Y??qCKk#9>GJLAAGCXyX|q7G#dmUA449Do za?dXL>DJAL=pFqP`7ITd9`E%It^aJgXEyLVNFNRfq7W?FU~wGw3ojq(C^#&LR_LQQ zv2*Bo>>PHl+?+ms$u0r?u?g8aepDVEFfwvrjofhXNx5(E2^*3fPFDVT+)G-g_QhKe zs;^D8u{n@D=gF%Pv;!CbtgK|voO8}Oc4m~{A^fjo#1D_o^Dx6CJ1l|3z2>;fDD#yP zNbfU+8#L!xK3=*}(mG66Uh09HA8(fCq_MOg(o^k~!%CpaQ8u%I>!Qr?R6BfAV=q`yTL=g(izA;&rSR&n7_6jUtEp{4d7@bJUM6CAv zC?fs$nF-1bn>Wc?Ll~lEhHiB{l}d6N9e&rJ>kxTi?^cMOuGq!f2kFC;M<^E^$U-yh z9wd-WnIU{k_;FwqqUX}tjP=?bjg89|L+)-nv_bxL%l-0iTOW|0AK4&%iNg{Mjpx2y zS+I(BdE0V1zx({$nfd{3NxM5wUJXFwQEX~pQxU$1kiDiK0><}TyTNipASa{;a$9W z*uS-F*V?`LnCuhQWjiTs9Od)sJl;X>5}A}7j*iQ{eOu*UHs2?Iyy_%>vJ zsr!jt?Xs{vC6npu?EksAb+Me*d8#aJtDi?=DriRtv?F;{27*h-Zp)S}c7PF{WZR6n zjJ_KCitJSsIz`f5pO$RvD@*~04Z*v|5WRnvmWkh&mdQ^_F#0{iRyLT=2z5JqyK5?N|&FhG=dY=$9uB z?$4c>9)sbi3=XH{bUA)XtJVS7>yC%{@8};XyGVrnB8imjI~X%$c4@^!w=IU?o!xSR zC70C z?t`Zff`=|-Vt>_DSILDJUT7!y=t@@Wu3ELqPKeQ)gmyKLZ!8g&NBeilzZzoqsWrFA zS9d%rt40n;GW)Ccu%|61-K|ADPNqzp(s8n!+kH;%zxo30rk=cN^>d}rFeDFxhPxWK zHOcnmF%rJ1!MbkrRWCIi2g0_dIL_@(&iBl7NauRmt5D7NWV z&lZYu%ElHH&m2B9=d)5FL1WRl92trmqIZIkirOoN_H4T>PA~LrWhHfFL*Ii(NN2Kk^>irQDa*2pBv69roD^6p?0a0xT)de;du|#UkRNZ} zC_me|y{xfOOWjjT_@(QL1?`Q_#i^kSIY?i@*#Y50S3>&mK<(JGTW((csQk;ypUeMQ zeXD$B$0PFS;4bNljY~9b##P>)cFQ~24=yaxOm)0?tf)P;;}kir{kYtj`T};ydGe|Z z1RPQa!69VF0)s+x(D*G!Wk?<{#4dEEWZT~@>GofjY@o-SGm0P^Ge%;_5WWKvOs$*p z^2M%|P~@NN5sdvr0;#p;d*tvvuQ*hB60Rig0>Xm_6Jkfs2JKLd)w6Q};is%9JwFs5 z;Rfmnp`~wGM8k&8C^T)8VxawAYT0;H)at$?vgYU!OK|1_1YshUkfXzKIVpXdwAC<2 z&*si0LvnO1>Z@asYq6Edz)(^aBo|0;(EmpewFO#bd2opgOh(O^^|SPafhS`Oj>qky znxzoE-1$O44&>ydA$V+6lRH;$fb?%29+aE5ZIRn{Y%55%yy^piQ!&b0pjL8+p?-E4^7?K`$ggwS5@vqDj8 zl2a?x3&{hlklhy^mivxwlke?&My@-wN`5)IOV+1`>cK3&&qgmyCk#YmfYc%uebaF zZC3_FsYHt3u~LjMJYGw-6@bvTBR%Hk7pS#-hxc03{J#yXKDvR(`?_8 zootnb>E1bsUNCFqHPSBeWTs;6?kD2ulx!OwlAmnZBv0(#FXPd8LF2g8vED48{v5T^ z#kBrFd{Ukr-Y>TvTrWS`w@Pl+#~xUBa$%WuTY%OnUzo=A}K=%tASHG zPLh+%(G~Je|w6bCLwV&@COp zlNN>}l_g5F>X;#V<6{|Vi*-m(p#0Ent0BZ~i4Na4?kyE~^oAxA5(;-nZ+d}U5Heja za=s_qWjD!gq?N09o)3*p$gL~4$Ya~~nz}}39WUO`8r}Gn3T=aG)}Kkkcrqs2Ci>-( z{+)K~lk4}bl<)0*TJAiuQ8teE+0TnbXDB3#I-=4Vs!o`;#Z2PPTX3En*LIv4NA)W| za0PPmT)4JDKqoOEt3&cYi`Z4SoquSE-fJWqSZdA{?t$!R8I|J~?3ELH)=4CAvuqjr zitL>Dz8nnyLIz_`%UEKYL{mp3l?fX|Tdg|15VR==O0O6qML$65*dB$gVE8Sog~>Ve zbG5Lye8qr-`3Lvzwp*u^Yq0U?LG(J~UDBSdJkcX3tR>lINM1|Tyh-6CE74k{H_HDzPslsSuwO% zh7)u5)l8uDCv~?$rF5}Sl2?r3Jv2TpPaHf@mKV>9 z(Rf0Vh6HsR64YMd9KD`Emmypk8Jw(6evN|MzrNvwEYB>nPyZ;ThHTorAl*IZO6FQ1 zZRB?U*tm39qG!gWXVOM4ULYNm{;}$9Kj8=Hqt&*r9-laX4$dcA2_I*7=J$Zy{9m%UAN*z@Ej-%o^c`tw|Z?MM@y+4;s>+22C zW7EgN>kyQ%ES5v^;;yCA6>PTyBb|-PXkwEgc{dos_jmHtz@Ny*kuS-i$UPECv&m`H zC;(DzA+(hrxC{WV;-3u+9QOEw+!3N>pFfuUGh3>J!t`FVkn#b(^|Kw@~Z%?4!4%Z(PonlMIzDE=P~2OvGYY`;>@!#)0t( zX_@Sn&Sa;Vd`+oOo>63$TeMyr8mS*{Lgn8L@tpTk^cDOvUThm@Tj!TsyMClQq^I8j_RK%cV;S54|r7_DXlAOUCNZi~&9E4RvzpI9&9*su0Sp_8R%hTkL)y)zgI%RL8n zSYr1_D{ss_iK5>=iJ}td2nFQIWoCQ^SixTTJ`Dweaz*duvaofL1kL+;hen(n$!icW z7&)r%$x|3*5L{?T-uooe_HIM;PRyMz1X=Uzq;zEu$mJa!vdj>@peIxW(aU7n+%h6b zL+VD8TjW6a4%s;RZ?bamFJ%457tH@Zmx<(Vqn!LFxwI=vZ#LzR+Z*p458P(;?3rht zX*cq$^x)BcpR0TdlI(BZvRMX9VVC{UfC#8<>d5y&HDPcOO|}SKTVSV~Mdf-=OtZ-BJ#Q42gK;z&`nZPd_Pt z`^1Ct%OhLm*^&J=&yHL?#&IP^175t2P*!4r!{++cv5BEO#()gYG;QFhmt(E zy0$@}1F~kGJPXs*fnyEXdW{T*Uu$N_%W~%n0Yon@3uQpgYY)nCEuChdPQQO#CL5PT zW>g}n!!nxKB1fYS%kGKmWz*=FWUV25Ye(;w9h2K+B1Jf|{Pvj3Q^qqD@!s)>7~Ra7 z$CFiKcH~vWbM-yMgdDuPc5bie%1#VuG?|u>@uY;tI;A_)ZgaZI#X>{=A&=pB_46{P z1KW=r9f?U-tVepY-Lq2JrNLeaBwJ)M(Ky~PCIOK|S`s4xX&-Bq&Vc{;P-Sv0{YGmbD4~=gcoVa4HVx4mFhuXcO}pj$kFJ%zQDcxjeN@eH zTrW^vN8JmpKg4dw$dKH=W1IZv%BSVpwX5aU9b4tG1N-ehg|SRh7A^?MSjzttk$h0% z_E1{7+b1MlB`+TP;k|s>HFENCC)+0&VFR!aJYSa$@NojL%L3bJu~#ae&84p^4esA8 z;o8vW407)q0;PE4^zmTq%LdV?Hh5eY0?dKz_AWX}dKR4{p_b06{qeFd44KRXLbsj4 zth5K(BxQ_D)LbxQ7g@}Wtody=J1mj(sO*o8%HC+d9E|lzU;L=_$NOa@HEPIS+>pl> zV+aa+E-u@kuqqbs9FHGka4-WRG~3_bZx>atnKMr-;qz*O^3(5Zw#@!}Gd(?nEmL-n zj>xyytg@lnY9WO%q=V8PY&B&wWI4z~g^H7JNYa8}hh!((WFnfXNSL`CKsp1Npmdlz zhC)Vq1HbBNToPCy@yVcsW2WwPR`%Jz$mmVAO3;YQ40O(V~yB zYv23c_vAw#`jE9>bhvIP5VFK?I#4eLAS920zyPJbC_)DGDW{xL(?_upCT7M+yU+Bz-y!pzhxhN9 zdSH9*T(tnf%%&iEhFBXCR4maW)Vn;eM2-x`jA5xya>3I>AhX>@;hSno$`C!;8G^bb zy~xN+#^x$E61uY?X^j{{7tYwlCTVkoQUU2|GcraUO&?ZUmI?v;DE6dVr7Z%nF5G+1 z^L%&rk4Vt4l3+3>$1YwZix;uc`}_j-he;#)jESq4Y%?ooH-9{zRs$twlPzvJz?Ki4&C{zsouUa$0XvV%gE$naW~u%VK%yqL;{- zU1!+wPJ3Y|AbHpfa>L^A=2XHqs#@30|yTPL^4j_?la;Tum* zNGxLrL?&qnNy?Pn2#vAS3|N4|qds`)7?cbSp1F(1^t97Xv*#-{7z=@y-rN*{K49Oyu1K$pMB~=eQm??Xkv1e~VX)IM zjf^FFU4eFqjfEr9fM@$TUnrcK#1RX4@QX5-!Cz`j8C@bF>NHLS}u^zZ{*o5yVa z}9c^o_!wUR*S5E6(E`DpA5clzn4TXH$=(;Nak z2JKSwCTU1su|zK=?SZ5$YH5>jw#&@UlIE9%lHiOX72~oX)M_r&V+bBTzUQ?*IeG($ zK|}U-%KGt*_H{ThEJ<^ZmO#iDW$u)f(cuxvq^FWpA+roX$Q||dYtWSgNFGWV(m5T; zW2=-$Oh2KNYYE6^%IMv8BM)8eAxW5ior@y086~XA%q zQceskmBI0Z#FE92=~|-Q$bajk8GR8$PV?FwkC(&@nd<5=M2}HjKSYnwc&wRNwnu|9 z87VCXH)ZPEH<^&I8CR{Tn6y$q)31#6{0VqHjDNqOBrj`>e%pctHoarxV86|```-Gs z^1!~mvTJNa!e%hf)$eT~LvXs%lI&oyT;)C4Cw8~WNj)hep2N8_mBo_Q#d2BCrE*cv zg}F0x1DR3MheL!MzNJf-+W%>L$R3d*7WARp3G*U%*j)}qIkJcSCRgyLn{JXn|MNe$ zp2kL&<$!6J`nL`qXq>(n!2Zb*!^?E_)mP`vRt5+iLI}Yl!SuZI&MR!QUuGnU8zdC} zsRYuyI5Bm;AhbwA7R#E1Q93Cz(=O`C7eR?C!yPVm5x}3k@ zd}$vvB$4g-QUO`EbeWuP2p;vW7eG8o?7iTE3+znM3tITG{rlvbtDlv%NBgEu))=kE zcq}rr`vprfawIis$~dzebY|P-gyeGBa&)LDX{j|@OdZcyw9qKij2sS6O00y5TP<;J z`(hb85;F#8=513tT3e)dd54U(C1k{qp?c__?of-gj|L?(HWgwn2d$x?TzS$`dF>g? zq&GB`TgLdpFms>-FxIN~8reuHFqIKAncco?mmD;c!@WU~M-S|m9V3SH<-Su4PFmU} zfd$51WGWvzrS;ETl$KL^CuA~Rcn)}};C>ev`|umb{<@sd?r-!A5{B~xM+yhd8{|vF zzZ^XOoDgd%@&|cbv0{bI$HR8uU2J4DWVp6iUds0o1O$VSX{Ep{19At+!;{5+aGGl{ zC-_e2Y{{CLb|BMd*!N)WgF=vjs>!itW*EsXl&B$jWOfyXth59ovLFFu&NIVuw*(=J&iOS*cbyVbwv&z1`f*D@o7YZ{Wm#9$%*97?XDW+@M%FG`aFJZzb7@fos}LYZ*j30J5gJl) zc+Y)Q{s^}se?*u7gimw%<^sRjWr+L(4?G~B_{1ly7qO8suSgy)UPzwbLPweK65`^; zrOddMW9Vn5lE&9=(i&0*2%TqtauD zUcXVybG0x=8M0?goiWrAi3C!zer!a3c6h6-8a^n4@kw*dp!BwOSkFzZ0Li1@nT_QS z))fa2$Xz>k$ia!q&uohU@|sMW{!0Yp_?`t4&cC-Jr0i&TM8<39C zkPMDSq&wRxEv-RG1=*Ih{)yh1or`30C?WCK)Z&rZkja=jC9={PYLTwaR++3J(d!5r zYHh?kJ~=x%Ee3?DhmHIVOho0hGI*}qSIuxY*AuywOMb@-4R3QyWRJW?!5mDuAKb%}H)WkRCn8kLv(lNMxT zQAb#kg%i4HmyZ=CLAZ;8>ARv9n9P-D6UN_rE|093cXY2q34*iP! z&9s<;@8H3E^2sOVV;}q23!DRuhIvEs=xlN+AYgtf7L*p`j<6sh3UdBP9Gx!zs~`m0 zB^x|eA~9nWCJsqgdoeSwthAb8+-*2jM##}K#3dH}ojy74;H7UW+ zxX~b$A72ZCy>eO4C2~p6Mba9aen$g8p@a_^Vh06mFY<@Xkx$3Ld%g#OBeFxZjY$Xp zGe(s#@*QM!`}Xa!X3ZM;;0Hfgagv8)i1M(S_u6Z(mFus+UhcW)9_y84`xZjav$pYItYwp<+Oi4$`v~9Lk_8JA=7aN!TkrCM+ z9+4fB1G0I%Pj*ZUS}z|9H@ZUYMhR4QX}Xd;h_?=O@WjFW^2^;jW#3rkpYK~LAbKoR z2xUUjV-!~=2#rolw{%K-yh{cr8_$c^ZYCZJqir%WK2>(SL0KbbZRUJiOHeXwKT?N8 zk4HhB(Ap!>!Gy#Utm?~sPykq%L`1GV5UdH&Ycu+8D#V<$D}en5lcd3khFIVWXq>^Q&_s7T{4}9;05E>TUcqF*=yvkZNlh|%I(8v=#?46$4D%( zNKR-wQ!ZV2p`6@Vz3s}pKxVM(!Pcn1$2lrMkz%l0WCa0uOngJ>Y{A*tn{;YeO71P`E0@V4P;E0=_^_=DLf zv44_4aSziu2$CNJ5{!)}EYVxEpvI z1o84=MB9QbHpJ^EbmqpOp?^>SBSvZ8x^0U*efW@3-j&aXDF?KCERm76K&y1Nwn#g& z8xKiz(#%SY>@^ZPP5&;+wo7;@@hge{_9+S}ywDK6kYr62lXXV)T1?qa&MYt!ujmU_ z)D{AW9--TAGd4Oq+pGttG)-1KPH0&m(P2W&l?#Xyx;#8GA>+}QEb8iz#oe8@F9Bl? z(uRjcy?b~k)Y$Slgb%&Sc*Vnq;YDY24xO)t+b_@#cp(oCkITA!eX?rch&-@=k0E#a zWYy6=**`umlgYW$R!YI~%Q_^|61BS_R2mD7&NyyC*w{QXu{M8xB47q;OSV_isYQke zo5@SOMCGY#+|9*Mf+ukOxc*QH^;)^e~d(4&<70h8?c=G6E4HMx0 zq_ax__eBXo7K!l#gn%3rI)eN71(e)mI3)`gohR*`Czt_c?nj37?8Ci z2hD509E^_2(b$9xCBibEj9Y`jHZ5&F3@G*F;bCQP(?{%I^^09QY$A0dfOd<-A?#`EHlf44Z_QQq^;)Xo zr;Z6jw3fDY+9zYgZ2-R1s}%+&Psb;_Wx`Av{mR9g3Do4kkeRf_6SA;#is;do`CtsH z(PT_A0n-g}0mKe{jd4ZaGKP7@%g3a;9MZ>Le}tEJ9UZac?y+tAWyS7;^4P!uSwGA| zim25;mBNDd7HREGNi1OWTovT|0G>c$zpRDqy*VuDfInWmAk&>}m+6NtnJ~mInp|wi z-6A;@4#;3ECCfV&$?J|gSI+A>)>nJzCscNH(t&N@P#ex91Hy-g8Chd7CI92$;~Y++ za=mK`yoH2mx&NzP^(wny1m_Xu!*RseC>Qf4T#KTBHM4tlDTEBSswNQ=KW9d8)>&uS z&i0$#1MbCQk=}*Nq;tX9W^^4Rfy^PJNk@&rEYyQTE>J?cOjQGcMG`hjrI_ti0x~8& zM%V(OKkvS)J0=I?RrGURVK9+tS7 zWhcxH38RphOjx&+Tt18gB#(Z=phQwh`N4*DvewMf>fMW%kCbVT&N%saJmn-^mtoDB zKu%g`GAOChwC&sJ00~N)NkN;DnXZmjNwOHD4(ixp%6^h8kR$yQMiR>di!s=GWqDV( z4NXt&Y+3GArw1c?Iz<)9(MwWX3g-AV)H zQ4GoZ|Lpw%Lr>!?O!_@a*k-xVltQ2i>!N97zBLHpiTVFUr_+v2ynnn&`hX zJB!b}`Z8u~)zx?GAB@wAwc-MT3Zxdj|f7yF&wjycj8zoZEb;ENjM2$%A6U> zGSq-hroAJ2BubXBu|y??TC02RwXzVs>2y}PrdzV{>cvxx3pqWj4`Y6bhraiBp4?fk zV7b;pPKe&*PzGj)8(~^YxRItMgEE`h@lvL#sijscOqB6lIUdnL&W<5v{) z!*Wdv(Yq_!kTH5u1qEy2xfqfiq^6%lS$3_R#An1rEDf0fa>g+3*qzxOct+x}bY2LY z2vR3ndno{Aua1@w(}j|aKfe4L{^;_ns$elQ-{{88#H}|=vykwu{OfJtuAj;vMUt1z z;{W}fZ{X#{g@Med-3sjAm@m8IdK=4?raC9}a3PNcZ{s?8g9H*KUE1xJe7GB#bk~8) z+YzD{ldg>nrO*;}vR78ioGv59$XIcln0V_subqIOBk7}Sjq;oFmm6)8KCW+CTBsx$Mnk#j3K3*}$<>7t z{@~lM;9q{>yZG#juPYaA-F|bN4MW59WDeK-O3ysM4(cLKb z0R{yH{oHi-Mg;{3&8EzLp^27eT)GkZ2|nbtXd4e9Nc=6d&G(7m?qqi?L=O&*YnO4x znnsFeh<1Q>djX^7RlIkI=hk+Hl79=Qhish4MGqjQQm?g}Xk;olI+_tRAK-iQ_wcX3 z_Zh$V=b1;d@QQ+CB<#1Et`W$kFJs&Oidm_6*vs3%Id-7+;(7@qBSf#Yt~BhY~X1 z-amc{o1Ts80VQttKpRN@aQ627PBZ_YZ$j%@*GzGvK{zN2L2AkO;}n2%Qlt$_TxyKAxnn9^f4?%q2c&w z$}XL5-HJTV8H{J9Mq;EA`Oc-%gbss^0re;T=PD`|Ow1p_`ATzMX zaZ_tCWLU^~ag>&tJtIo|T3gmbDrO)jeWcrPx1@s~H+>yuDW=?&dkKyk}wNzJ3S)@wuz`i8ai@$3wL96I6aOtndgc4D+RHFZ2bQ^#J-QiUZ4JrT6kKNt zcdBXJr~-2>);smV@>x;lJ(GJ#@IEqeR%E;oquoy6JqF|M7#GJ-0VYH2G*L4OXf=G{ zg%?!3>8C#RDMk7S*64fj#TQkEE!(ggyyHk7U7sXPn+Y0baIr=X>)-LcWZ85PbQ;IE zTQG)@Brgm`ehXqU>0$-BMrApPfb!pvpV5hnA=D`ub75#Xp=}0Q!RBXhz7-^T4ib6` zBjykm-RLoTDk4wrnK3n_^aPe#(b`Lb=*4_!W*b=}Av@KTSQ`o-)~>3`^I~CR61=NI z;ApM;*4;aJZFvc0dFH* zWGh1|Itj{2XeR#l$@k!7X0+#ZPx}ETR(|6f-%z^$si&UmDaj+JpsxSJKm0>wOrimb zF5G|r@Bh8xEOZx#?%SQ>9YykJ(FsY@dcsDF9oaO~m&3YhjQilvUOwc_z!*Zdhs=J% zG-?t(t$-j#i=2TapC?YFp^JjhgcNNjKIkVUmznO?&6W zjB~_ijGlZ23;XH@ZOXmvV@{7FVe4p>JhiFlHC8fb@SGHuz%I2gS(}wlD*SIStR2|j$a~5Y+11-;%UHZbLi(7o(db$c>^5AdjOE3zpJYsxrT+J9mkR#Q?b%5A>TVmJmD!u7xPp2 znZpmNO?W>IA-w`)@W1-iuj1ITV|e`W$5lLNuR#6I5HK2`o_+RNRj2P;-};tHF#6yJ zKd3GezujQpkvyW4xVjLu&@n@ngpGr`b}}+Mi-XLEOE)Pkcg$*`C2uFSn7V<`k{7mj zLkQ7pYr}A~Lnw)opL1@b>dWFr25wAvxP%heyV2G-;WMLbzl#l~U$YOMhp6vNB zBs`Oq&Ksgs>~^%pO`;dmT;${ONoikM7-Dpy=gD{oLF7?6(%cD z8Mm7aRAkX)5=pc?7OmJHVDNmwOd?inqt%plZ(*Kba6OL)OUir+WHa55;O^}(VkCiz zw7ubN+4d;lr)ljX(X(_78i`)4cTaLyM$>F)D)zBoAQ568(=mCDLV#MbvFXI3LS$rZ zq+J7zV(;tXbqZSGDh(U6C5DUW7|W%Qwze*3)vz7hSSsN;A#-23d<$O^f=6=4-&qoc zF4;~u{mGPx{jqu#5_zt+a^#dQ~HLq}Z8f@j^f zI&fbE?K*}y|AkdF0|Rbbk0i)Q^x82SoEb@qu#0JM1G;m%C31TQU1;7hJ&%R?nsUo-2Nvp0@nj4UO8y=bJ+7Rob_Pz> zQv|eIpzD@IFD-r46S^v~(rqwlA<;76)%?iTp>Ba>xFrg>peIBzYs!M%3DL_7IZaF3 zO9NaiyWA9_SFEbISssIyPP|F<*i&D~>0G6T*Y7PWOC5>b=U%#suL-%kwop_temjM( z#SqUJXy;<6dcAekvW!SNtsy1*?TX($LfLM6Se*MS(P_)_%hvOg@o~a~;pm4^!zjw~ zOSfVW0>=~4Xh@h8>k7JI2Ly9tuKFMjchir}%FNiRtrK^@OT3tA07@PQBDz3+Xm zO7eVLnAQ$)FsOF~a00H)t|eI{iQ>^EwBT`|j~+d$T(o;-y;}>mmsb=*tHt8T#ZTc( z{%>O>{)mto5A*I_ylyYy1xLe6?kKMMQ@HJqV8M%{=%vsQ1?&m=;~{1i%9zv^aoWlu zt9O?E9$*oN<8wG^HIO&>ZP6CGFKw*)^SChLU@A?r87*9w3a>2W(oHlmI%FaxJLM># zb?uy^q)02uv2ZyHrK45yy~kAue=3N)HnpPC*@d1YMch|39R~9^4%9x73VeH!;p%aovuykd{ID&IS ze@7PG<3eJ%3y8_WZlU7c!%h1dUTiJmYmF4X)0oEV?lCL`BdE6%u-lfr)4^D57MBu} zNNM~%`sCJ(3XZ3ja3S3klE}M8LqLisWb{4~J>iyd*=0xhECp9Zh+f^QVrDD}%ZNUW zua$)8F%BYOsRGM`3QI`nw4TAO#d61PH`dW}OCF~Dv{L;27E`?65hDjz2wtx&VYCj; z-KpY~HiWdslV!WpOCDjS(dZI2(6ooRyHr7zL@$V|!p7V6a8ws!?;CrbQ5zME&m+MI8aLS+Dt1a3%9^`}|^mmz) zR#p~U@FEt!-YHx!z?G|uIHL{Aoa;_<)J!~!X4O@(V}pR%nu=`~ox?msG&89h0?e=&ba>H62xU(ZInZm+pBlGO~F*5zou!eq{BPgM-kL$Ku=XlDvHe?t++M z%i}^=wVHl!9+xu+?%B=IDaj*}#sp4f|2k$;pA@3ERc1~bEx&|&?p3_px{9wh8~Cz4 zgLCs)!3!;qJ0W>=-Ri*z zjLMTR%8wxyY(8085h-Z%uzMeN;GyD|amRUGt}6&)qgeJI!-Dq|TJ3Z4-t7WG+d`!4 z$Y{6mc&>;cBf1-nuG?n2jPbM(y6wqD6`g%OxY&?}7 zEY~eFj!P`$x;uLYH#Kx?E-ch>#Lg*eS1)5{_|2M3*T$lw5+wQsy0h=jRxxTPFxufs zE^9H`Hn6`Lafynlmd)67SbDRpxO;tK{nT4|Hi!=$Ry%Om`2Zu7whs> z;GpRDJ|Tr(g&+~Yi+7qE{dQ1(9!lob!T$1Xxu~s}ff*yG zl0SkT*B@ICo&>^^DY7kEL1k031MOPyld9b>~C zoc$1f@#tfCMt(n)8O1~*hxg7rji0~p^Ei?_A~cZedHtGR`8}JzfNbtGOtX8(jUBOu za9?VCQ>*fR1~~$&Y|t2VP-61-T?v(t_(a*UlI$=Ynl_C&hZ2!z?(bHlck|IBnx`~F% zU4AsB>j+8IjW)7zOTH)u+ufdM(4t2Ls>^)facCrd{U#`DkqHc>n+9sEE7L`|o)6){ zLY##F8!>qDz;2KeiDVqsOW-Nl`wGziP-Fi~?FWN6i%cWgh0w z0QK&UOSeG69(ZjPubI>h#Nshk%y&FU!LE33Ir45lU^FB0Sk@a)!{{Y=Zmcn+qhWX= zi+USEKuVC8dwFr$JgNkVXyE5k&~Z%9;_>t}J~VO?@1Hn@$3~9gWOfWARvH$c`RacO zBZ2Acv`k(L3w8r#yCQmVWgJ;5%Sucrf;Uun5Q!u!MsyZqy%{J!9?u@a{T_H8lbtpqXu&g2SO@K{us$C%N2$A`t3Jl4V6FC>rc z=kY3AA>4hi6bvu+lXZ94=cKYw<%Be?6jf~aw?$cy=tWaxZP=nvJe5r0!o-r}3*mEx z;F0)cP!DpbxFmljT1X3V7#5|Ok&EA7MMig3Rdly)DWWGTbmfb;0Eu2qh+bLnD?_JxYfb)`V zG=%6SWUgitaaCrA1*doG-tQ;qKBb$MWl?%vi*R^2g}Np3ROSN5ua_9fSZJq&;Kl51 zGk8fIvWA5d=@C3!n88zpqj*FJ*+Ypj9M^NmdZMF*xce@PiBl%VRH?5Jg+u}KB8RWp zE~+t0h~1dT`)Q=o$B@aNMJ|6HR&qjgU1#ypTj6we9Ph~=7BWg1uWebwbw7fhzsr{| zQ)u=6QSUGyBQYI=J}4 z=zL9ml4V+(vU{w`vncwO5WhT{?NK3G86lGzoVF?NNXqA8LM(XBEzik~M)VZ@h`GpH zZRjGvT0AFL^ly|Fa|a!dYsg6dSui;&(QEl0QlfZRjejqQ9#2__H#JnMz02%WL{FX# ziFZuMaJPtFTAppeHc_nXeO4+hdMpW+7X?bIB@g`D40K(mV{s(PnyQPpiC7sZu#N1a zDGL6Wl|@bFOH;_eK4|(6Fp^2C;@yoNx10JoKbb^THk(}Ey~d%j1R8o%EytZmDiD0!_ zRW4~>tn(Mv`&&ObnT(OpM{qj#H$=dESV-H1e1G(qilALXM!$>u(>098Nxa^=yCEHF z1UBy2WxP^v;`v$@-*247b^8KtJCkyEAERbl6mMFDMMB!M{o8+}oh?e6JrREL zsfe4ZqE|;N-o)q#3noYV5J}y^5qZ!HEeYfnXfsxGkHEEy@Y=FJrMJ?k-pNl_iW!&lg4O-L#Rl4RxH^ zpq2w#4@In3Wpb}AYw47U<+c!|p!Woi#gCgp@LV3rvIcxATw^2glsd%!$>C%8sY4Io z@1A-eepRj?p1uz!i8MLGK_Ga`a1Df!<0fbB>gCnH_bOekSNXP(wU!N7!)%@-f*(4~dw{Y^}zKC(jeB9N^R zLA!ytb`wwLs~8b}xK%<0NnhEk;`PQ7o~=6gdL@rLP5~)>7&%=?Upp&(6G7j$WD=5W zZv0*Ro~mEPcxDlYGCne<2(yT?rQ|hG(#n_`GZEL@o7~~;SZp$Jpsg%{bl>)a=uHUu z)oiG$|NQ_nNLxb6Qgt19o^ia3K4#hmaxRPT4p!j5?RuD9sN$%TL52w@>t+CBo6JB{ z^$7PHSoY^gDvNt}%V^zcAn)nO8KRi_FjserOu|z2@fuEV=L?5o;!qYXcsEn%=|a31Hoy}hPG`sPBSPl>!MP9P|8?<)@bgC>!MWUo$l%Rgsr1Bf!%oi( z3EzG9-KXlhGES^it>90tJ&!x};_AD53$B$XMnuP?M?_x7lqGS{y>BvpFnG{_k9i6Z;_~^u0{MY9{hTnSRXO-3NfuTbpb32zO)CDAcbdMfB zau~xWj^K{vsyM@bfQdej4fDA?CeiT-n%udiIWqGHi_pfIg>8<|YmT*6oG`MA6^jYji6B!lxp`e^BUJCSSpO=J^` zIGS@YW<}2y<3as%dJX4JWRSF?7X>cM{A$R8Pf@t`@I;iOiM%R-QEB!+o{fnL)rt*$ zA;7ei?bs4DDddo6y*AvzwvgXkC}XsqKq0Weqsxf6uOaJnC+o1ENQfMpN~Ce~*0RWl z6)w*r%HjvpUE(P{PEif8H?j*Vt;$0;ex z9gq6@e_Z%D{^y52g|2sY>)jh~yn)5VMPeh#(ZG>8z(49-df@`hzQ$Dgl(mJmKICK z9@2!*c#WN#m1SqB=Wr*&xPxc(Xz@ z6VksJ%8rMtl?I+&Y~tC4IIb;E!ET&Jx_ugnSb=+E<+}CSEu<_Vm$?QelF<}2N6&5h zxaln7&~zM`6kV_@f7=Qicapri7QNnR2Qit`3D({0?R_YF({U4z9Gb+ho_-qt)BQh& zzkB+9c;DDbk*#@^M8W!--J%PAJHV1%$CnnaqU!Z$Q^-yH2ZXpzCV0Zeid-ZPq9u<; z6WuU|&8Zx@8%Q#s|X8QgK+-H@I@7>ZD%xVCSZW3?mfIB! zk7~%JjYw82?wXr2Ur6>C2Q`x1`H2b}VYF?cR&FWR>0W_j!)(nuiQbZrkyt|2n%fTJ zMhd1ALw%ndrNzwRYE=k(Rl~TGLdG>=54Z(#J!r+t#tbaYz5V=E>R!+B(OPz(Eqg*T z28ZZzrE$4cWv;L`-U?0V4dQVfBco|`Ms2SWJ92Rg4~|dZm+rfS|J#%A!_S?303Vw? zrxFu*LIq2sFeb0tX!N=yrZ^Xhs!b4&w)@lX&e$_Y5jROCAd$ z9~A6MlE=xF%jFcg3s0}u4*X0=oc4<)j~59Z2`yvrn0ZBl$HWqny>5U+k8ybu$!Bmh z^E1erC)KM_5wu$((3WvLxr8H@9f=%-@Dq>p3CowyuKq#biU2EnF6LV<7MeQl z)lJ-}7;btX^a+Bw=W^g#2kR2wob)%u?+oQd)Gy>9^%sXhn>qDws|S@iI65 zY+VHQT&s!Obr*MQChpc#av3Pvt_UI>lSTpK+7R+u3asa}6{=nfwkhq*w-wPdA`m?a zSQ0(ux|KPUw-UP&=uB7`Gm^0DZS=SZe@9>;<3`yf85bH$;dEbz^-|h9(8^mS4u{NGl+S+nTqUYK^>WfXpD{YLM$vr=tS(7zp=$eYf z>m|jDi~O)s29|>EoVvm>Ka$JgnZrl$v*#}0hlSw%=%K^-u@k58^vq%TTV927^aC}| z#!KZ{yjEN2ixrPf=5bg!?8f0#Rtob|AB6^zgGln&zjrNp0|5HVY02tzl9A*w`C`y5 zd9>cKXfx{~k;(P%R#aO zqQ?_146B0iOk+!;7lHz=eiM=RK3t@p>>#S?O`AyYPgJ1<4V7`kzhwfB#W;BVglApZ7)kKp~| zlQ@zRxxy25`Ur-&%-c15e(nm~KJ5yVvhJVGA4RNgV`*_wd6QV5k46U?AV`MxLlR>r zc-LKf05HgwJQ7c4&$8|viyO1hF$pbQ(*4>s=|Yx{q<=!L9~Yu`0z7RZDj1`eh%Mq& z>K+a!0wko(Q5C0()6F5ajw;XB1!tFQDHj3=B(X7LjzAHlSY z2aPH`fr%uK#s}7=W%47F0jZ~G+z1ww+y z1Piv21uuF2EEf<AxRJ-*dlhNV>Wc#i zjsx9(JSTM|lR~Y{Vl-`>F$*X!+xzZ7e8#4YwJpTzJPL57?Ob=R%(IlIBaw;2jkV?3 z4xXYK;%1`WMrC1V)-aOU(Nq$8TthSHt;=*R81u@_lj8>~@sK@4E^Db+yjicl`pVXz zG^J%XE97oMhpDOE0PLsAryeX7$zmjlp3#eFELJgJ{X)qG5Ry?vfa9xV9wBUhIyzFb}7HRFzlB znP>RQ${!+tCSvzo zjB1uTWdLTQZm;r!pi$NG`w+9*o8&|ugovw<(p+J-Hl`Xx z3{LGN(w0Yga5i^Im(%Va53@W%(8ch%PZdCDfVn)@}^Y&RR z9x)PFumYAPT76+1YIPy6vn_dF99eU4iX`XbaWqOT*#JhfP;G^>5Oi%>=4vO2Rl5Ka zEgE+3Exx&o1=kEP+t_+t(dGKU_ym6K;Yab?KlEexAKw2V{LqP0vPny+&019SljPl~ z7x7%_HY#p^jy%kp37pSP;B0n$^_90G)SWb#gyBRyQj>)5!3Q72kt0Wxo@K%Q=bwKb z&p!LCD&S8&M~mNH>a*<-x@+Ghc>{o*F0#F{jBNx?couZ#u4iImLM2zwl^mYTv6htX z6&RB@W<91XdSi(vS6__^x<#v)F|XpVUO^{zIl6~^)X_F>;>qz05)nxk!NSMOsK~C~ z!Qqj&@5)I8nMKOWb^|QcY+RkI;I-RT5lk*JnuT+j5gbqEH_a|x3%YJAA{ZR`Nf*y% zVDD+g^D5r{It-tXzIjbi*q5s~5zne)j`kA@RsyB@8k+UZ1M zwy_5$Bze?Lp^lLTTxNCWT#xaoKF?f~cZd&iSKth5?u)VzYnv@z^1|!zPD(iMU@t)OJqk*p5 zxDdR<$$L1JYGJqo3&{%6t3fkwE67 z3@~4Bpyb(z*+LE)7LIsXoQfAP70sBiSHoNi$V7K)Yr?8v(b zCM6t7q_H$xMfp|@Q(6+)K4%#21`}EWfi3fC8=^!KWDC*rmK~&9nj(jLiHvE&F4<^B z%&3h5-*2NKM9*Jxa9jv`tVc>#$u9YBW^4Bn>7)BJp^nNr{P9y~@DHAR z8h`(>Csmg06Vr!qe5in7QQ|wzj1T2Ame55Nn##?brwG+r|@gJOnN;opF%61Dad9E`I%wF?6d3VFppf_VZ4?yoW*mhl} zV7v~rgb4G54tv2?Zq1xAIBw02Kt+_3`PN!$!FQrYDAYzS29Shb+icgePlvI+Mi*j~vB+ zb^k;7)rTI#U%PM-pE!O}#ois3HOX_RcZ#*-re7qFb@6yH{tM%Y}=+Y(OV=@Di3F)=sPm(`+u1E@L(W73Zg^w4jOVAL)^XdDktErReu4O#@ zK|v>)df$T!b1z8~)6N-}z{$*Zkl=B`bCPc)H1@i^>tU{1^p0gdjnTvtLV%(xKU(Fi zSP7HntRi|N9mYI0+ePG)WgN@3QLv&DJzDfiLiCKRhp9p$a#97eWhL?8sA;F|+Y^jH*S(nzZI@{Hc7P(-ixrbTZrh@Pt5SM!wxvKM-e z<56B-Eto88na2`#i@NYUS1RXTZ)hx2=4Rf)#p!YU*s0U_#rrPd7w)?sKX?8Kc)G=l<-54iSYCalw_tt1^SKG!pPycRUhleV_c8XulE-^-f^v64 zlQbteU9{WPzYB%QUb~mqLXRbd=sk)PnV(mdJtG$Vd`!A-%~%l==53rzHc=qCUHw}W zG=gOmk`)}y2C~zPK6U+AfJ)p(b{H7R#Um$G&@v}t1+BD?cvgpDtdxQ%H$5!Vg|_6v zs%XeJ;zIV~NVN=g9_o-NOp?O1VWJ?fRG>g$fuDi@n* zms||F2GZM{GO`z-VkdDiYoeHTu!Km|Y0Edz0<~gG6kG3z65ZGH zb5*1p8Va1F@*H>D!-NnoTNGul3T2B_M9MHQY*;uqHiE}yrtwo}a^NbVk;oKowq z+vumxAiiIoRq=Q=uebFDSuj4=PT^R56c;j+m`-jUSIjX8$DtcUm-?7iGm<y~O+1Q|*btp^C=%W20gF-B?{`RMDL`? zp{yBQ$oO*K8_ptzM>Py(4Iz5bK1<77xoxAGaF7(DXT{%|a8PO3xU(Px{*KVWITwX$ z9EY4VCj1nZ7V8+*l9-66(QX82)b=02iwjB8-8Sk=8^;ln=(+N@5zjz!jq7?4U`l&< z(!=bXk|HxZ0TqZNguQyZhAAYG)yN`tw38WB!{;wU?Nit01e0p1EtHHact~)<&37-+@?Cs$ z`G(4@?KVh~Srk4c+c(3FBkN^U;rPdrCviSAwdEN0dJL$aStFLN++)X%spJh3Ke~De z5{m;ht<9oIaEv2{AukMXDCVh|E>G?sn2cUCCFvm%AggNT|8d zNDA>}eBwzXgQG5RYLK;+(N0`nDn8go3tDO-E(8+WXL4g(u`nT|K)=(C`PS6O-Fyr%h&m_;L z?F`pi3m6)WVX{C<5={V*=v4y;cjGl2IXnbIi0O9lgk0QNs^Ep!@5wK~bfLE;E4mGi zja#$PSlV9EG#f5zb1mGL92PaQ_h2k!BG7Q_M)%^G7^ipl$}$dXY2pHA?(xy!iQtgQaFd&FU2N-N+*a0uyg0XJ^jc;W8S zN{vtH*W=TNaAtU9+l=G2M7P&tun~AqCUG#Ho#j~`e)wTrxNt#v$Y{-b?X}nN?Qefu zm1?h-}*OGSt(Ce5yelO$ixVxZPnG^B&@#8z1G~q((hvl(Tusw`1eC3r_ z;Mc~Gb$=Xw{bx`K-Yb0OL}bFpIK7Pa93ISi7>jq7`PK^RaAJ4yp_#Y{r_Kb0j&=WnL(gdj+BOxYa1)x#BGp-8U1Rb^=ZQJ8X>NR4{`?X$ZIPxOnAW33Ii#7S$%1 zf6w#`j^&3|U)da?9_oh`FAAv7*OIEa4c^NDB$ti*7Q}CFZoTc&|67ittFc+Jb|; zZD8E&F3I2#fGlZ3%jjNh>}av9*BrP-2V-s=sR;ED8Tv4mOJlZJ?Kt6rb1fSaLee%d zRoCHOZ{Xh5A}Y&GII_WD7BJfsB4HVL@1rL%R!EDI@1F|m$Mc|k`Ru({v0&HLzdJ=d zrejhc!in}Y66L&X#9drlsG(SQ)VbWO3A(;uG!s=$7KS4o=NFDaFNtoaU|UG`n3>CR zE%cnRY6WBYLL&>ac^R`uqQ}#vXq=#{cdez5Kbh!3o!f7c$9w;~fA{b3$xnU~zwsNt zp-5@B@QxyRMCh*V_JZZEfs=;TEoKWbxq@*6o0Uh20)CFyppZPaqgt&hlQVXpAFd z?XBJ=x{&BKmu#dOF-%$Asi{RPmhQ(;Uy%9SW%<-87+2S-yYPhQjR={|Zj%Ymxjd9g zz;^w}ZD-u!u|yWrUIOu@HtYo#PRWDc^jA(Ek?&eBrzsC}nFK!izOzV(oapD&qWlYG zaxcJfTechc;=)x_z3A(X#BNl}VLBK?qL#zbLL2vFZr1Ao8bXpAj;9jHHhL<2ZXZ5! z9EUPIK63khg}Sp>W3XGWT_kBVtdOWN!I7?98e3@XW9Ba7`$z`q-lezg5B}f}@K68g zKgGZLSN}@6c^L!PPm;&@L3;jv=XZWbSsvM@TCIBp8gC$zRnznrAd_OMOmdWZjHeS94xuZvWs*@IrwPG&#LsPdBjXn zLNPkndy65%LZS)Oi>h0Jm~xkLGF0Zhl#!HkEQ3Y)PVYrGL7A{%*YMldzM+mV+sN+5 z({-{uPEcf}*V19w7TPUC#-WXB!~227E-F~2=VyiBJvKER`6Q5VL(j1e%bM&bg!3e{ z^zk_|sdo`kZ~EXO8FWGI^5!rpuSdv~?3Clz;ITe}Qj&;~V((U;lM=FA_?| z7Iur|y`$W<;RD`nOdiQ17kpTeo8K3@F1u~!Wt(@~-kpN|B*_d<>7c8d6OTcyYj-u_ zzqu+3J%F5%69N6E@TH2dg#gYu6}-`G;FU%auQsP~wRH?P?W4Hs zq}AUKS!q$)Sr|h0Rz&>vsQXpq6BQiJx)_m5) znF-HuCOKtsalU8mh%+uSZ^V&ro5gN3^lAxoW|Ktd!FCXO8%#>KOf zO8%}bk{ik>TG~kd!Z@pLqTAoM77gFQE7du5gc+@+AxP|4tT@|FA?_q$Hj}U#X#|xx z=8FzyD-G1Qu%2!PmEe*}elCjFUU&h#y7Cv$3Q#F*K1vG8H`xpeO{v zlzEd$km%7ey84GbLR!d1t7yaRqN|f9Wq2h|k)Uj>cg2LWh6%6cp;F$wreCkXgcFjN z89#-bW(u8+-bcPOBcI6l2J8W@rC4vQ5IvGMW-pUe)4G?CiwPGbereql5-0>OFfkb< zFxHf{D#UL7W*G~MwOtXViLor6e(V&^ojIu#;>nXIf8a8tjH0z=ZIN7B-NJAeZj^UR z()jsMCU+C0$F$;oe(nlfhJeU_30WtJwk535$d9DkHH{-8w2)_y8MYJp1?2v@-O3`{F8rz-}uc5PO=Yt{fp)g^V4lQ?l@FYOJnDqQk zTFLrN@_0YST`+@|ZdkgCS$%x7qh7+kZ#14G@e%y+i_TbVU75 zxk$Gu!(%9eFI~EX)2B}>cN)V>nEB5bE5=&U0z(TQ!(OP!DaUsrQ+q}7Y~RDpMiJj$ zx+T)gfEnnRz%VAAF(K7S+?o|)w^)%4VRzj4Y=6N@;Kxs&RTkGy5X$(qo}7b%uzU*j z+}dYMOW%F>-KRWQ-2(OMm%j8ReDj;%R8~A%qM2~PO$jd=k+@0e2KMcf+UY`D>ssuD z<(k@=4`)&^BNSTh1$fuy zd<(uP@?L;$&GJG6V|4?0*|m0)=%q~qrTIFldtk*|4-&mYegXxO+11y!!el&!f)-cf zvmd~-bXzh{=z^U}q>#3CT!`hM-*Rx{xlOY&u z&EmKWT<1?Fz)@MUWCrV{@h7c)+^lyhS9>LgS@ihXr8^kI5YG6Ap)Ka{`mF{o&zBUj z>&z6fJu;%RE(&2eH!`Y{W;#JA<9Dim2N~f8fZn-YgQSi|lrMhqi}=V#KBCIK@cRAV z|9$-4@BJP=^{G$cH-GatyE5nYb>c;*1Hg&N&(O_E>l7J#lpP6!O+!}zGi`XD9tBFT zcQb4&cb{}ckWlt|VbQI@9WZyl6qdXvt(4pKlM93KF>D`A-5Vhui(}H7gc&n%w{=$~ zI&^|&P{omK8V-{-+_n%nAB%Piw|RDKErzB&imY}R8NC4Vxd4n)34}QDvN0MDP-|Io zUzt0r-?<%_C=$0c6_o7TvB*KqoSXAb11Ba5u$eXJM*CdL^+Z|4kV{&s+=|zQ1s)YV zW#L@DfaSY2cwM&QtwlR%E7#_5%t9=w!QoTdWOL97P9$;&szN?`ST>~-)M^e!;t3d* zj;4zE+!%Cmnl;(VlvYZH>=!WRk@fQo8@O}5xT6@mPVnfZ!}!=U=OPzBrp)37oFtDj zi59;w)FiBiKnoxLP36w_lPGQ_>nMw9WuXO;S2w_a;ZJ}1(_P76?k!6hK#+*=Ax0&Lq1%$yyYSFtF7RFxJc4ZviD@sv z@8@opHF{{p<0NA`Hy@;fccI_~_V2kTW_fLEytfBbdX(mn~$dDY|jl_VH@Dj^`F_ys((Wo$?Gk`z);BIP`W#v}p}zMk<&{>XA>!prEb# zO}JJILnASyt!Ocq90f;6=o_sPhGx>p%b=?L9bQv!%){&?JV=*Cnt7~LErV?pb zzJ}&LvEqf`v3|5XE-%&9^Xw(Tn;y^M?1^!VjdYgL8WJ~>J<2j>Oj52fmXE>pOd=y$ zp=_sXmzk85fmF1NyIwDMw~}u=#jQ#i-@Z4CJCzz-pXHUfDec_~WC@$og<(82F}eCm zX9&k6l=%kNbj^*^X1n@H>t?s!fJ3h*G4D$`(jY@!5iZNU%rbL*IBJhTBER)4V zA_*%ZvEcVM+ATOj^m2t5vQ~8B#c~>RK^@7lII=_0h@LOcnk0``HW^p-$9g^AI2O}F zHi|+@)+@GNfU|^Ft46s6s~jK?6A4+9JH;V0r3&bJ9iFt%Yp{>?l8tyZz!(y53vlOe z?V1O_!5FdLDfV7~1&I@Jqc7z2+^GqiKRvmtFosa>(-lV<&e%O#_$b$BW@gkCmdBvy zgd2MX##1ixcgFcqRubJ>kCd0M%6EV3?j5x$><5@=@t#979c9$6MJVHYEtB>FVN6~> z+_fA(ZZK%kTYE8iGn}X03I*HOByXn^Z7br$*XW*Q5F}0d9B2vxGVFdZ{Pkd4*`|%! zx?50i(L~K`G)^w=aw+)O=T63!ZRGo-v{R4iDjDO^p-1rH(GQ_u4k;^NR5(JoG`)nW zOan)=u?;OGY=JF8v*g%V5GAzG(y`D?;Cfxh-KH%&Wm=H3n2L>HLMtGrB~{@5W+2gP zwryq6%M?VxCC$k3WEIy&Db|8nFghZ74ck$*^iq}x0#T;jPE=S6U3guh8B=joJ(y;j zg2^3r*+E>$crGv^9jmk!91#^bUJ;Vya_+6XK1gun88)Slh7i4xfL6;l=lXaeg+K_N zJs>XTs9;Dz;IEX}>7~_)7#T|AypX&@6Wu-YnevKqE+l;1*wUrTpOk@ojY^m@lBHRg zXva-|=&odF%Wh@zy?PzrUtGY=YGw76-hyj|$Co`eIlcNy=Lq{8)c~-c5L)v3LGm`k z&;8ubsf)&zZsFiPsR-E2lE>E=bHVsKE^IPu#-`CP-Yr($2`Gp{lD8Qt-6`mXCW&P% z9m#7*@HjS|g6#}R9^1JcNa~o3@$~Rhc>l;V7!}e-@)s3$&_YZvV_JybVR~Y>AwV28 zo=&kSr0+(piDe;BBz37Eq3TYxYjO2+xShwSo>z6L)}MkKTJ+q65Ixa1>4faKBD#G` zLiDPJ19NzV=xx(n1r{N$wj9{5r`*d4Q;&SVPCyGSTqepe1)Io<^-~%Pze47Ra4~M6V@nj7uMfh3HY)Qt)P69c?@K!NL3c1({S_+U%p= zbXH&K9nPPgz^S97szzQfLHR}H&Nwp?J<7vSCNln-n_yacNCcRv%lK?w^ny^9^7T&T z^GibTURanzYt=&7YfNXdcwlT?Hpn|Kq<8{!`Pj~HRU@YLrKK3!?HS8AN(Ijsz zxPTd#M#~n>^CWgWf0he;C&Z^42uU6hg*-(8zlTDK1dsitP@}72qxyGI5iWQNfT)6w zmZ^-H!G}gafF}!2s1q_+L^&!PA$o1CgroTurqi-37XlPj?6d+GMO3jYSH)?eQ5Aw( zNx-USkZ7i%w=BfnmCEwDSW4Bb;O43xe}DuCm5iq`kM~G%aNE!3&3QXtKMf3`7BCKI5jS2e{E^ z<|F@20zi333m-SgGzQSZx3)GPs^w!fAEgCG zJX$PwgRq^vMPgd=Cx10X^#? zn>JKT%=Ka!SLZ5NoDZOtQ^>apD7ZsNd1;uQkdL;7WGs%R=fX`kkj)8E?SSafb-RQX zGE)g8(sYTh{$U$5y#Q{|M#7Rd$kl1tgU!GgG2I0kOM72-#Pxi%N;dT3O6Ki$F?uUU zJeiogQ|UR`=oV;gEEgNdlz~&RG-9^D@2q&1si7ttf_}u}ojE?Pta#b<-nq|0aI;Ns z4v8Nvd`#S6ad^6Q8Ouzv$M`+!5GHQWP{7RHwMVb51+93mEG?ocf9nT^6G>bg9mC0? z-5o_n8Bgq`UhEY}^7>UmrJvZhByXpajGyCzB^lwx1;|Co1QWh3W-FMV^dfXVBz1 zk%<-xc?0=m^qOxq*TG%4hLNLbSjm;Mf1{w*a?r3{<+jc8%-e{c+X_7Al?8;$)xjvj zOTyDE+rWa2sd(ybi3)4MWRXKg3N0Cv9WIMK0ZYhKOHBk<%gA^!SbDVM^9BXEjLAjb zb8@Q7xIF#naZHYNmWAIBaLv+C!17YuD6^#2gAYEasuIxi!wocJ_?WoC#65b4xVfhF zk8;?S>npc!;*C;i^&5K&POk^YCsb{`-FgBj-`C3fg9I8u$N}CZc?SSopd?KUpk)>n zWAL~mW8E4q+(AP~N_Pqd33G?}(n~KXV#gw(bkBBkp>pB#+9?q=H4`5k{Qy2V@&Sy+ zJF6_tdUz!)obiqI?;?+h86K8U;648}BNnWk#sB>MG% zar`6K!{MnRTsk|2e73u1f$s*C!J(X656V)?RF=J9q5Ov*epsErK`#k6*Oa~A`ObF~ z@%#E~SMdDoT`afyv$7MO|Rjb?JVxj<9Z|;u*E=I=RvGx;VMrfsE)=n>yNWw+G8!~EW1|BawhEI%t4AY6u zGr-FJGENj&G`Wq0D5R+H+W~55p`0k<)I?q#xV{}08%?}2w}j_!F5%jI4Vkuu$FtM8 zKRJ%c`1TtG7CL^dyo~sijzpS8SfdF|25Fa@D^>8v^E)rdI*~}L(j}GZ-n(kogXKh6 z)Oh(y3C9xIx5en?j5v;188o|izHZ+j>)5_qA)7_D+(a;2L(T;<9hBzTD;%3C$h?ce z^LuMLr7Zc_d(UEMfCwJZ3Av#z2}vK1#NuK1wD^%geE#MQ+^yAC-`RUSIyH?m!y~Y| zpx?qx{6V$kv48Jc@&*Vy*-emykl=B5Me7~O9nYrgv}{N}!3D+17cQ_UASt99nr;L3 znY&7sf$4QWJ89#3Fh(z_Cvbo65A9=-pFO1u~(g!3(m{N#Hmw@LQGdT0fnUXah>wN?WauRmpT=$?Jgp~ET`uNzW7 z+{6#6uG|gYO}yCW-~uJNCP5-FHY42{~}Wz-FiG1SF2(;DMT;hBHIDcQ%8%T2`ACOP|iR$Vtp<}NQ7XPG#jmq zk6b>1x{$C+#fDq+;a38<%c9^HJ;aJ_}Qi>xaeTWGf@z-*XDTk*rL>JSVG=2vPLR% zZ!dhyzSu&zy~PF+LIMlP!Ba9MdMpFejrF}5xKUy8;}1M>3RZmguElO6?E6j#4&_R* z*~AxaTu0UE&jy99eE;F2>a5zervvQ*N zgiL8QA$k=Y5~7#sz$!q2TxmDpCtEUpS_edLC1ZCHvQy6k`Jp5XQSKa*rtM<6!Z3jb z>}3~bHKwjOe^%sYLqpmyFny3EM-Xy0L;+7QLDcZ=sH4W5uG^jSTADg5)ljv9MI) zk$2r$+na&zSteT?IaC-pD;~jhOgXm`dCFMYZ`{3uH_AoW9e8DS3bt@YWdEa+(XG57^3*$9}L33=476MN3yL z`^c-GSwf-k+pL{C0sGc=+c@SN#f9J;rp+l;ZY3&6^x8u7Mp7kAr(7Y8(H*}+sZnaz zgy`8A%Im5gUKDUvvF6@gzXq)!pUd+M!nYDHl1OICE{Vb~mpypJ0LhAmxR5;v2Vk+; ztO%OXctS{7Le-4hO0h7BqgZRI5-{1MwJFi#H?Rg>yT#H$`z&ce8XuHwX!8xE?4Tnz z{9Yq2gvIpQXf4)PU)dNc4zcE_#EhKG`)u6kngwR3Fk~+AoZ6}o&|b<+#{7*9XYjtq zPN;tmB6cdXKyf5Ha3L|~=C)Ts zeAqxHXDN%`Rwy@Y+@7!C#;qb2=Icmk29Bk3I2O;Sb6rz`hP1qv(hXHsWPJ}jAqWeV zh6=RKr|7zUyI|*M?V=5DA6mkAuB}&YVd3>fw1fnWOJ9-^+}eYHjI=!q9nI?Y)>Ez@ zr|F`4br}Udb0M>PMf6zYo9EP4>%Dg`rjl`-I5L9!&P=YpGMJ#8+f46l1`@m1i_7@# zy;+rP)oZYIDOvyT86Afy8%`Plx~1>J?>K0dJR;1leV6177}hU122QflIP2drE{zr~ zmPlD^)#3!@`?^I)dX0_R%SB7KEZxw|pru=usrvl67YnePBroh6Yx}WpbUU-q=m(~s zQOBSiPaW$hMvqyyuGYjvejdkjnkZcoz12T%1NNpA)KN35I69Gvlo%0$MDMy=fia>Z zKa`N?vigT@Ko{&>y^fns4aKE80%q&hOq_}3aMH?QM7O|$*5a|1nt&l`rNv;rQkO*? z!)P}3wq%TBsVtnj3wys=@dV?RknA7^$L4|mEtKC_7Q!!NR{9w6QSJ%&Y&2;zs?n2N zxP)BCN9oD}M&)VJYPlE2EfTLnK82-HZ_hPm*QUpFc;X?Ju^L?BPPx=6$)o(3Z`ASG zYghY1@QApqiF2|+^yU|E_vS5CWq~@827xfSV5f3A{9LC*chEtC$FZUAe3#@6Ft`Zm zntkDg7u3UI*$^fktW7%L-J3MwE8_NKM&R^E(R33$m$)`pMYH&3@mRa=VD|fSxFmh- zr1*8e!6MnFjQR3>b@i3#U?%J0tMkYS;mhqoA_CpVULTTk3{zKec#mA1S$$Kms-g4aOOUNad@=kEiCoEXz#I^VLW)@ z&_HI?t_5XVDCeSr1nBx2T2wy(Cw9mgTR0Jl{M$)UR%I)%H;=UD`U~VmtWqobCB0QZ*mr zeJZcQ|9}GzW>%#HDkn}L=fJ}U=Nw^;qFBnfj3m4tAT&#>!BN-Y5f=7f4 zpX1som?T5;%D%Dm%b`PuR4v1;78{cT{8s=Uvp?EjD44Y?-sY&6>}wo;1M_fnMYA^bpRS99OY_gN{yR+Z~Z>-7yMZ(JNsx-4LSJnd`Rf zH_tDXN#Ymk zLiAcPXL}bnWJ%j;LABSp$GZ(~I?kV(6p}X)c^&K}LfIBYHqioqWqAqTzIRux-F{#~ zmOpmgwT|VUogr(4SF3{X=j} z4jT3~$s?iTj)ayUPSmIjoFtDEbdZUjQq)53mX?+jktM<7Zi|bMnZi-~+AnlU@+c&j zB*UE|`$hr7tJB(kaV?G$spI&_=!bBB?xHH792LrZHV4lkRUBA*OcPP=aK^-`$UicjHVK( z&B-`9(JWy##vCp+kP)JnQ=7fjKkNYta(|yS?}V6j6D+S%yH`cB>MGZ5x2>}YA$XiG ztv+O6kB?@R6>oAZdYtNBg0d~D++Aum@zUY~-Y6AUU+FDaI_ZSy!uK4S+0h1vI+3!M z`ZToe(Qrb-7jC*4w?~3U;|ePuFn*ew^pN-ssxFO!wIpxQbn9-wXR@zJ9?zX6G2m__ zD)<0H3m6Ar5GN+dCl?e0WVwrCd%4iK0Q+74E-J!>!M1M&j(1r9j)H9eE*oS#9eg(!D~0V_R|1wtJK0Lf7^3%@T&}HVUR8W7WMr@^lLxvsQ2P_FQ8& z`Tq0MIC*4r-&mJJT@htYeP0OPiwkpT3i;^=Mw2PrH!_Cf`JvTUb_bF^>Kw}DFp)7V zuumD!5?3@pggS~pN%&Y9f%2Uj_x*&>UHh&jZve3qAx_f7&kdp_kBfslBkq#8c<72I zkqwFIpdx$@Ta9NZ9M~@=k5FJRJD9G4Zp0Qc8RH|PAHl`UlSpC)uA7nZOhIe&vZQev z&lM6qA1z@PcW}NC!?2}yMD%FUYv?r;gs`O&LM&EakAk~y1KO~LRNjOU;V3hL7P*=b zy+y-8W-5h5%8a}Y?k!YhF2$5G->yLOUV&qul=)u1QAE1~f)}D*X`wk+!>AuadUdV$ z6JxSwtMgT~dPtO*jB)q!JjQ$tIaxd1AbQ*Ytb9#xWg<_286D2xk^5#aJrO-Nb+1AB z6=g0pTo=#J-NO|jJ^cW!x#xyQ@YvL}O19_)LQ5ZG*62-Q;s!H!X<#9#qdaG9JU8x? z?<9QmK+#x1ug!Lw|Gmb$?%D%}K_z)4cw88aQR5=v&WV{&v~UgjBH?)Q+H5@8ev((Z zXGvfgTS$V}?LgP#>BD$(_#tFtXK<%-2<7@IS;1$Zxzq4mOWI+I4r3`{#%;ZI`Uh~) z(yrp-h=vg%YkCLGs>fW|X%|PP6R?D=b<(3*w~6?89Qo0N2-9evB+;u2(YqBiFn)Xp z@kDg@tFNkJ_9T6D@sdcmIFo4P3>g;TXm{jM1xlE!^{qICCrmvx9STiJSEb zygV>66)ow6;B;uoym+Nq!oOcHmlE~NFL9s-A{UkA~Wr~kKt z)qn3haMFcWrwD7!G47xnuEO1b1TL(9$3Rz_!NWq%>>EwqBuTXF4Qfmt7cDJyByKz- zI0P3mP53nB)7&4{_UonlnIb4_CNP~Ef~gsJrF>7-siR1#x(@D1TW{4|EHo1E{4r#; zL&#`s6X0RxR0W|K7)zvNlEqPu82C^4ZDzr?aC{_>THRM?%0@-QccGcGGZ%8{$Y-NY zYgJ3ncQ8Sv>9$qvxF}dT-b{$eNLt!T(zo*ZULt3im@+La-7M~CU9X3-c$QljOC=Ck z8eG!&9`%zh(_?W9m3viH#JHbmR&6zQ$+U$=z}emzhH^<%>ke8nce*h?+&CPX9K!n^ zJAqGs@&WwxCm+N^_syte3%YBgZe#`t^gz%($!jy6ad~+O|HtcB@P^3iUd#YJCWJYj z#wlY6iHZih=;HmykKn13hhg=ApsxjGJS}px)-l9pGw|7ReE2?E`@&K!tX)e324nd+ zmLz-B8PtD#Kd-%-7c3V;t0R*eAA9Vv)mQgF)U$Y}k~~f_PC71F?n3qgY&T=nIKjAh zn9aoayS0U!Ns_p@SfG-BA5@Y@b9YGcxT7PuJ7VfR7d2mF`?nI1-2|;RBzjZH9Fn?; z@0Vv)vI9$}@TVtJ#tmX<%0G%icIKKs<{CO2w}7-ZiKLc;t~tmF>C$5+N*xlt795Oc zMW{J)AGt@A8OrxK^4UOdBW1+kH=})yV4q}fjG=4-Mmq+lxjoV2vf=S*bcr%Xs@_}) zKHe)(yvJp%tg3^C5VLN9{bTu&Ox#4w(&5RCNdCGBW;f>K`N1Zy=^|s}szUVLUDos)AIYdQXn*V@7x9VrpU0#3AI8x`!-_;QtD7-n`;XqO zfSXlrzA3{t+ob;9tFPc&vv*Nljq&ORct-W8nZ#i&i)39xZP7-f;-J}Zab{u^AG~lJ zC&qc)VsA&5#sizzMWdg4hj&I~pEO#z{@rY*-#;tpEuZ3(4MID&Xx9 zJ_ojw7fEYKUc;SSzpbWmO~;Y+Fg`hbAAa`GLrMXzoh_tLtXo&5pb-*RwquwVqW4B6 zz^la=US8HPTQ`u>GB{?5q6(7G*SU8$0-sXDcTkE|kso0;E0tTcdFs&;*!Iv!wUL{O z9;2u3>A6^Fx1bN3$c;oRC8IJah1^wZEv2C2aSGPeKlT}{EtivLR$biP2@xBCN1`1XngIjiowb%PmZ3E4A*n1J`XT6-Tk$*iq4D zTI@K#&m76%qfbrar#^ZbAAj#jJpRC8oH;&*iP5Y&9&M*`dQcGRip~1LCw{k9Rdw-} zTW_ARyi+h@c+yPcxR%E-Jr468%JWS$%Pu_GkTzt~!gFySJ29;YUO!?^Dc9Nmojgl^ zhD4A0jRY~Q%}2`_OQ7*5^#hFsBz$!1Qa6%VlLUs@uf4*%i5CYDBu?SN?KfzdV=yWw zFn2j5cw3#+5t6(?M!5L7Gh^T_P2c=?SpROTW9E8^6{1(bCnwI~so0p1h|Oz@aVFS- zhh-5ob3%OP8X9ib1NpbDjwnid7EnoG*ezfxHiA(-C&Y1cD{#%T(KMP!54A-R%8oW7 z(WA4i9uq;H@{yZNB5p+^UTi-JYcb}+myLEZ7tKOVqF1fiGA~^WWmhaNI}zl&0qp{!#mu}s}tx5%skguJ9#BSV7;fR(+u3;ip4B!<#_+=k<)k8%#5DojySkEIP zL%1+Aj^RviPe2I~&h2i<2I>OpI}*OI2tEw~)PrGdK7vL9l0NDahWxNp3zHLRBKA)wJ8ACbL?sd8gd)LXjM`QfF77huUgmoT)m_Ur za`7>-g1a$VC%Hr8qGg-=O&ZpMcaDpWv2QP;Fg}W9Uv|X4>JHmLw;wmaIUSDzxNtxxo5%-;4JRU zq7)UL7a%4VU0}NOHPBT@pRY2+D+|EwZ;lo?SGkLk$i7K9o@Z^e*w3|K84PE|H} zH5U!pc)6R9?;m>LG@d*y`XkjJlE>#rcPg!M9D{Cxq%XAe@w-X>`0r46g!73P=Mu>u z=T=De_@3Pu5ttN0PQcPI=gys5ef41A9ZT{U<3?h|3DpmhN8v^SL<=6t5GOGcEJ!l9 z5_aqxCpb%wFkWB~&B<&d7hSk(r`3+xvoy)?h4pSDcru0yx9;MZ^A9Sew`kW<_ek`j z%^h0Td?UcHD6*Q6riDrqm4>|P=tu=gq}vH-few%SB+!r+!ELRQzLpR~&1@qnL?$MG z>xAglJr~JL9HuA(1`@V~=tXI<%QazY$Y+y6YGe+zq7kR2?W$52436hl^o!^X%h*^A z54EMn>MOm2FCD`WV%owFeee>Ve)N<&cQ&1})cYt)! zS}EVSi6uFrVh#xc6*DgqKFYPw!bdqV$fPeMdFer(oIZVe_0@xccPz;x zA>kyTQ0ldbmb(p}JARR~RaER;)Y%he&K@1gp=Adup@K(^)#ba3O&jI9?7EvGwEZ+j^c+$# zON8|bN#Y!h3+c+RE|>^*el{wvP(&|nD%UfK9xZxNKI%x@T0&39M>DXi(ogwp6tsls z(W1wT?d~`bxE&<8>;`mEx8+_5QJHZe(agHtNis%?>4#2dDDCw(WCxL#7z{2gyfapB-ZM6nWH@Zj^ytAsR?}G$y508k6yx~m!@S7wlF<8 zDspr4^-Z}-iyoCSEnnR1@h6EO6)|J1C=aQqshla_C`WjOvV2fBhapHF=r&~1z*>^W z_Aa%W_*dV14%aH>P3I6d14-HR#oI!LWivQ|6mquAyONJmv8j??9JNE-9{jHNojrz+ zTs(n%s&{7?uSY*g-db?1IUm-#cR8oHsoL25_`N21oNOdN%rd2rqxFs?uM;5_l03RUN%FRuto=l| zz*xMQLYwX4;%64^pn=bUF&!k=g>)8Ya^va@*&B_bB79NRGwIcmSHp?nA=nPBtP~=v ze-u#2v*P_?y@^G}(A3(pQ_o;RA3{bGfvmS-ShCafWalnqO+=6S&h5aYig;QSCw;%} z3Q36qlF*W4V{$yDTtHD>zI5H1hK^LiRO^Io?G>goDa0xcYD?WuxY!CD3s3r)@PPDi zO6Gx#PY2!PDl7?K1NZ{{QzY!H?kqg3t`Kgd39+K|I7EDRcmc6nC8WjCycdA#tfW{4`IZ%&{%L# zTyCN)&m}6c3&BxH$mZ*BfA~=x8yo6tF>{h2J|8~&PM&`+KwTPcBEmR6{?6w_-A;oF zi62QHUn4k&IG;kSol{@?+Sk-vWQ{-S=w5+F9^QxEJpN?+sGGPc>ea?(u(nHm1P7E4 zeCwKOd;2)z~Y1^!d=OrfW(fe=iJ?qfbyKfL26$Jj(50#!Z94S z()hV!598;LJ&L^9`EK~N#yw0(yp;(Emf zd{KCN0lIFh%XN5fEF&*dglFbP1>-F3vXJ>M6mIS{mglQ5mzo#~Vn~>V%6J_c$)crd zB?89}596ml`2haA|ML&w|Nd(qSH+51`ebdAQn%JN*CH)4+zj%x1eUCzn~Wro3i^c? zUch(0^Bq+fp4Ky3{C2XD?hD7o=EKRt%~4vnej*iVH0?^J*F8f*^@H6(hp!twMC*198EN!n_!!`D`g203a#*PXWpmN1;Y1}>C;-qH1nN&N4LTDaHqrt zL-NYS#Bt=#glq4DO6<) zCMNUpB`Y=6qJW7Cbl0YnD@UNM6j1IS4(BuQ78__Vo^6MUZ`Y9fdagVNCqQmQ+9Pvg zz0%$Y|ozYUg5iDxb3WbQum_(}ZYryj$PeCR%0Iy;4tp^S>v z;M{Ctu#Cmqej68-~7Mvvy%QCmivRR_VZl}aoAPMB(Ne-#2 zdxg(@<}+&ie(vXf4!`(|zo<4jU;p~oRXcvg~6RT7X%3&{}yJ}_HvQz z6dMs`B@BckX*C<(auu^^p~*DXhzNuoIBi!5mw}`nN7H_*>vl8nEzH1Uz_xB_umT;; znkz!Ig+|$d)&Rz|6lM}x48@be$vk=gic^;tV*}k-0G(O8zNTEpQ9xH@OGsiip9D|u zjgoaskmT`V7A6UR+a-lXD_&kU&~C9A`IL^HLHZL2q19|rVnTk}rV!{YT;i;=r&k?C zQ2P}}xLfd<1u|Dy5Ag%foW+m-$b-0aZW=R_L&#05GfY+?qPp7!djBY=QGF%=M(1!=Tn%u zOMM^CDQ+N`aPfsNd_h_HIH#z;_!;(bty{iZ;E7Kpk{2&tR8~j+&bIvPfBmoVk&k>t z>3Fuan|Q}s@<{S1w7N<1_F>~`15{*mNyH^R2=1<7L@IA&}IEp{YJ zj4h_gb2_XT&*oBi(ZsCIf8`C7s8c@ zYwBbTCS*jF>5Sj=nLRQEm+eR`< ziyq6QB->_W;zbLU7i%LyYmO#_t+741Qsh9C72Up!2QpTr^9~NaH>zpcuOFzzjb0@%wQ2@UU!9bog2s zMdw+}w*CT3&bQI@@5%;7HXAVuvIY5p?4o?5Vx*Gn=EitELIq8^$;~m>D=*3#UZD&m z@gnh{at>t=*Ey9muWn*3$x9?wl2x9&b{AiJ?KT$X>hNnaVs#I;Y@B#%h)V3~^1K+! zrtygfPT{c=hjyh;b_x=Fj_-aTdF#RP;+!CX;)a3kXIv<&K+tW<%xP{KINum5@F#!r zCyD^l)l1?P>bc#5YbRVkycg#<=kLG$xBnKu@C(17JWcPCymijX4$b0U%uaW_q(#EHMwI>|Ot;8GFr?|UJH zwgPvcBzd7VG<;rk0dXgFbovlZ3{5C^>77PN6*7*RZAq(KAY{!FvX;<=7}zo=BMNvD zCr@ib=VvtoS`bq%Se8&=yp$uvkA%X<5ul zeLK*KVejW49Ut!Vy8kXJfpz2*g-M=pL z|C(H{%ZBGB+@LJaKafpFOxAd%=Ok}EC`&@ZNBKwj%KKAUQz7#2ls}X`T-TIClSIRjT2KcN9RFU&uJsz!p`1(fMlqb~Ti^PY`u#_L^hZ?{3+f2!29m!=AAMBm zh+gPj>UFwmd7r=Ycm7UK%8ng~?Ao1J6!-v1^ma?~C|tP1Apzn}fV%?{Jh~dX1>S=@ z3QhpFwcESYtw7<%7zXZQ36dmUq2LU`XF!6>F&I>mM=KC;Gf3(ew2cqGxG3G(VK+lh`2#SRzmT%fo~y&IIRjaGgvEq)X;(tVC$^60jU+7uiw!vCy*t8eC*YDi z` z5H6k^LxR;mSrmfnGjzXE&hnyCCK2TGAi1OEjk1e!J}lKj84!LxiX!EvhRH|QZY|?` zFWm;s~N6yAIG2tIiJxN84iAS8Jl@BL2l)`Iim zKmDiwq>L!P{L8HV)ti%_GkEuzxWIM)KC4Ca@Tg- zibuR-EqNp(Bqf}%JN3PX@ppV!6fEHxt=(P#>>uyJ3CFhfgXD2sIYtaNCduP2nx^Ef zvV%FE6sROk{kAr42QFmpn)qz^%=mjqSlKs%y)uPloz9LalC)&kQE^+5iJpp;gNJ-d zh?WpARSPd7fmyNW1u$0KzI54ccFYvNk=D4HI&;=Rqv|5oj$zbFqQGO@garDIuTFJH ziO?`*zL1QuPiw*NpcOHlwNz{(KO=A37NG^tG-5C~7v(dZ#2xV{ts^2dmv6{(=;7%W zy8*|6b`^1oaUJ!SfbhPQhg{c`jg*nRLU&?F z^eD^tZ(byTl-(ieqpS*L8jmmJ5pT2e6@P%(&#g*$t+*_=x(`4La z3>D3bl%TU)aL%1SG=?90_#7sOx_i<@C!pNqI8kSYGV>sS8vv3m8fZwgICnUosLOjr z@MskJ^FRM{bzjz%{d<4!@2PR^_I-$VEXm`8r3H?bJPvLr;5{iQIO*vE<7u?{YciB)y6*3J;V6I?Iz(`lGjgb<8}z27cF^g9~Uh%g895QYNsJY zk9G8j1-puJ2SkrVs@Zlhk`touF*90Tllw;j-^YXsEgnNYZmF2Os3$Sd(pUFAw4DG! z*@aPSV^|2^Ck3$g`t+mhMLCV&0ERs@3+9A4x&uXWe!r%i0R5iy=wNrJ<|u zi9+i+r zyyP0E{30pgMx5?k#ud_wLmj}^s6QIAVJcNyLhh<~@zuNd!q;EJpZ?V=_|mto;^y5V znyoj>p5!Le2(mg#^7(#%1&^OPbr_$x|Fqg5?G^fcN>snVO#rQFG+>bA^+JcQ1$8Q8 z{#Z_hyx|}I!+)qeOuZm@#5j&Tc7tdk^p{0uFcyhg2wW8KT~)6oL@y4VN1b^gDcT++UXCb9UxsfikrYxIy`~n47R$1*2AUbf zP+Y8|xYR&>sRg6n#vv<>DVaYRD=zP)rO;Pp82J4>RiiK^>!3-ZCq0eOUJ_8cw3z(C ze=iE@GM=Y+{DqNBl1k*D9={*T`Zm+_i^!)*D-x*3A))G z>k|o`9W0>Yy)2uduVT*r&$7|D0k7SVHDC$xGvqy74=Y8#dnF&Y0`Ey##BdCTW>8-9 zC&@~+TF1>>ck#xxTX_EEJNW$9UdJDO?)&)9-?*w=wDrbH?XAjLqIFc&Rg*YrbMyuJkh9NEZ?HvLM0Vo;&6WT)s^q$^x;KPR$Ol2 z`s<6h_3|QGuh(&?Y+|%&;_!3qkkur6R#!VFG_DAvH zwV<19X2im^uY4cFW`InxKkL3Lh_!Lz>3hgczIjG%HxWZZ*2yW9y~pwO$~kC2-NwKA-EZK( z{-^&5zxmr=#23Hy28!II$Q+I$T5Gz8R;+*W?d`LxlTSXWE}neBLdgs#=r&^V;QG7Lx(pHu60lB*1s^P{ zT+1__gV(N)W~cH44D>m+0T7^6s6D=)^hblN{A zHqa$Xg4k)CV>iLMz?~7F83hvE%^bV%d9!~}7BrUzFMeOuZQ=RiZTxT7zl9e{cRNx~ zB#J3fgj&l&y)5HxM-SMin=7N481s{;F1D2WHVP<)O?iHKEskNw#J!u_AHB75o~Z#% zk0HsUuiQ4`vaDi4&gyL+3-y*t*4PXzt&&Qb$mdeHJIBJQZ+&l8(=p}%^VgPEU)dj^ zPBVlklW0w(f%Cr?AX^wLX8 zjz$gN*)QP97yta9|8td5`}hC;-|s1j(O)agLP> zYO@DRW=--!BE)zux-a`l@Cf#eL9cxHY-_jTAvgvkc1*CKshF-zPO_b56LG8<#L58H zy%GYnvXZcplN~OhcTG6$WY7|kSAVdbr2?HD&m3m;E#pk+gs zwwgS|f4Pa)Vgs5G%&}Ag!`UPfmZ{3dtW|a@kwaNT+8C1eIIj1Dzo+8{GJXurdsP+V zwx1A}@f%4SSh{>$WdnOc(gPt6sdOA>(t;iF#F4!~Ovve_AG?OB3q_cT-Hp2z<4G~o zDEgDQ(aOt}#$6|YMNb!!C!1k;)?1B)FB^qcV58>OP;^UJa+h$|p2fB1b-dBIj(KMu z&7diST8E{*S%kS0aPBdd?urn)uYBhkKKrFt@%3k~mZ3EUC<;l zbUm|wyCG*J!X$YlRbdH(eu6}mgq3buT3kuU*%m(AwWK~O$qNY{$DNm@8<-H1HyTf4 zNl0GNX~Gr76$K=EESM}`A>X4z7oul(K=f=OR52r_N}?ETR{M{3UlLKeeT{^UtO#hY z<*U;xwgbr-k5W^25n>ZmY_x?Wn({)dCFHH{01XcrA%a6GOC5REmN8pfvmD4%`)zCmoY{ZonYX^ZKLsJAoz}gZxw- z5B}6uq(@q+u3=}O{f+hTCQuE=aMR9U&Mjcp$;f45*^8ke&o}C3XDvix!)ZH04r^Ex zvN!L{VNOWiJ^6XZzKgr9S(Lr9tS?tcpNz3wTghF93tYdwtlY6*{q8kI?D+4OU%RKQ zclD;TE9+Z27e^xv<*Mxm$74@Fa`6=2bLKFHWrMcYpd2L0qg-dwT0e~(y~ed`*OaG> zWQ#|R9W?BFl1GHfxD!xdkid})tc^Y6_mBXE?mqrb^20c_y&x_G+dzvO!3DNkl1KM5 z$sI{7$qp@e-H0zF$qOx>{TwTf56LB;C#{JbqtN0SDhAFG_L&yp$&7^!mNGoy_3~aS&l4bIOEn#op#SF0h>ji1K@A?IPJ> zA4zx^UlCfnc8k!G$MNiT+~8*5n2^{pX@vJDAt%9GfB%r=@pY2FjYwWNkJb~s_26qq z)5A!w61}3+h)ncI={!+sni&XrFcAoEAm55Qdt34Wo^?wiB{~N@Co>B8{Waf}zFX?d z+8`p)Q!ZTjsU=M$nK&Xuj|cgOf3sUWkiCUgsVO&bk%5MxxQVz>g}S_!mVXcPgov_@ z@?7_WihB*77?%lLEZtmKedVoig=hqhjB8FdH9}|y#S={{UUs5^NB`Otq=xKmt#~n* z!dFwW8Au6>mD z&#H5!=UX+DM20QjZsOI~=JECKUc=|VdIjHj?gp;jTtd0pQuDG~;98H%X2l=XQD^M8 z$c293{pXJ1{pXKjG~4|{@^^wT@sK)$I%p%gxL?7_3vayfhKh+}Lghij!J*?Ff|HcQ zCRFO2#H?XM>m5sOkf`uXJ5K09h(BN(LK3nQu#Y5Qj4vd)Wsy+E0kEIlTCn^cUOR1L zr=Z1^&Vh)6yA(x0%a1Y}-cd<7*tF?Fe27{_Xwar|{{+58>hA!$SC?6K^Vt zdSIiTD9iZAkg{}DBseOHUJHwQ3x&y)au-Gg`*pinL%X0OGnRzWLH2A-h)g|eB0Zgh znKFemyuH2Z7^q?ccV1t>+$(diuN7gxu>{Q5K|@l!gACz8087`jTS886Z%pt)G)i?W zU%iWh<_Rg}yjlIj9wMH0F?DeXg~K&P_}&gSlFuUrJIJ8o7BJtK!PWXHJX@c{w`;l( zJXKare&MpO`+15#>-1-e0R~uRUvLS>ScU$`38RHjql)p`10rQ z-~IMy@jw5YFX7L>_$qGPk$L9y#zL&g^JM+Vg=Pz`$cBD^nY8aacNF8fy-&6X5z0*J z%&p|&egq9W)USJK$mu2Cu_TWONgl}ptwAJrBtRrTESO7|$-KM>~SGCy0&DZA9YB(65)^f9!!4YC|DDxW)`H`2$VS70*DksOUEC_`^QeLz7ib`-$glIMxnq2hR)pZ{Ol{O zC7ii11~Z~nF2r3SdR5lZJ6>3QWqWXp80WNT#gIKR1S=CgNvF72L#5ork&~SlmEH?* z3fQF@>i6DW?qD-`j)&L3^%^D(56L~W=+TNdda{i1GwaLd#9(M+@M90)y7LIWP&|Ua zSPpQ-v6V}{pBOSnFr=MCxqckqp3UN~?%H^{v`xmkEM2WGB=2T_$d6&_NM_@>vbdy9 zlj#Sjb?zTcqPD!KycCpmoyz=PfNco%P^a>7&=Hcne$>g^3mgcNw^Q)JGQolYrHs>J z!Q5`TFT05_X0Ve5&&kX5aGuUVxAT4X-KWS9``rtKtGL-?#c|bl8E1l2Jw~-^N(BGwZ4w_;{f@kC_vBBva9M zqI^P&%_bHN2h(SVS6+;WM$5yZ79epbi*zBi`s((mRpfs6DmZ>-@2mH3heFmuLRdv* zv9mZrmZ-V);!R|nx)8lU=EmwD`iR_A9mk%W{lUFWA$9>Cz#FZH@x{`#kh?Z6*IQ_D z{>$I{K_Tdp&FjM$(N3dSJC3j4P2x+lHr}Y(X!$D{tJ}3h5xl!PG`By4%8c~Pp|nbl z>Iax$acnG)$4?(Y+qG3f084vtgU&D;hNSd*1HBnS85zpZgM@e8wFeX=3$)zP(#6bD zx@cJ*rB?)Kw_v-t(4vCwS(3Z3z%kRqnRL+WMau8*q@7X0?_?Pn524;;cbk&~9j^k&JJcJ)Vbg3iPtF%UC&Q^^o%&dorT=b+Bj8r(`XQgX_AxVDSs>oTh4S+rw961!A@I11t^7o*4PICMegdh9;jbRNK0$`kln z#lY2O49l*Dh7UMg1FN6u6_`Yk(F#c82uk%Ce0M&HZ_RtSU2CK2vI0+AHYpL?A#c(v z8sc~8;$3~MhfpC9@fhwl`*%7^+A{IU2hZTd;X^9E`1I-1s&*UYHVGcXZFpJ&$sY|9 z)L;D~eY{UMZPIKgJibe_^(1 zKl&Gbf42n>`$VBet0c#P{b5O)PHXywM49ai$FiG(E1?_ejN4C>=uKb3q?v~iafz)E zJr@n50X^elGT&Kta?NwFfCiGIab)t*i5}fhW!J%y?qK3{0lFEjy-Xfy$_A;-p#IS$ zvg6T$#7Ua!)fS3Nb&OBtXRApeb_vWmaV)uQ6>BH6e)XNb0VC~ldI5>{G>Y|cTwYG&)uJK9PQ!9b z$CB;Kyjii_bpl%Pj0O4jYJXH#JZ&N+^SaunGiqtYo62YL{`1F>NhOuRf!-H}*097C zH?+K1>4D&empY7LMwE*T$zkP$?exP=L3!CtSvg2}Hzseu(aEGE>0x38P2VI7+#xaf zfd3wJa1w4uo@kY1b};+MaUsE@m9k$o>p~&WEs{rp#h8>ZBbcO)1dj<8JBgoQ+jyKE zg&~t|!uEC(mL^0mJ&GS1K81_^FtQC1)=nN17{;iULo&8`yD6SqZATG3Lx|o)heWUJ z+9(?i;svu~qPHaDQn7sGW->4%X6({3N1|8b@)_=c=*j2G%XN7U4)VikB$9(AT;slr zpwUtmx!s`MkPXFR6DXCX(?S?~O!NX7#>#|&yAvarZ5~6_9flL|S@u>j(-oW6^GIS6 z#l|phRx)xWakpmSZe7D{!;`k`B1=~mhF%mUJf|ZT^nql^EnL~W)QtX>OvxuLJbH2( zQ$yJwcmXJzNIbYf4~y}W=vejztObK1PjJ;k@V2rM@3I?*R;N_+Mt2tguAtkiZZkRT+k$V>>~+Kxa;fZ#AO@l z2IoC#9o-H1%=mp2SnLxmu1tst1zRTw=SSE+E^7XpV@6_3Vai3`4Z_Fot5Co$Rgl+` zBCu0vv|?~<>606SD^pGv#hcS*x30&PKxcv1wW8RU|2)k{)?&Rm6SgSGsIt1{uNF*} z&uXF&y@&;q`SmQ5lFVAL3}dB^UW5}l*e(``4S3#dDz56|IgM!64`$q2$+#+-Ol8U= z)%F_cq>!Rw1x~T5jxgIb$P>At(B#2evZrPd>~?R6iaQ=d>Aa58A(0R56dd0aawT&> z*q2BHLrj@Q`9|VL zSw}g?*D3!(8MhNTNBzkYK$K_$ss+gA3Q3z}qz7yHLJ4w51+>V6_5QA~u`4aws(3rRV5s3fb5 znPk5^?Gxulc!dcX9Lq2!lWh(KA@92zVaV@b3?#`mh3&=TCva?Z42#VcUSBR^uF{0p z(va{I5b+GF9jE@6`|^wd6A4Y!a7e` z2WP9+q}`dkv_^zpo2OVrJbI1i*t+s)@*Oq-x^Sp+-T#ZB<%QF6R%|Pa!0pAm) z?6D4AT!@#306Z~*MX`nS$s7+NmN}*?HXcjLT1vq7l5o5{8crT}Y8GzR$H~lqRVrQn7FHF;?9bFqA=^UPa(Mr=LUDY6oe$o{K>a+2|v&KZgp?IhtG%K z!FKa^22E4&j*Cz{B!s)+xwu=aq9N~V%DgN#Z7kP0UIF560tI9-q@{)G87iBPgpLQb zH(_HslT{YLPKX|pF?_v^;apOPrKs_UWQ|}PQYx2NvFO<{4iSkL+g+FYPEHNMt2+pU zTyiY71Bo83dC9bpULlA(Np|Q4;;e~QuAo(v&0n{R>+uRr|2bO|(ifNcokLnHz|vFjgBWbt6qvHX;Cx#@&0|9BOokY6 zLlOuvY>%OC7jV52$F*u33qtIe9os9!gdoSSn=0WVCYzyNgWhd76@#CUHNSo!djO92 z>4_2i=)-4mbaZ##56WH2I1(|2v{254dX2J;@|12|%Dhm{aeaoeZYwz#Zi@NcgRUz( z#h?D^pQ?VbycqTCLBoL{dBl2>M}kMo7vmH-nQ6Ua0PEUGOfta<&q+JzyA$?-N3De< zkH3?guzy^*Bo!oiow_o+363R6Cxs1#Os8OgI#fjJgxpA0%*}oWaCID<8W)9va&@1-L6F;i8Dur;nkeT7QI%}m1m+OJCu}v z3qh3c={KfE5?Fry4qDab>MLD_h^Tf$o*(LnsZu$zR=Yv;WIi-5#?U;gA;@e!IXJ3y zA^fv4-Z!c~X6vTRs{%&iW5^k4`FmSt3}vaz`L-^^FNusc1>2p#_m>P@tpvE&>@Be) zNU-#nknTkd)^!6$sXtacI~RkSl`)LE$aaaOX(%h+PdswI>u1zbW>F4Nwo%T7q%ZV1 zP|oou-*PlgqA#lfx(@C&yPZf zS;5?m^28B7yPfoj-xU%(VlBbj2>d(8lw%lXvT;suZqP!?ac4Xv`^WF$d&BSJYb4rq zE0ch8GqF(|WL`dVG(Uv6knk6T5N=iUm4B-{E*9!d%#~ZHh+_3@4Kv9+4qG`SV89h+ zOl#eCpc|E^V;q?tf>ZTGp+_fA4QYdx)GmL^C4aMN8$>OaX1W@EXw)7;M{B z^E@+T!Bc1JMsI63;MVWJUTUE2_VB*))$Mv4v7jMDPv(ho-R@4g2T7pvgbw?Nd{2j8 z#hx}iA9os#5I7&Vs&ORSlbFzEpnK!EThHTJ8IwB=Te)KUg}jl#QEL?O%Lalwa^Ef+ zRyRUhmNZ?p{j%Z_XQxN;k&7qP&t8J^iUt6ZJ`x(rIbQsoGK`y4%HJ?cm!KRAjRv8v zq%q{6S@Qny5C2f0(Q*td|hazWBc z$;C=i!S=7;f$aro(c+l0t=u(61r>W(;5a-}mx83zKJmV5=K{g!zR|N^kMMoGDA+ir zT<~1{+}%;&v2V22g@s9J3Fg1qe$F#m9XBF)1iv>We>;@Tp&;||d-HQDt92`|2ccSZ zL=i9BP3WS!@J8?#cPpxSVR&`Hl%Kk+6w7A%u8I+8-nX~S1;)YU(3 z16%G(7goNIf>#xy7m;}JT~#58g|RG5QJ8kkUirf|P$V>nVPql?yR{N9-gB_tU#vY6N4+w4y$4o3_4)6DT4Wi|;nS_-|T`NGb+};1MCoqcDg< z^4Jdw6c+d7v!I~i?sBIDFC=%oh)|ey3Vw$7=R6{5qh*n8qT7SSn!8!{lk<(63Eq$K zeSCj-ZFFBMvb22PWIBW4L=rD9kmyBIV0;%Xd`-qr85*)i9Hr$J8g)m=rUSd;As@ss z70+VaO2g6(WyRw~@Uu32q%#(DAyK~jR_pg>;5(Q->&xTF4J8rOqsPqAZ8Dqq(7_r;Old21WPm2EY5ezpG;PpLpVl181cq4g|>~Q3x$8d`MyW5Kh{ylsqRd zm2?=lFsLATA)%n_Fzg>m6c^-9NKCIlqD}HcL9kr_D+L7!D=m2J9|^cBQrYm(9WNWkzsY?wQKU{p5EN zy(stV6fs)yOb7n8WiCzf6g08 znG;!1H66Z);ybYc!$+{zCTm79OmNL&=ncmH&Y|5-pOlc8u-Eup40P-J#(uK62j)JazgohSGy!8Kb?{YTp@Z1 zA!`}=p2lj-8xuQNQ?F%v@a#ZkCYrtmO@0QVKuP{gUsvwpTteC_8jS?ek3{rjE^>_H z8WNU#Qj|UG=<)UKK&2gMF(G*~s|vy-rLKKi1?M5;B=J6Y~7H4u!Dk2^6%95NT5-76mP7gOIyg zBS3@S!@0Eb_3Ak!7vx&%o)s@7cAk(qk~%M?sejXo$8m47o!u1~Z-FVqZZe<26Q>U0 znX^an^qIqWvZYJ1ojt#$uq`1VAPb@A-!7^?5l5TxZZYo)(I7DJ`xqsr`9T7OsHzgwu%Ir5zNy|&CTL)cV0W~uvIt_fX8WiCjmGC@vL$70D| zdGAJ>1o@rBE_-A5Ry^jj@DvbV#*~E46LLrEotKm`iwm(+uGuvM*JW6;Mo8i=9iG4w zr)TiwsTq9q(kZ;}>=B%u8d0ZQC=M*xXbts3mhBYuTo9Di+}KjqQ4Z3uLS00%w^r6s zSMeub3-$9Ll0NGHKl-CTQiYI7@&-|_?iL4vtp$}WCoc)qAZ68XQIHUj z2$2wRF)_h{zmtrH)lT%3;i_HdVGAE-F zJ(Y#)yBICV#zx4Na&fK<$EIKcN3H3IvbSaa2gn$4jEX|ew@p#bvL;#{c;0SG)|6!k zk&`}=_^oYGONgVM)P;)(fsp$}C3>C^J-UpuOaPI4`w`2ltR;FJUs^1?LG%J)slHc( zakIMm%HBbd8P?`=zj4D$JwRC( zZfZkW$JcqWPyBp%?Ioy-SSRnn2Oq?vk3PER?db&$1j!>prQZoS;W&AzgsG4R0VD%- zc{0Y31axg#4!SqFpaz}faY3&od3-ip^kJV!RN1GUxST^Fxb}JXN?3%?A}pp&>m)6B zQOBNbq99~U3+ESI(tLgd$B6=l-z#iOh+bBayL;)y}h4k|-S3yUPf%lizzu?D(~G#pY6$vf7=T zDBuI0iE9aBhAvEtfsERV}q{bWr!3#pT(~AKrOHD=CLa@8ZWE`WTX(V!SG-5t( zHEL**h|1s6mWiyVqrK>&UbcVmT%zFA^f1aV&!M&4Kzpn9%6+KBX`#`^h5Y0U1owmu zEXmdBAg#hTJovRTw5yA|atZbX(%(RcY;a*5W;>(e-PXbv0#kcjN9Ab^Q$`N4hK2

Q_MtCa18Vikz0$gg$wUT8SI6v~DjH3_!Iubf=gmwzbn(*gZS+`c+ zg@iD?`TqJmhvtnd+Y~^AoVYQhTgb-_U-xSpT|G`$Nv~V|MNeu zu6~VYKk<$xc_baLyz+{gv?ouV+|vilK9JmzRB*yGR*mgi+otb+_q%F`L@U`KCSHUj zk8x`(EJ={?z4qE`ijddQ>S}6?Y(QSTI*Y(s>1yBX2-PH ziqI3*uIUYJ_x6OP1z{@}e)Ca_7KAmo-XB)py<*geUe7v(Y;D&TR`1jvx;Gt+%*?!_ zKdkqozRx{p@)3 zX(E2Lg0*Mq@U)shB}nJ(QK^*Dl~U3t5~v(TlkIW5N^HeMaMe{;g)`1LBfQ`RF9^?l z?sIF}hf{@?CV2$ymRoL#=`3+$G_(7glpGj{wHl0$VJ8u(RD^o8dr=EGwtBNA1zEoOt~r;lF;_=#i6a1yIV{aMZXTrDlT~I z^+Nlsf=G0ChTggDVfhX-!qR=`gn|>5UB5XQ7;9=Yx17B&^sVR%_b*-*de-z6#-lA* z+NRu{P{u^@6P+do-P<2a1V%!Cp*lqCy63k)xZDZCR}XS$Ty3*x-SDK{wh52fdb6-- z!Q8ljvF5#6BbjMB!tFqdZ3QHA;Nge?w*h1k5lI2kh zqR~hN@#QEG?`;0_)RI{*oHpW z-ObS&2s2mogzkd0%`bj$y@I5uS2A&;yC4L^&&21wK4U@gne{uv@f}Oan>pE88Yh9w|(>4LeEBRq3hm((4mH_OrqBtR)>KV%R~E;@@Du>CEAL< z39Gw9UqNaHW_5+`^}E6YyUq;Vv(-k{4kAjXd&25vJz=fM z6U9A`Go7n+5~6rrD~mS9>N@e(7v0fb5OXtd+lqrnl2E7ZM1GUYM-6M z3!ku8oEf{m|oLR9RwRHKDS|aH^jXo-E>2*kUFzL-wq|a0WwQERMwQNti z4mN@PW!Ge=GTU7PQeUU#Jsq14pl?X=TQL$5X$TAJhm;UQ=u zWR;MRN`V9sUQr{0s!naZwcuQg)A3OUCB4r)7ao|4n^cF-<^se~3Yi)PvFUVg1Dz$IL#kNIzRPpzg#W6Q*5B+n7B6lO*a<3tJ3)^CiTIbTj z)~_mF9*5}lcNFKhY;f%^l0eA)k5)m9U`;K3i3A2{fi{85XX+5q7@vyv-n=e zTBNU#*`e=>1Q&y7@Q(>Xjp_CquOANEZQF2kLGBLPdF$}lZ8r})Y_fh>v~XT@oF-Fq zH(4YdSlSZV)6#1RrFv9LuR-bO#siW^AF@4cP_^M)*k8ns4RkCHHrwIRYk=e-d&+3LHaiQrXo-qnO-&nRTWg2@(6 zzGv0Su(VKc?w3@ z`;5UEm)*8pTV8nIt9wIdPk-nve!D;Ph1Cmt!}5)L3PRTxy0<9)-l#XMUazkpY{mVb zQS^H`UGFo+vHI3&3;hM}Q6r|cjd7~I9cw~(KoqaME!G+ay?tTrCNsnGJr{=Fb*ne_ zQ^an)j#;5|bwQSgTK~#{u(lv~YYLLyUFN;71a9H%f|bo#QxKGu<;k}1n3xgCUg0<( zd=~tU#BZpTlD=Xv4Ss19%%0H|w%cgEg3xUh4&G(!@PwVV3J31^sId3en}#jcUl``c z_3Xy@fhk1Ni&`n!OD*ZJq)Uglg!H-5KtCc}wIX@L;oKbuxpQ0*K4gzxPQe(un^Uf~ zFD*^wHSn47t_e)MPdwReR3*Q}29dJ`df-36hVF}omYg+3oBj9;l@9}5o>y{@(}YiK>Zi4eWM z&VnEo#<8oTEe!Pbhn|kUux8;vSh9XkxPPPWuynKTuzKs_^-T)Ox1hM!cuVOmX2e(Z zg@IUmHO{>+hEC6V#c_(?khbkuS$t)LQynNSqJQPG5SFYAZEGj4E2a`{bGt(OZi_<4 zUK@q>g1GneS5CYvmOQs}Mp)1>Bg`lmdDoia@9xeRxw8lI>Xn1Uu3TBE1oI2WWno8G zn96(&$9sax&>9b(@D@2R!skeSi z*TY^Sd?vvq8|d{^(85EM&2rF#V0!-D&#G$!&g4hTU+={o$JmB-Sa|NzHZ^*Y}XN1?$RFCY}X!ok+RvvJ!daQ z>hj|I9rt#Ju79iz9ZPyc+nVBfT{2(Dgpc7s^ww_+{l#fUqPL>>*&B!H-K()~t4P#rpKt35GyB@Z-2Tq6 zPXDaXzI-4oyLU}krH;}Xi)G5jL@{{$&M>dNAggN!!n$EbSf{TmbSy6n^s=5u%;ug9 zVwA6t6%jq@+|J^7oyBuo0B*A0{IJ7j8-zW!+BiIMm#xEd_unl>@OIc_gNBaSRf?oP z6WJ?m35n#TmR>8>g-9NoH5DXpIGmSrkkVxfm0G15KDI+3W%#1=vNUOJK5+eh=eNK8 zZOr5#d0TC@ReZ0OVE?V?Ax(Vy?YGDBCd9Rt_Ppguo=A@G){^8AE{n=S~;Ru*JzSznmb(-AhFJuj>`b5`gmE?hli(Tj0;kHMO; zL1R6uqce21wa1kEqRu&CgZ_e9FD;1OJ!`_UC2PZKOW(xKt3D8>8SNbfoof#>3&Gf+ zeOB0{ZFcB*pf{|zZ*^Gq03+NR$7HQw_V&69W`|AJTM%~LVo`YNV|EC~AGAj}eD58? zPMdBRQ?<3wGmVI(QxnOfs}tEt&AmvCE>8Cb$)h7V@l#FmhQoQw8X-%{u4H3m$Gnzm z_}C;t7Jnmu|NQ4aW5iD+&ub=LumiOO4sgK*7lf~TF9N2xlc#~)nP5RMCko4~ASlk25Kk5KxASmK29Wbf z^>@gV^W1meeaj}X>HcY{Un=RJ@!&W-Itw$4rXt%?w6%=jRvRLCzxwAt!k2HnKHPZk zJ!MDq5;mMQCv+_hVQpb(*V+xC%+c?D%r2Dswln63|J=4D^sFuUZgHy+wzw0+tm3yf zC*y#9%KSnG3bBr<+aYw^y*8|K&VRzpn^%VR)x~Ez z+Cty@ouPZ%*|GI(SG3Iwhi67{ppN$9c*TkI41_uVXbbCIRT!|puZ^j?-j3pYZ~J#> zTd^iadZrV4Hl7z&JZ_7ycAL?6<(WORGpx7%oG^Fc%&?}TFWkFkWmwtM9ky9mI0oIF z;m$jk6-I9DgqGB)6mB`!h5WGzn%?nRG zWVdj@W3~t<_X8jJKwMtzxZ{qCQM~icJ1=q&@3Et`AbL#^$x8x9 zC?^Ueg%I#i-0*6`@A7~w227BIgORgJ2MD1s;CNKkKG$+#&>JuYJ&(vhF@qLSa$US5 zX;9>8yaHXnRjOFPZ`4A8_xoLZX8{8TvLA={VCGj9S$S}q`P6XG}0kb z(k(609iv3LyStGg-Q6(+8C`?PsCT~q-Ov5&?%wa7IOja)DbRx!Z;8CFUK0)@O~kU; zFItm@gIn7z<(h9T3;&u}MEQ4#$|WvIF~aJgIJEGV$fDB@9X{>AHu3<02fFzXt`IgIMq823l15HN4tMnXD~}^3x0QUhLu(QHf}l4)PlAO zjU4W~xOP_G+V-&T`8K>KL&zzMQ1Ijs>onGXpz*mHOZC&QTFLRni5v+=$DYAX$j=_K za7O%9-t3ENmN3)SZH@^xv$}9IJ7#De$-Zj**4_kmm}7lE+U!{>(NFE3&2m@TlN5#o zhx~i*b*Hw^=+2#orR@w?``^v!oZBH0=<{W1XrG3__gnDZ5fpXN!{UoD7V+1PeUG;d zz>%$vgbw(Yf1(2)yNnL->f6j~Y2xtmglq|X`AB_~PLhIp@t9PG0u_|7pC7PP12FDB zJ%p8PanFE0fkZ>m?Bs=2QFV^UD&Ew;^5%yY6>~7)mK(8R4|Ds>Pf-_EpapQE>Gpi9 zek@3;X{zlKH1SyO8?GLv!V8CAi`s;BIEc!fqXb&)S6<=PcUjiW`3^RbqDWZmpFGWo zwLvY9+exR+S3q67nkG><(=q0;=+w~qFGl7W9`GaX=Q00*IO=qgIBSDny~2N_^)Jn5 ziv{m(NP#Xrlm-63I|_oHCb%7x6*Js^_sI@xYxNwKocS&1(WcWkdl_`?%i;t<7b7jV zCMYe6K2>{F(_yfmnUXG%yy_0jhxYFpsqqq6%g-Fth_O$Y2dPtJERxYd&8W%hOe7#m z7p@ew9%5a)etu+pz4uck1$AXy3L1;n>0O@FR@^RU6ZO9ZW5F*Hx86FoLaHx*qQE13 zJ#4~Fy;ol!<&Q!)^yC{YJSB!V&3@a3d}QmNSMh3tODxGI>SIskO_Eppz`M3-r$5w# zx0Ui5-wN*LoCnx0Mv*(a|9pWS#v*k$3Q5&b_jP6F`gDiU+`(m!9k z!-L;ETHM9BF*B01mGv>0JT{@pZch-1cCE>puS-MaPwY3+q6`(ygP@(ZY8l>(Jr++b z@bFd$u#RM^g(2V(b(K0}m2eFa167e;#TjD*m7wV=j-HTTT;m*Wo9 zVlNl_3WYe>qjL6vYX~&i>9yX-QwfupT1wi2rq4VGqomJ#W#o?B|3U^9JEC(SkX=9g z%pK4**xu5z>X##5R(pg!PH&*IK@T4VR_A_lTwW@kA@#8F4$o;_Wu>W~Ub483U&h4# zGl}!qQw6RhRh8496^d(iGh^?Wo5=sZ3KZ4R?0?k{QH{HMKL;u46n}jPn_G(VnRGBC zb^;SB(hxdP8TSt=nA2UIzS2_DwVps$?=235_o`11O60%s7FIyH>#;1F` zC0`IOjJ_<8b|>*dNDy}0*LLU~$uAOP>772VN)^aQ z6!sg}Af7zNHFie;r5~l~jrX>zme1W*BIdnIt9*w3h+#*4_t@CeR{bXhjnBqq5>%s# z`R$yKIjEp4K7vkiGN;WD-~?B%v2d1y4cT<;z+&c(JW1g~Yp2iWJjx~K9vOp{>xhD& zTZ%2OOJA#64?_)Tr?(okJID)autkg@^9+9qfvJ(hCi5se+e|1B2Pz>E+(Cch>V0|6 z1Wz+)Z8*=c9iBSgR`>X;L5-KFm);#G5O&XE&>6h6y@}cN7_{||eWEZ}B42v4RWo>; zPAh_Zwd68Ro33e*yY>Fbwo8gmQdEtGLMC>}ryJ*PW^ahLgrQ3S==9d-Wi5x?d@uPhU zn_0y;FJ_;#V6)Qmb7Vd%mzw|jy8@3(pf!q4{z02I>wqo!z#HoOMm3WoNwH3V=+&nc z+aH3nD*m9LVB+IzAMXQLQ7feYhFDzu3 zi`h5%!(R4Zch7lHCwSJj5Jf;-X+Ux)TR#sbwekU;mZm9ig(HnRyTgaTTBAT6tiEX! zFR5&)@H~>B7Br`#pN?b0j@`;W{k2_@k3yT`3I=20s~uGcfAAF$_GcQ)NgmGdC9sL0 zvygPJ)>a0&{))5?c}3q)rASU@RiGnbD#P4~bv4`3&HdIvO!hgX!{TNt7JOt%MhdKZ z@Ee;7i87$Bb8)tfyHG=~-t^n#woUN@D`5YL#05`qk0%hoN#RFNTLkH_h<$i17JGUv zrAO;^Icr4zzH5Lv6M>eSfNo zRn$`~R_*g~a>pt`CBYo6Ji?273NLZX>DqMy;vYdS?vUqtLg*h}M%(Qn?9+ET;4J1$ z^k?FTBYWDv2xZJ5cIudT7VD9oJzMJ z-~M!F3CYYaW;vDoz-cfj6C_Lr{+>_YEtsp8gOfSF`{A1v4AZ1U`rG?@g55V1Z1TpZ zS$Z1DWl~|agyOPLKY}-4QL?$88YmRvh%Q)*5oWWc(sv!*v)GZGd#zZbNQL0ufQ{0u z@Pm_X)s>*8$$?Jdj8w+LNGNB{EbW>jp!M(3TScg8kh($3x`M@xIyH_0Y>cF2Y9CdG=rB_!X`lfRtP{Wc zwRJj&u(Q>a#0J+hT!dXNqotcd4)xB+Z+Wc## zVet3-tbR(ayj1JsM_SVBqxzG*mT3k_))-_IFH zqBLVDFkKkQS~U5mTIf)MuXN?4|B4^bYFJee9@x#uif;2q$!sqa2C?FxU_kVAz|?XV zrG9Gte$qiIt8{Ji?;ziH-8L}^B>3Lx-`<4zi|R+V9OEdQBj#iWTNGY1w-z6ntdn)> zwT4rwqJbyw(ZF%&YuKOkS-0?*oHH`tMoDjXBI~w5L0pF~8w@bgu+PoPm;i;HKTdeLbT5|yN$1RS9bO|&Ow{1_R_@KpxG66RG>Azj zM89wzVaZ?4<=dW9&sgHQix@5%PUp=Vy4{ zH3oE@v0vH92TiGr^4o`4J=*|*DX1LL0Bs=$d4H&p>4<^(?8urAuXeZ8%pzr{kTJoU zzGoyJpNjn9SOc~LR;YGBUmt@XZO7Q?8#L3=uRp9HS}^sX^r~}~m++x;=H%~2 zowif*s<(gwm~YGZxyV5_v3J)Ba_G>3_ppHE>obyj*$=%*xSf1F)Ci&)&o_g2E=#Zu zEGo=T)Ot~3i~+gOi~bM-)Cyhqr9H6=xcMT;?ON=|%E?fQNJdiFPMIZ@)O3jvoTslq z2?g=rb7>QrFPbon4jrw*#@H{=UQN4kzCDy|PmFS9|NZCw40pTx4j-b}_UI)GtSe=W zu-TAnX3*nHZyP)vcAOPpB~KeyFxD{7@ZOgKSNFZcqeX?V$3jUz=kYN%Pv?>Pof|s; zhtnh4LctoP^^CZdgTD|v$|%sULXpzXSn#Q75)%UtdDup-N}xb;*U2M4j4!JjcqfF_ zu9{ke)+}N3EoTwykvR|S?pF=OEN&LmFnC=`l0Vy!>;*u&e^|893gJf5wOg)O-^UMB z^DO=MK7U*1PuSG0Kdg>tTGOw%uG>t7j#mLa$3@^(6-zNvCSS&I(R-zFVHW;J4J;bneb>5 zbjixV8*df`n4C6yEY4cIBUalss70~B+Jc>;vfCSm1%abu$}=FyLWtyg9Mizt<)#(~v9G7LrOsV_q1DQ)8I&b%7t^|Ac$Bng~s7 zeRR$+BsjK}^o7^&mmbT1V)~q@Xz}-heIv$@B-mD=eAuWAQpyKa zj~zJHZ`H^XQ2E0se=S~mP@?;Wuy-`cH%vPdc2gG=D15tOS(KvbAYA%YLtH*6W!8x3 zIGx2eHFQIGKmV^AhbC*c(l1R>O@3VJI`RV70OQ6e-Pe4J-@eLCgdNX+ETdt6W6M_f zN0K3iB$C^cGc}SV;r=yMl?Dm+^7U7KQ9r~zxJRCT({p+gviyv&ZTGzlgiP&+yOmiT zai5%~IG{YVevogHa_SR=*|cbxsNYwfao_*(|8#89XakLR(~KIEex3E`VM}&kl$6W% zeshR*D*{^|OxLB^zx58(~Q-F{vMTSy#= z?d+~`_mT_Fg(pO|r_p@gD_grnqToK4uN(teZqReUrj-Z}nSFps)1IliJ>2d)fV=y) z=>KfFyHK>(P4sBT>hL+}bDCr=e2PzhMT!4-Z5z4eB#0Gg>_ReKK~&z7Wo|Nz2zNd* z?iCcj$Sbk1@pp4VtvG&%VJ1Ib^ZvhUvI)HP^G3TByXnaRy>%|ESV1!ivT8Aw-mMQ1 zAo-2zkZ6wVdCX3{?)`iCyxj=xmF)B1S_KV;7g2Py#T5q*0)aB#rPc9IplEwwh!D+` z*y~j)xY+9b9GrM|ULiK=t{b6#3|VzPDKAQ}Un_S(HnOPQg$B;9Yxcz?(HPNWgcP%E zVV{t~cbN(UK2Y~4E2|1u4I@j8vK!S&S{QP{^;dZLWhI;8uPXJkRc^=TLvTHWpd*WCG>S=9R>RFzB)^ET8zk-h{pfY#X7~o2)G6Pm zu4qOA$*KkzHQBy^s@~#REYUk+Y#PRLsMdfS)%?utgXWHtM$8U9CT&+9EfYkT1NIo{ zF*Sk^^X!d*^Doroue4Xb0+h^fW%Oh9uux=Du?Y(e2(V&oD#L=ook&NN-#fY~$zk4w zN-;VrD6{US;_E73UHoA{dO4V(` zn=%RwxVC8lk7EWR8w>v>vbq{WT0OGHFB%pG=LVfj4-R*YN?7u*QW~XC7MA4Qmvww5 zFAKK%x%rni!PDz>SsrmTPS+VT+#IH*q%E0$=>I{Bd7YdjR|@_gl@B; zpzw8qzbU^&#Vlu;rOpsyhdH;f!kpXOW&?l2^LSfPQQ7iLVK3j4 zdNl^d^HDieo#Drm$jskiwh~Z<8`JuAm3cOR)z;UwVb23!JZ9f2Fuo|WERH48) z4u`b0Bn8>VH*~7&7p&%;dWmK_`Yu@wiC+UOBWNwsZ2pE{q z+JZWJzq~u+doNKCIGFkO(Vc+N4+OozEp>JXbQ)|x6Ex<6oz>exO}P;U&HSU)QwiVx zz-mu0o3K{%j7{K`_xj7c=yJ~Q}S_jVyeMGor!C;d|}SPrakv7;t=wi{@KT8Oec4)xwUv-nXaI1 zFY^3c8^?XS>|QGV^IKAN?ZWVolUvy4<>4E-vY207xzNiHW^1rt)^&$T@pv@$(F68ynV-kbDi zhDHQ^iw*;G9~=fy*!3ex9XbaxbGIrrj<^j6oGG*$XdMu82S>XN3_j(X?b`YTEmJ|r z8p64+jlr)9yPq=;iu$VreU{x*1-Hd&eWI3N0piqWciGM7nQ>{{UCR|qO=d%SwQZIy z^ojkASX=v18oU-~JUx}Zp!yYU&S1lzNsf`t?)oV|5Ac$hBgvNyr|bI7cUfUKf*JbV z=8ydJIkHj}DW#Dj%`n|Ttrl?fA#%mt%w0=ec&peMMe6rm3QXqBzg-7Erg2owV1@Ob z>rTI^Ql^5{RYjvDc@?0{2eNQ=bnTDbWh6E4HQ5QeAv5R|pgJq;zKd|Ku=Buke@IH+ zgOxDS$AoXx!LuDlNFxiQ_`gZCn;u&44IVs<4!?*QAkJ)UbW#PfnTgrEvP*rFYrmF9(2V0ww=c+>e40V`S6%49Qs8TIL$HBGAQFf`No)As@bXDIiu%uPQB}V zxW$rRlbpG&al8LzBlpZYyQMA#lxr5;agErzJK2-aMByr6?19!+Td)~-hn zOAZNw{-*ph`N~T_C1Ne$?c6V1Q4ENxUpb+d7S%b~i7krou#y=&VK;=q(&|{h5Ah+} z)grJ{sPAslB2nU&0s*`(s8GtKR?1*`nWuQ=lwMDn*4YMXg(AR zJ|tddK?)mmw8hT5Js!;7ETDuoB8b==dSj#=`$lWUKW5NCk zLpLlxG?xvr6U|6mRx1S{F;bg^wLOnhuE(43$U%0!!E#*}nN$Q8(pj1t>rn1UoGd`4 z#?@lK5nc>t(IT^^@*tl|hYKE8_j!?Po&)lxY?vGzH1rg!UOjf?RtCUb#v z=Tr8K`N;EH$j2!o7a3&dBF167YAP%pdcTzHYx}!b{kHibz1$SZgLUQHu852O`FRSS z@^>a&+RT?E^jNmYp6>(P#&IcnYF`YIkzN)G|UL>-~U1A(*|7RND{uh&@@r9wSy zG`@Qv2rg=aEj+8k+$eYNF83ycm3)hGTC2E9Yv7XEO!Mu2@d}Q+9exW1T6>Pj+sl}g zD5yEEeZ>fk9KS{l6KaVbk&N{#Rs&)#;2rA+6|%!cV6l;5bUYe75!5&Y2+@EXw;2&y z4pTFEgw~X`aXmb4p@UtX5Yw)Y+viwqn>rL@AsFdzb2Ac7@d~OKzRWd5nRcfvE~pQR zcs<-d$rQqW#uSi`e}ksE$+e|YqH>TsVgCtly;;V^Cga38o<7BSRQ(>=^%P(WHIr!1 zZz>>{_fx91t>fcztlwm|I4kr5ugwsiJtdaJ_<^Ov53DykeXni973u4pRt|oi4kUEB zP?1&Z2y381h+C?beTYm8LPyyYNrE#|1CH8d6({^)MRND1-ndT^cxW;H8`r`3VO!sO z`PG4M<>!LwRw)jY744>IR}vOpVb}}w4uyJwXfg@n>S zeDrzvO;5k|c;?*(>}wVu9XMIs^95!Dg~uv1GT$1=%6Ij@_!I&3G_1sMn z0yj=XX+}ii@ab3B0!&lOqUs}U!BCncN!;L)&!%O6T(k98n4__R|O4mgw$Sf;BpX&^dDqg>{b#JP9I-uS*VrXv19K*>v>U1P-fdx+X4 zt~j#cR+y%CJeeYuxug(HF4duX;Y{hm*r*4CZlCoiD)nM7d{!dCvm5xAb*1@&Z9ifG z5RjUA-kF!mA!~yFW?gB9%PO0L!KXrsTE3y;z_`=htKeJLz#5V}8lC$9xea=U7u0=o zc2OtxJq$g)=IxM28l|~RjHCb32ZEjiG4jYK^mP0lEi{6jTd)Bh4q?yR&r?6Hu^M&b zYH|f6(m4IKv*+SOnq-%&KLwEQRkyh?cuwUKl93d<{OP=wJC`;t*w!QaUCia!JSu9@ zWh#g(cGhdS;+}6%N2HTV8q*LJudQ{q6&X=}lAeyHp-l9~$! zL#kgXqf=ieXq18GD@V%in>-IcGSxBo?@ODSP2X?R`mA!Q6 z@*hA!o$d0zjH&m$%dGcv(lF2_=rKNT=i0bDN8deW*Y_re`-NDQGkiJS3@iv#n-%|J zY+fhS%xO%CIP=dZ=;ieu`tQ}N)gnRpbt<($va%(SBK8S0VU~#uDVFNKK{ShbBur#{ z)+xW@$&O80N4&IM&OnWA6W?{BY%G(&AvWi>QiOAj$baBdlF>!#`ytp4Ua!5Nr4mAu%BvjSmIfWO{Uz@$IHFlx(+qz7c zfuGpoZyjJk)}XoCfqOiJGRv$vs`Qj8xflJ90z zPJg0Vaw%90`J2w@6Vd^`?-qCX2#PT%0>6>k#d9ng}KD8L{Fm zf2bfofb%~d&VDOj%)hu#C3e~BDS$5GYX_u(T@W>UYW^_qmvgbK$1G|=f+@Vf3`z|< zM_$C>~4mf z2+(khf0{0BxK1wW7jrPU?KEgv07H|~5k~u0az5RECqd6-m{t8*qQqD1CGm&bG?>qq732HfmDJpeDGjMOt!Q7XpHDDY|n zOu33w{}|Vr8%6B-YOE|tOJDeiuyq#fe3#KpQeWlgeS(!q$?yKzAk9u9d<(KNl7QAnE+IAm}p-P!9U$2NlO}hzmFJc zKbF55jdrjnQ`&xK*2ueYn|KeFIyWLZGjDubZL~>y=Ks;U-358@t9?v*Jk>VtAO$0) zGBAaCcPrZ2uJb4GY2MH3bu@sVDIfNywo6fq0YxVQ!Bs!4l}`tgU_pOp%GNdOSni<5 zF`MDmZ68bM-;D#=1LVeY!DS(;7|Ep0Qy%u4zrQ2RXlRE-B&;V=RK2u3_0)!_AH9ZY z3yvkuF=?e9?LPAje1YDeLnO%#7W#(i3JzfNa@z%w5xZd#Th)?rvwPp>6f^rw`%Xe4 zpodutLt~=Q={=^VK#V4$oWt_IO3Xk+Q{E#-!2SAmg7tqGTbA_qE2Zv##^rTD-TdDo zYSxdXf`QO`J1B72oTR@^X}#2iqr5 zPNfGYZw|bmp2u8Q+snT{`@Tnz!mBZmtUM_>PV1z;xA!@ePjfU-<^t`^kOob!j*`h~ zpJ54Vcw788dY7hBl-LJ{BAM1S#{zXd^bwXI^>i`%Qz)syD&;IL~9%Sw69BTIn=G>!Rh&)ZLO}G z*YoR5Re|Z6-sAR+Gplxk{=s3W(!RLhge z2BuI^+Ne=(u+dD1^3BM0Rl#B?c*bW7u85tUzUh~=1Ogpy)!PMZA#~kCwd5d8|l>MZkom95mGd4 z?HvF_y!WIaf=30*;-Q^&ND=iGGDe!wQl~T6u_Jtcu26!2M$^ukwUK(QvD54_%W+fO z4qMe3UrdAMy$0T)pHbY3`+TpTG&2qtu~f^=V8xo7y{pg&ul4S`FIc!0uK#wC=}?O~ zC|xQZVMZIqlNd%}uE)z=n>xh6bwhRS=Fl|$4*L`tIoGgvkDl;IUNt@cM3LL(%R`Pg z4`Sj5`W+<=H9~1}enl@U!Za({mRw*2{tA&t+g4qrvXO#Vuuw^@IasZC5Bu7$e_($D zT3wo#g-(ii3@RpX7dI$ccUTYWoRPMhVM~*7pma=$sGtPLr0H0DTn{tAoc)bY3l+iP zQ&c%%X-cFb&idUsDvv8F6uNW1q@#c7-6^*I6ZD{ ztGBy#Ed@nRYM0e*3<3L~k#;K;TmSc?&W)3W^~3#L5yRrviS@rN+hT9L1zso~q~zh4 z(*ONAgZU`Afq&9`z5OGLZ*v|}>DxHvB6Yx>UuO?#0{)wS?*7;oV zE}cqp2;kop9^i}zpF&y(Q_n&r0pTMO-JpOMEz;9JLKO#Y*Imr{`~^*Cnwh4HM$qD-Q` zg+Wp>R>VwS81U`l&_6NtM3+quKIyCF*zJ?ct`Sr@RW=*^>&K5OLv!cT%-oEv9z;xE zgw)nWV#up^m{oe!n1Srrh2H0n7C#?rHN|QvRsb8cxA^dgK=6@tS#x-8y?8bKS9(F* zK8)*i=R_+PadCSj54{z6Mi-rP&~z}J;6DWTDj-)Nrq-U}%5=WwfL>(r<|=ZBjYV0V zHqvu!IH0rCj#pjfh7ceZWW;K=O?6D8fqXZG#sxr2Vc4M8vMKr2^Amiy?_U^G3|xr` zro9mN620o z4>-KA-NAxEC!1prpr%CFa?j0^-_vW!-}=nf%0I_u+jSrNnWlKi+?F_uw2{;_yI1+w z5C`+j%x{wG)frJ^Zll1taD$$Hn-6S08xfv$IoY+}rw2v)KVO~KU%eo_F5pTF_D8?P z^bTVjs0^99i4ZA}!cnL}s;8hh?6Iw)j->B!V%KWlMr{vxZxQ6I`>e-<%_2{zZhdy& zS)}aVJ$M~NtX|s;e$IutPHLGr4kKl_Q}{u`&E$B%^(10p09FoRc#nfM#epvzc% zMs+LQA92xSo>d4|bu9(!{MZ%2lyey4qeg^Cp(oMio{OJS(7ZBR%ld@$MQ!)h*hL9f zAlvP%|MvYB1!peaZ3!KcT{}S2d5h)0`Ee+*KC#TeCsT#G+~%WS8Pa-C)o*_syR>Vei9}VFy)rthYAy*RQM4fSQ0W`&-k7= z*tq76`++YfX6|pLaK@Qb)lQa4B3X@DiI@*Xx{qpjJqMW}$#_T5;OMOYFPKdR0kQ_! z5094P!~vnTr^kjwb}J6apt$Ku*V8v_YV9=NR`VQeuwXYLExVZiWdnTN|hg z{rhndp~-f|BnrF6J#h!R2F@ti;kqDNQK{=6GhbJ&K@$>==}wnzv;ef$6#z`)+}ACz zBlu=H(S;HlgN{=E0$TC@;w`#_ih{@(EJix)EA2ZJtF&&Wknf(_?kX}0u{fZT;*?T$ z*dSNX-MA|xoP4M+Pk#g=gHFp|Q&&NTJba2j*&Ki&|9!7Q8aq^Qjm=lrDZBvhY*2VD z1Ktd)5;rPlF!L(^aw_Ezw~uyQ2-&#{R0-GC=2NK9gvHrT#?O_f@-MzyKmNwg z?Mb!D zug3A-*dm`2ex9ipbu`gzzr>l8HgI`ryy%D5;3!HV37;-kO}Y)+-_86g69#1s$KsSc zys3K?R8s>=^|dDVE?v^)8j&E>F0tIUmST7??U$%+ zw_XgoJC-7tE>gM1C~`L>aX*9>we{VjZxq`Uit7pJw$$DeC|Xp#`s+LJuFHSmbx#v?#Kr_TIj!{PQu8=CL2XRc z9=Bfu(vAgh^Re=C|8%e*`N@+lR+4J(#>%WxtT*fkgrdiM;74IwW;qM>SDs1|kJnZi z^J;#&G$!fs*O={sD_whPjl^RN;rFZlR((b9R;jCS+T*{uSOreWGfT<~zWO>)FeT~l zgyfuiL#pw6gmJ7Q)Kwdc@2CmY8dGujePt2juPdyJlGa;|UE;NRTC<#~Ho98>1`>0k z-LA60&Rg^;r2j^El7+CW#ckM4u@&)Bz#WNAV@{NP@y(wc0Qq7YMNEoTZx5L`M>XeE zt*Quf+z$dK1(w4+rX_?VrT%1Cf-NFx)2*FI_-RLfS1|GFyra+*P){uinXCx&IPj%h zi6auM_r?83nV2aBKb$Qf2 zQoc7Xa!qkxECcw&v1r1??<%RT$WTHeH{8-G8k=p_tu$ArFNURB!yn;!rW@x-4DRQF zWSbz3clN>)GWCBG=U%Xi;sCLIOiiJgCEXio0hLt7!)0x-_pQu-_LnF|SS2~TsRQ7M zg;&_G>K2C|t@1VE{rBI&&?9>{Fw8_QvaF(MN^DGK*!NgQwE_N_aC>X9v2YK;%e@J{ z={R0ny44WHfSMp zM~h@?vO~<}@RtJYRT&im3sm+?gaQzVP%i%B6U;y7DEpsvmc3i4(X6^Hx0MwM_p3Q8X_ zVxe*j(>~reS1%C70lVmCr(ODp*AgwqoE&O+<_aea?77+-~$>^oR z9o0;E;~x5#XTd%-Ua^GOsyy{XO(C5okyw`AP11YAZP+LKWaUG`LRsMlKtc9?h3g5C zFN@+3_78V+kc9hQcEq?gXMZh&&p9&H?sn$qAr{KOlJ_Smm}ZopMUx{L2&1AIJ@5LYpQQ2xy|BRtvR8E+-tIt?cs03+o-prz&C|%AMG5d zF_4UzhR;$H0vtiDr-8~MqS6?~&EOAn7g}z83RZ)@KPq%Gu65_^bpv|~T zkh0l}m+V+?78}-`yKsAq=!NxTv@7L2gD)YR@ixDFb-!G3m$L?Ix2HvK*rAzll7{t? zQSv}RiOpns%nWIv8~~p=LN>Jl%z}@U^Sa~1(#IYZsrD&pHX&~L(yZFIyyY$DxCqxZyB^3s*Ew#Y--5IS2l{p$DilRjVIE&O zogbn8OIY4!gowyMy^rF0l;@8l0#`w*h__v12yXs#^&LHDzu`o>2jr-l{H9S(U&OW% z*oyQx(DgW5WC%=%h2?roiMaVTKi}m&VxE5l&$XF?-7S&960T7BJw z@0^_soI-TUyyd_L*2Ou2$A{eX+RgvU7a3e>LTOe#apRanGSSWUXUfiMpgH`QhTLwb zl&|OG*yJm>d+L18`~hVo?2Md&p!ib;iZ_;PdfyP3{d~^$60dh^yVk(g-&-Q{o|+jS z{s^58Zl4Zb%DE+?fqU<7!&#&{q{MG30zo^Ae|7250=Z4nVTnA|FAM>SnU~@w=?`du zgKPpzi<|Di#)%JjqFL8dWYFPMT)RCGVy&j{3UkV)W}js-_iMu5o^M+)GsRzbv+SgHMH4zmRhN3X!4`w*OkM> zW@hvMEF>h(n@jT?1fcvE)Gbu65+F3JOw%ASrn+p8X$s0S`T;g;4M8G1y689`DN3kS z_M_TtC;b^pVy3oQ_*{*T`5Xmb?TsqH=O)Ila=PpBwiPVg5`KS1ogLNS3X$fqK?mcB z;gI~^%=DI{&jrLWtH!lS5--XLYR`MyHwy!{euwR0Z0+sPQQRX)Ftu&tDb(5=l`1&i z_^SAg`dbz2rb8<(YYF?C@NzlUL5g&gS-qnf6#wE6K?$v|&Od%X(yRuTMzvC|pz(m@ zO|t%(BY$pNl4P=Nh@1o_-F{snD^p;0`gQqth@(Qg3-f#uy7cXhoygVBRu?jsHSO?# zBrd4C&8!mjPwzbW=+dO~C@iD-RsA(cDcSJMH;Cc(uKOU~$h*{UC&jEhhM$T@wddG| zeBb`muse6Z(Hmlv5lrzwA0_;8rfxWgv^Sbli!z^6-9sN$6&?NU8hQKAw1ZGQm_W5y z{QAdqTwn^1n^m&@H|d!7JgrJ*H8`(j4lu`4(uGE&K?Ds(SoZdv3MMqY+z9@UP-SaScu;kQ=l(5|NIk=(=`b7gpo zQyw0+JJ^#_eYrO{(B9)qFC>NZ*?(mv4t9U z{#RAs{dofz?8pWry;8VhV2dzf#dtJOQOAAn5UY%Cql*@(0@AwDCR8Hl1-t4U)0J8> zG3G4we2PnfXDiYBE|hkGY?wya1}f<1Id0;{WFqFQ>Qdbq6+K`2QmUl~v{GWK3jCCG z%OJE3T;L$=c84HDij;+3d;DuMi{dI2VQc^VZ!&TN`?1XkybA!vlxYROgWl`g@iI6O zqxSDwMAd%at4UEx{_$CfNzPf%v7`mH7I&3bQ$=or1lW=W6!pf=0hE)7ei{v(F2_Nn zf`AGn#3_;dDYcpKX%~>?(DxUFZ-71&Hf$ukVOFIib=M&<18m>QH%WxNW3E)>2;FTP zUA(}UIBu}jsO;sQ(yh!wG(@d2&VX+XhDw{Z$7&%us?Ay8vXaR^3P>Yr)_$Im8Dh;T zyA@Uw-n)20GCc|7B~cr*`c_GCZ+={L#6=ezBB_SpkMCiPbG*z*8p)ptDFXCh$WM34 z|4*JQNh#MEDM%TiEs5p#n@ZAZ&wP;-cWspxVX3v!&8`yt$@{4#%DojUS)Ab>krtx( zmpv_V^uGo^p5S1GTVdh7NE)qrlKSh)bn!)^q2SAp52D^$SB^N$=z(K|`3@9&Io?~o z3oywXc3xyAL4>?M7)fRs%Cv;GD10w50{<2I^Mo8l9gboR%%lZHz9c`$@izO5yhE=p z^$24X>wA7YAE-kjd&0Ff13t(k9R7@`d!|C@DRhi5xnOi-fPp_Kzomp#0uZxv_A~7E+yYsP2U*@GIISL)WR_)NUOp`=K zrI`M0w2|*%ytp40e`18A-Ne>H(&A zD||^77jYIySY_o-5Pm(kHNqR&r&Y9j6LA^4VfyuMA3{0pqachl>@9Mhux#)Acba5} zlyZL*;S2#GKHa)Q8;r?JUO?XuA;1%D)e!Tk|1Nw3e+ugqlT;p%)I@yLNnl2_ya_%~XW=_uy!Nf!ApY{c5jp@Ll40%IYcH3A0pKT>nZ; z3Z%XbQ%RH4u8jK>Gx9euKY&#$52RheFQ0Phda<(@9UaGOv=@9?ZTqWAPidB-F%`qS zLL5XpWSAmZvm_uE!J6Wx5OGtHP74|X!K`C;W=*4a7E#VBezO>=T)l$fZvu0H@Mill z9Zs3N%&<=nDbvkB?V*o$sU$Vgr2c0ewmw_ex#W!5lr1vMzH%RhfmcAZW_M7xz&6}O zHyBdEZzOk!oTXyxv`^;ji@kX5+5JUj#3P0eL-=K zNRn7Y)5S}atr5j!Ms2M7OSkMYDWej0?9p-C3C z{`=@SeAc$ol{pmH%6AMASoZVYK!>;TJ(#)BqWTU?P2dRI#R;WuJP2);bvZqzkWD*2 zcq-xxL5Tu!zuaF!@rbeyGU@W4SiP@)8Kg+K19SO@GLZmlE>XWuaSa!UkZq8|JB@LZ zeE*dv-KISHdjT0L{2_yiuK@kM|5jD6fKniq#y!6yHkPSGvo}?HYk$4fYw)gYPR!j$ z-#|R_?oEV`%8LN~s$zoH3uJ1_R|MQB&VZdjEgzgDfeD4sGg$yBoAHcZ`45OPs6HBe zZWl+XsnVkR9)U{O01Kl6HH=g=qZF38uyRENU-9zDr;fo{7d(4!bj#yk!8PnLJLDcl zUnMVBKJrkF5L-_d05o#>#+0ai0f}tMsfa0Cm!6v?sFHP&h;Pz|-x<|&D9U)4lhG3zH=;!2Kkzn*KQQ{Z)iC4}-6^tey`&USH&jR#GnC9}M*pwikT` zC1-Hz7HzDA;BQKteC4TPa&HmBAWKp62m{p?UaG+uX@D;RXjz;U$Z))@JAP=yR>wq4 z`CIN8gskgwDfXK`zT@4M;0;ICgv4pfaglP{?pH9O-E5i#8=2%XCLK?+Ijy}>3VB$Z z)}99CnAQGh!wR0U{#=FUf3{3188TV_=QB$`pMJWWL+XeU_HB|o4!@N$`J%P=3lUyC zB#DR4*OHff{I*c1@EDPPDrUXi5<&_0SkHL}bcZ7Yht4 zV||b+;Wy!<{QRh5Hu4JaNpIK6s&Em6!#|x@?OqP6_{wbg(}#B|Q%U*k_)4blQ2&u* zZNc%C3sVwpC);6paUS$-=lBha?;LX_@uPzK!=WhK8j>3f-g(?(k&0F=IYDNAWRn@> zi}P-e$2f?ebCms!*8YElM4-!_oG)v3(8d1M(m0VfcK@lm@%~98BI`5vb8gYaK=gl< z)1*zA-E&&{l+QCWlJlezmguf#MNPOXQiiHtcKy*?jk!kiqBe5YimB1Pj%FzIGq#}s zS;_P0TS{hq0sx+_rl zxA*5p-ruUuBn*;J?BB1gH#(7GUMn@HD$CQ_v|BTrC4PeC5_wrb&+niSMAouGazg2` z`k6^3*P5^e?!E~PeM&D|&$KD8Wq83Kx0k-@^7)_jRmDkGo;6ya5VT^Lv}tn)HRvbx z!uZqkgX$Zm@SlBcOa22hLO@{@4-(dC1x!JxvQ^(`C$Fmpa-Sr$RdZ%avMEyc2@xTd znM`X946e2D@qbF4EW+uo{;)?ly)H*6K2^GxIj$~z{nRRv!x@F(imch1bBp--UiOYP z&YlZP4weM1IR1J8E7+?4%g`>gOD2X-!cT1LzJglzngA^m+9`2#bU%&*y!X} zzmAlrT8Knd{Y8*N-~D)#gs-$!%^r;@F9Tj@CWm@LOzu|a>@jRfu3u=~9+P?UGs$nK zeSJWLD47wpqAGpNL|+z42nt;CRy;rg-?R^%{YDNkJwCIs}^A7+St z#f6QBV!eoVRrfP#zQhu90`Az7N#i87dHs^IX1Rd>*bp{A|IDis#l&2LQqkt2+F{p= z^Txx3uQCZ zw}^}RN#b)Xi^V}$`wWqjbg*{iR1;Rpq9q2ac%N7YYwl%GL+BL1R3@%s#H2DnpK)4` zlN(qBnWQSK6v`WC9vHdj@h~0|o;1N}@12~^b!%j+DIO@ADqZyCJ*8ZDIQnN(YPk2| zp#&22Fvau}7P{BK%6$sx8aND|E1rksPA4ykY{(n`Gb^W4K-LPq%!IBMW_s2)OsnXR z?=O(9faLOQX1Rf>M~O>9wjT?EOj-RKuc2KN%>w?it${572y&`$IEYuR!SuDw%`5(I zN*<>y8S|5~c77ie|KkP!@-*8q&l6APeN6E-A!VgQ0bBd!&gq3Z)A9F^^? zPDPMDjp4S+Dh!HF=+Uvfli)(i?ejmonuiJd_>{FKM+%wI{eW{eMvyr++QziJ3-A*2 zzlxVwS=ZRKLtE-{iL!=DJzL$f5H@|A8{m5z>0p{>J;|sx(B|%yza`bUBlY!`xCPlD zMh5wt%VS>wJ~US?i^2#JB~-FbKQ<;mSx9C8p2`ak{_|=2`;5QDJ?^CL-1MfH@lr{Z z0wR7|D?7ab-4Z^{-SGWFwNU)4Pi*B*=(^e>_f@(EpW5XwGnDxhI;l5$-F|(RKS?kR zyEmMilr0jv@Cp-cK#QZ3DY7=T0fn+MQ*U@z+>_C+{OnJXwckv0ZU{$+Ma}d?J#ryYKY7KNlG7iKd#z2{U(~;uTc79uF(y zYs^EZI!vSsHS-8J;O^DorUgUTlEE~l^=I*zC~H1JcWVAT=U=QCEch7{IF4}{OTpAOwM#q$j1=xF_g+9YOy+?E2nP54h2LUeIV z@H5qgHZM!ARm@OJn{+A$tq}d9e4|-!6x$;EWD^e5FcO5+6MYL-IrqW)EqWw&$TJdCw z0AM&Pj(s(*p|%YGNB;M6<}PB1a*vuj3_nlST1{jMkBekI(vC4tl&`=+kjU4)^zE1L zbIdM0-aQlieS_wSbsbgD!JjcFVFdYoiH-@4cNzUlRLr^VFZ!VHTsY=rLA}xlYQ3*r zgH0yqndof8N@=f2q8JlH5pWfnz`<3!>4d}R_#%$>p_KKj?>R)=fBI=6!x7>{wcAU(&b_7^-BF&ko1x1Gbn}$po z9S=n}l?q4=`E1+B8}_x&#seWzg%xKClSXpoK-6-Y#DFTvLL~snS^n1ChMKuUGBtxL zuj0BSa9|dqLwM-NGUx=u3>t{sk5QGx+bzND=3;L{KYLaoAA9k2TxEp6Ead~J<4#5R zZ<1-sdf1eK81gHFwY@*`*M3enZ}HPL38#eA`Y7Pr>2MtRdI|OEg^>GRipXEe6y&q| z6J6%2@l*BD67*NVrPVJ>t#$)5=AdrD^PW4aR~;i+@eVTZT0!S+w?02IaW9L$S!2{oh$Ou_6j0qzqLvyTOe%(i(%~hY@`ttF8Dj z4SMkpKs;@W<&_lYiOSLb&}`DdcrGsl)#vmN{jhzoH=+BFB<oIv0y($=< zzdrwo;kd3T!wXe!{H*P@c+U+67h3_m1ifcj0gDgJx^DvmpV0c#O2=GW4p!E+ZS1%t5L+p&{1rx##bH>bh_RKbb##{bgs<# zFHMVfDp%A_4JVLEov4?X9f{Bh!Hn9ETQasi%oKcP!Yt~dQe=LjKA?3Fo@k*uRn`qP z9>@b3qhC*E-EE0{Eu0s8Hjo0bsypgMXldf1CcG+Wxr)$K`z>9JN%xlFTS2wQvyo54 zUh#T{i_58grC#uxuo@s>Z%A7gy?e8)NC2xid#B}9Ul<|Ey257b9NEDxtFApf*Ba(O z41OGP89z$+9&~zT39oxvb_+QXL|;mE#nDhm3}+s1 zKA>NtpE2<`h0T~@M_~8%){P$B1?G+f7P;m$_&4+B^{&vbzA!d@fe%W29Sfu=m>Gjm zqMqB4k7x+%)pkHY!`z9zJ?z(iFV5L_oFl%fN=MHzVRcUM(41UM(y=>)jLy}8l3`GyN<>&Nk zVHxhl1g$%qBvy6Zed;$mKkrBgo&4!|bbVkSP6rpxxH2>p7U1{qtHmS}dQ5Asbv7RN z7SOf$&!lw;`|jN6?Rji83M(L`-6}uLav`4{O685_@^amyK(HaZ7%nx!T#6BUI1`c`Ez(l9GboYXLPU#Qe;Z> z*D@)Ej<(2+!Nn0hB|3ZMXCd45OxJ1^A&Ms%=2a7E$CKG(d6MZY6z3#kyO$ukSv9cjob~dS_IMU9`maOAzd-tj7x9lXdQ9 z(u68nRE^O??@CG~y{}Wqg?z`6B8ABH7F#FLTHC4^#fb%Qlm(WY+?pHwh+AP)|eE-gSl3L`OmyG4s!oO5Xn4 zY#0}x@uO^uDRF>`x@)xP*Gs>Qb^2p#TTS3Aa8cp%eBov*fXIJ}6A8Gl-c(}(mXpIZ zL!$ot@CAU-!h&^Df`{b?_b|Z_xB5+|vmxl@Aa};qa4qR6+#^F}d~#FTp;bCG_1vv6 zoHK8d$estXtM@25qH!qUjZH!B9hwc4&_U^yS8?(mq*}kQ6alWT!TBm)ns>-gRky)* z>qU?6e-Re^uX-~M$f8&{QK5(EjDDvU*fm{Ml=onJ#%<%pmA+CKzaPY#A;I=WRnL*d z^-Cgc+vkba(=79c#Y}jV#RlD5h(I2QicX;&WD0VjdktActkq`Aaufz`{Ri+#D#yOS zp5s5w<|PVViqaD>V#5@ttQ4NAn+X3Fvi4Nh2*?IS*O&Mn(yU18i2SHtGa?BR`Q+Ti zl7?lv;SF&Q`Bl7-qnCf8!{7>9L!C2wWADTmx?{BSEaIP?N=F zGcOHab(mSA(Y{y_P=V_xAY=Vi0ITj6q5A;^6$s&Sd$Fh2bD!8xnPWs%fe{cA+wCk^GvG*dbB3HX)v==8ly%jr#$Rk~CFvXYp+ zu4RgsIC;%07W_7%!75s8-}{P#Xb5AZy`Olw(*;jASU*&BST2TKDIN?CBzPJ)n)~(2 zj4vj9sW_oKPk>xnJoqou02Jo--t!zNu?7vN(jr=2-44EQ3f`kr{QpwwX zz)B$&t&5TQ-_~q(0=TIpdrq>WR>!VMe{yTZP{7fdy* zKrl?bFMe^wuh6`I6Tfn(S`MKP$jR0xFyah@H4{t`M*sIyN z#dBjQgp3!eV`0<9Q}O!z=I)d}DN9yVJA8Ra9VU3V-6){z5>x|f(Ja){_TBu)DTgXD zqX(OQyAD+CRvAR0%Ia?@{KaRD-minRG z$W~p*cQ+Z>`>AUnnWD!=Qk;#ZymXlggsxyGW;pb-oAqrn?Ii2h>A&<11-w~9oU6AJ zoKZSlXn>i=Gf~Rlhys@2RIB;xgczWj{Ms6HyT)F~FsSN4=NHjDT_UE@b_}7oT*&O6 zB2cAgS^U?H?!#%L=C2;c4@YxO0w;m$o8=kz%H_*`PqGLD$}5>jIXxW+-ynx`fH!R> zbA>X}8Df-}AvaZt&2Iu`X)V=Y_33m;H+&S+d}58?+WJ7i#t*obgiXnYF6D!PqC`(n z2v0krsA9L-$b{iE+e8ZhY9?Vv$vb9cM?R`^mfh=4ppb0jJfH;ZC5aXD4n9C(OFRwu&HFt>0<0OMsw7xxN`ts=Uq_4jK6gePA^^YX zjC)5h&l)1{QMhWk{uWL6@GUPode<@RI9HHlntH&R*=u>^T`rAsDQ>T3D^<#L=bR!% z(iKk=*2{9DapkN;$^93mQnG6NoA=o!Y%aG?)cHQ_jglm!Fg{nS$3eTZ-()fRy6t6jbRyJQ5~jZf1U|5IKf zdA9t8>v9b*GuzN~JGS2B7bK7(riqQaqM9iOrw3AD#Uy$s5Yu`UoTI(vVn~8F#7?b7 z8CDAEU4!r9GVByXf}+l=SkpD~Q}o9u=BNG|n~Ka6x{0<^?^=Yz$k`?nty|AkL~ZU< zX&>YM9E@vf{*Si>Vk;PBLVB*R{2KF+0`O~#r|++R^&jM0Rd|$Gm5m;38resDo`KmM zc!BzG&flO(l^*6y`na>(vjt`)n4))! zkXLg|>H#7wU{x1BI7Lip;h1nazGQKeB0MGLPGfyuq2fIAqg1fAJ03PC#$xma4vJ`* zuuG};#dnmmA{ylR1Eeon(7vydCMs*0ejjMW$kdKW1gJrgVe*q;DT}(gz4m+K* z7&P{m9ccrlSM-w^BImr$7SSqk|FRgU9;OU`UI6nK3;~s$=4g~~RvIQg0O=WA8Q$UB&B={1_!>ld>bBl#-Yk5MwfTPex9bIWQu*Ci#vgVN&7^r*B)XIfkNur^(;$q5(X~Bd%c4i z$4y*4YCxwC?!ls{z-4e?EnLk(kp%CtUEMXc)b|<+9C8L&X2!?6oewX9(OeQ+zEJbJ zx+P>;&t*s!E+*oeWKfJ|SeQ@yADf+X2?;b%s~~zK3nR#J(bYNQ{M8`t2`%KJ$F+ku%dNWzQc#^1=Ik!s)m<#~9*) zpX~79PFLcUzOigE@o!!8pUO`7(4{N=BNmpsr3TmaVYkfVORtG^R;JCaL&|H+Z^rZK zN{SGGZI^8xHJ0pbV#ue^Z1!MBUkSOxFPjO{x51n8V{{flA#6`UAuimJzz2-scB7m> z+v^mz%U`d+G-Z{TV(2zlQxBsQ2oQ?_qM#iBq0H~|%oEC#nGD_#8#d(K3pKR%7@C>cGH=HN3_Yp&@jvx0 zAZ5*oH77SjKOC7TKUGhhRxwW`K`csmbiYC<64Td{^D!&Dc=xknSZJCZ%KTJKMYb?I zf$2%J$W}UL7(B1D{Z}*;a4(z4)xxRv%*sIbH0X3q8|BJ+2O_tyYQ{S;#mxvfk|gCRhFHHm zgz};SnooGzh3q`>_9tn}!8l>3iso5dxt;)*HFZ(f67>`fP&2n1Z`wSH-}s2mt?9y$54S(W$^= zPQP?`wf>zg{^Ogzb`e58V4Xq^uakzA&SDUR_R|s)|TGf3QH8 zHDJ+D0TX?ozg`S@d_%k`FdaNixcyR7WUeIF_b2y($t}V1PZBN(JtilaebZ{|76r$D z1ck{uB%3FuTzS5fFIRh&*<1t$3MB^Ctm?gC;w8&$O3NW0ip=YrrrR4^|K_=Vx(;vv z2_m}NDLimQqgli3?{?D!+X=OL9v>eHOu7=~82n&l4^Vcf0m@iY`ti`Qz!h7c81~;~ z9tuMnLlTX2-N51i{dVbi(d+(m4H%O5)9j}L!F}@$ma^=-b3D{2d2qzy!48ki+x$tz zLALf+u|k4^DZq0lSW9|#5lYO~$V3^H*E;GqR|p;G3(W5mspI*@rgC@_H?L6iwmn>c zCTcz(>&6R3#lZt_89iDp@nb^cfhGSn3lv69dNFB*G1NWHPq@qVpVz=O-lD%`u|etu zK>Tib@>88h`2nZBpSE|l#Po?daW`a84aDq|dEhN_ac38xCGwiiJRnR-k4Vgwwa>)O z2ZJ786yPo~iB-_%*2O1(`eTJbrpdA83fxZUkBUOh4Sc`L1o5)88G|EjR<#OHSCqMU z>^{deGZ#Rf9$a$MWU-d{6>9{9=m)m(6`l{+C2{7Vk;k}fHo10?)9eFCEq$NO>3^a5 zXU}OIk0MH-34ng~9X(ZqB(4IRz5}w$U(|12oBXrGUZqp^w5qNFcE91>&fC4?)^2r5 z7QkwrbMLRhmBUtto65VQPX&WdKXWa*7l&7#b&XE5Uo1Es!^kSzmY?qDEhu#ET#jI|Go^IhPbP76C^SfR$8}A?Izom09r# z$`)cCr8_c3ezP>SR1*G*%ue4yC-3O+d~KcK@d?9G0#cjz7x?#QW;`4qNmQS*YIOnB zMw}RYnPwSCxl1&u{IjkxapH~qcyt78bHyvV0~=^{4BBO%dXM05gvWF zZvHG$fErM$;MM2W)zKMdAMK|-%)pB|QOrLNRZ!_oBh?It62AkS5Lzg7pdyH6`G(0c z7uI-2nZ&6JV>i>-mpLuWwn7j80qUaQi1&UtS4Lv}d3~&Oc`=jPsW>TT-4Xndnko;y zkNn7kfBjuRM0*iPS#jwu1jGschGVFt5O7gYhZZH@?vtSi8vy74yLhD;I6i-Gfjlk` zRJ`^xGesM#rEjW#{krGDOvgtLLGeuRGlQRPqG(o#5ju_#w3F$+FBdK?C9j=#bL+@h zPf%y*+RRdD3cL>KrEv8Y1Cdh)>8P;3;tOnxda}6U(>YbS2tV<6g56}BaPa&nMWgBx zwb)ld2bn}`3HO{GLSuT^q)Wnfd-0CUSr&PitF|R9nF{b5obAPF;#{=pi)?pmG#c@K zK*%T3J%fJLgJ=9ScTDe+YhwWU-8n#8)4uoHvuB^EU6gl@ZZ0J=3AQ|T%la8*-dD#= zr8rp{1MwP-Kq+uJNpb5!y?2EK8sb2sxo{#~MLsousE}?l7jpweL&8rnJHnMh&}xJ? zj7Zl6;7qeO1*s#ci&(Bw0@DcZBr9`Nfxp;2nkbuMr)YE>qxtFz2=po@hXJTW<`MA8 z-}b#{x==s+2w?D#Hh_SEb(NMOS^Q}>>nq;_fP?+(x7{>|ayb0%^iMVHsLqMr^zrBE z51UoRMbH00wM0WLa2TS|{;fd&A1!mJUXV}I+3|maYc}cbF~SC{iUejcRHm>?p_}< zX7kvWr~l4YL%aWc-DMaL8IWJWiaLkwXB6X(N1I)UVW@Dx_z@i`BriXgF3It(R_5e)HCn~m27^1mxI zW~eYmnjZSm8iGzdWkw6cj|h5T`Z&#{o&z;B^zUs{a0E5PLA!Eh(f^!h)L-N(HN@RY z_Y$*43fq~LxKoYQ^~3cGBnl{MQ~RH&{3d6(h`*j3Jekx3ri$(ZaN1`-qEKAlT&76) z?_no~MZiJPdlCJ_RZXmxkt1R6%3{osH;cYq3ssn4)`&j8n4-cQi|OOhrV$LxREk;; zV`8FZ4y};nHerU`bAMmpw}SuRor(3p$X>#HkTfkv{ksX8Y*b2v?`LrkMdEOBrUqWd6VJ-RBZ48tWqrVL)I~Dl4NgFA3jq3Sg*|RIZ@lasv_jr)Nh^ zOgYxVpGzL3vP?|j>T1lX^`Rmjd@#?~uah}sa&p@_eA;qGUIB_M^yh=kl3(BH&m{Vv zkzukQxs1qdv)WzhIJ^uXIqWapD>TAO8MB27uY7xV{Nh->rHo*t0+6Cy>t1itL_{Dv z{Xs$#75iBPB1VFg^Id=cS)rAjH1l1>#Kw?*i51_DEvv@F?{!n9)0ff73wyCjeV^|h zMGs7vKH1O64S2G8W0A`Q5Utv$s$T=PEl*@r=`F<2%nzHm-O7UdiBN|HSg%ZlA#58M zyaz+y9#!~or{q1f8lkmK5wVe6z7fy+3}xd*kgfTZHz(S9ZL%T3DbH98H55IRXSg>fkR!oK6pwUDX! zCF7t3wwP4HOd9+Gr~YyD5#ExsPw6Nc+|dOr7Y6TH%k^hj4HCFKs0DYYq);6* zzBXapzjZ&% z#t@D!Iux6dRKz~NxdboYfL$#RRdS6s<33b8D|xD3$$dQPn209~8pMT~Xiht0NZ27; zW!51da`)k<3p26}CHYf~_Vbx2FGY#{^{s5MltyBi z^uy6d75zEv*l#Yp`R! z>C&TBNkhR6a9bj#ylkkbzgMD-c8Hu*I!|+k?$jaifD$L<@T$4)AW$;i#ugObZgzuX z5BJ%v?V10?jVX}gQl0=+G2i!}0ii>m1nqbnd_6fb)Ti!iZs(_q7^ZSJj^1MwjZXOo zl|6))8ECx(-Y#LPMd#m}TL2#ds1S}C0cGzGRuMF_=8|?wRXkLhV*EYfJrh&?Xa3CZ ze$rzG`MQ}R^!5vK&qxu%sq^jS@d7Sz2dXx#pC%Ji>Xt26^mgfODzbIAXgjCF%C_Jm z@`$oOBawX-_e(?t{IJXPP30@xEDPPsCx#TJ-Jp2zK+IaT=Yt|TT{&?HRt}zM-fF5W>f3)&|%@mO>OOXlpyUf zW7w8OG0*i!6>9Xfj!eGPn`L()uE}`$JFm+zTuQMi>oq&6pytsGY72F?w#(mbx$ebA zPX*bd?nuSwzegMw791G!F9vaMpMDL#^_L%M$J}vSA*}^a`kg8b}x=M$;5`j=`qkwaXoA&sxIM~GDF56FR=cY zxv-xB^ERAL%`-KV^sj694dIM$*0K-Y(-95jW{gTV>pdwGID^;&qH6!yVBy`RXvP$% zQ_S9rS7V976Gksl^`T7l26)bE?R0X!x$Z9v@)T@&`efOJkXnVDQA&L7bBc1rn9pM2 z&p{JeLlOG^;=fFoH3o!9xsUa}*^=7)%r_X%B=ZRZay^fgiKK#s!%9e8Rna3aWx#Ju zxT?-el59=?oB83W3M=y?>9DY{^X!K&BaoW?>Yl>+MRz!|bP-IP@cmWdp23=}=55O1 zPu^CT^qil9@mE&+Z?G7cH$J?`c!w0frE1K}!@lwq3J4BK&PV%65&3(;wK*Kp>}v-_ z#H80WACzW`iVl{)*7XERQ^yls>coH9YHis`d5JstEsEWU6m>Efz~u=$5d{LkiGp9h z-I)p)4byb!K1bf$pq?w7#xeGA%_;eY4%^++wAr|mnZiG`8Wuz?Dd-zSXgaF*4VT~z zo-s3f*!{!DHwk)wGW5pfLLgWc_O4vhwL;@`G8Ls33=l&IyV+Wzu#Af(m;L|DM|ti= z+`Y@@ul3_I>w8*`_6QkMQW{74wpD1-&4nLo(xuD2T~utOxtGs z5_TciSPsAiq+JSW?Id-&`HeeW*?VP=bND0H>ix)w9qzPAmbEgvd7 zFp6Qg90WY)!2@@7TfANzvbz)mvX@4ui#z$E+l+m#eUiQI#27_oFhFFTM~^D&%K>7P z?7%~P{`V)9(R69fE`5@&!W@y=EZ9u{1?maCW1Tm!?$?A)JD)G(rNgUXVH1;w-~vzv zqU)2;;|Ce?DL1~>9J7+-vvKl`c@xe5&i|~x{dPqqJqHF#`yauB%840bZl4rHN50fw z6^~cMj$rBXBR%Nl`fkDAJc2YTg6OXC-vx?r%Cj`w&E|-B*vHI-IZ^Z}Z||;L$`swH z_43Qb2Fl2hkoYBo1KG+#=Aka;)44Of4MdkhbHttqw_%?w=}wt3)0H_v#k!}=9m2hN zZE%Y4nE&sgf=3CaGNB~HfO?<2iKnLqQok-pM*V%n+I$)SoJyNi%4(#)63#cO;#n_j z2h>a&YP`B0HtAwBKx&gki9WJ?#6wt+J1aUeYoT*F_6C9K!9~oDZV3leO0`bt@%e3m z*?9E$%MvZFd(25}KFp&o@fpmhvDX1Om@jMOYYmR5LHSw6t^zZ@Hoeo2My_ZLpp8b> z;6fE{v&@67dtJS2>2v&@CCf9pqH=N!LX{7h|J-w40Q|)_E9pkdE4~Bh83A-y?cd|6 zwXN(upwR5jr~Tk_v%J?2<*(HI?xZ_aIr97|+2By=ocD#{$MdlI4V7!IERjC0<)VSc z2Eiqb+|n`Q-eS<}3)$5rL5)BP+(S;s6CRmXGaAMy6yA>(!auiW&+RN6)$E+xiFy*N zrx>>Q5TW^(G73Arvps9g$V*2y31n1eP3BSLr@>J8gPeF)^fZXM-}TMN!Y)T2Ee7Pp zMC#><1|*7IyjH|GVEgl%wX*Iv@J#$y;USNrnxEP*z8O`Ni4^+dsl&VC-F(gN!;?D# zsbB97hR?l?a&axRWtY<1hlsVf3H)86>OCkr>G1ot95?vEyV0!qVSbaWJQF-!QeO}aV68zPqtYX#dRD>KMtz$5_j+IEOlUi+J?W?>u;5T4y8KfR?j zW_RbzcAkvoH zHUHSyE800Of)cq~sCu7$@&s{gop^ti;+0YG9pGv<3#|8HCrD({U2g$W`+;Fxx}{{qPK0` zQs-&T`}MQ8iG$*#xnVUE?XqLipZt41>aCemKi_i0V~jVH%8q5Vo_(e_XLT%(DEDSo z!|uaGr*yaMp6o>n^yR%Ha1$`LVD5l*ol--gHqn57Wx2kw*+ui~9k(db%fGw6Lw$c0r_ZtFTFvF{oxrs*a$(oDOr!Vf7{UW@pRaA*X;M&+cr zOTMpzs}Qyb94X(D=h--uJQ2t#DWZdY(8Gr&n-OD6;d|t16CtnQk$rDBV17ly9{%Z^ zaVlOaHr2ve(qEX!sj})l;nSrzFmOYL%p3{}oIJ_o=5n7e(cm3uJ6uuf`k9`PTAvNX5z{+defHk?_r4tbI>1XlTE__RBJK7w=qgT!Ts|8w(*#opA|OqjOT!RwX6crP@>R5S` z{(@NUP9m{;pYjdg%9i;rbqS&2@Dm(o+#U>rOVfX*zb)|Z*WevB;nN7}TW{j6)N!o6 z@h?<3X$=t1K0Hj>{MFDKI7Gu8Y`oxJc)9)H2Cj){2nt(zTz?;P5=s6p z{q3SCTXmIxxPh3*@mxZoQ*CfHr~{zneN1TfYT5qKbLS@=a}45FtYRUb5eOWFLCZNVHMhT%?5 zMWiEmm^7w0>ZMa<6TTUA|7Q*v?J|nR`Rg*&;u(x7#&^LX7{jwEM46$+@E+*plj!CH z-WpaLp*kXc^ZMV;olg_nF*3|>!}5?BC7|t(Rd7@0h!2pf#n48I4iZ)u^eB(Q>xecg zvJA}df^QP6T6^9AH*u55G+)~N$rdoH@%i^Ln^7W@oOV)ZyXMP>g z3!m0;jXwx;_vXyIiSLKZ^!V5v5Ax^wsQJ>QrPP~3`C($Qwx5qETIl8UPg@@L)7&z`H<~HckebwtLT*NbF&vFc zOku^TzF9ZhG8WaQ0sYJfP>23ju@~BB{E{L;@~zB8IMRyBTTM}x{E1sKY0$Aq1Kie@ z(LG^{ftQCb{9oMvyzP_6b_NMBdZ5fu_+vM0U2U@FmIksFplN~PdNREvo(s~a&&TrN z!G*rUeA#zMtRmQ_5v6Tr+2vlZF-dR6c=Qkyv9(!AOR$H#N*RBe;PRtPOn;byI|>pE zhguQ21R1w>xe{x(SKY3*H1$jQmcS<+w4FI$7Os0Y& zVZvFzF6Q*Iz_H6h0?EqnSp9WSntPFq2+&U01!ns(3$iJ5+TT8bJgiLc!}u(QpCmW0 z^8SB*rPoi7N%a6-Q4;$ZnnQ(;cOKA^XLR7Qsrq$kpxZg-C7E2BjxZMeco+x9%=`Z6m}o91r-<1Vi8`y>yn{yQ%>ivw3HV@JO z(d!ouK!DgjocxO3rraT0?c8CHB`Y*`Xd8+6FZfP2h_z$uL+8gq^H7}6=VVvHq{GQz zxRCV#Lv#_@=#U-J$t==5prUg=b;9#CzstjbYRE6Bc}esKG6Ru>d9#C+IlGgMO)D5t+~&eOSSFWekwR9P*j z0`@&O8AEou`oM*w+~3K$tYvwmXG{JXayONKc)0ALFqM$05bJ7fEpjT!0tNOMgXjpx`d zpMl(=O$pG=MvQW`C!qAbXx7uI1yb{24~pnCuGOnN9Qbq;>L4Htc9ak-pe|C?(`TN+ zZCx(aaU{O_lXz*ytFn1f_zw=QqARD&iAe~{8p_ja{`U87EsX$+m)pigAi?Qy6&c)Cb0FnCM3DS6B&&Bp&WqGWwSwyhg4l1 zc`c%pN4Db3BfDa7R|X~sRTm-oE~m%zfcrlB&&E#ozjObeu1}LJb4wx5vD}wh!p$w& zUJkSgStMg1=|UW#rMaWtx|bYY1)4%{#*Q7Ctu%ncTWu3R{bYiZb^pn-#cQLEmbzen zagBfOsDj^p^rJhmiWvwGwjX;ohligO{nR_=dbFN{ks{fskFgdqvfK*{TX(rG#oD+P z{1+{F&CB)DSsOs5BSF3_c{BAyFrjMmpKVl%KC8bnR@6AJ50&aCO62{psg7Nn#0N26 zA%-6FpG_0P)gAC+j+l$P8r&CWJO4Q-Ab>SOU6m`pzq>yy!w9rLGN5Hv*nfbws%(GF z)zIwLn@k(Dt0IWYraWSK0^++qte^C)UfH8dKcIrAXzk7A8`8WqKp~>KC~ph?z6^_ZP2L zD42ssA2czoMWc4VZzdY;%gNQ!=_Ur0g&?o^ycvziD>a!n#!?Rv%to*LiUKD5F zVV$cPlaj0CdSRf+OyryA3Zebr@c(g`a;Jbb0(=~b`T_9U*R>H_|MN(N_7A6vvq~$4 zpIzwngpP1q?_W+W@?7(VUhe<06<#jKbmPC%YTeRbGYty0X8uypWR#n|DS9(8qPq27 zyy5@`zK?E~M{p20z8YH&38wMm&8$5=sFS_|OGb;qP^x5o-& z3!_MmsjGQfM;BvevT5%i?vOigW12tfpRK`qrcC2G^rmh*i{7*R(^a*~{i zX?rNfDmXS(kCU%&ml#H`%jZjUR!% zZWw(`{VYC8l&4oeLu5BAU8(#QA3i~x@X##;$l`I>cnr8H`qfz-@)#%>V~1^dGz~s> zr0&&hviy+9Qe4cVCW2V*_1tZaFTeA04pwy?{YOIaQD5J6m*EsvP{}L;6hi0|EuM5Z zb?QrzFCCEPn+7|$J9Mz!xix4c5WsNI)~F8fuR^ydL1LoxcOVwVG5Y+?&fuqt5SQ8K zu9lREMhe$pEIrffbdBe&h$Id7%-K2pAC=r5Y;S@#{0IuOej1so&3b0?iC$X@>ylSo zvSHwnCE3cc;wV!@+U2QcLZdVjf4FaD>k~!i>cR~#@Q2?SRpdLFL$;uLgOBAQ_-7j(^_~ z$a}358Q5g4{9I2IxC_RMy8y}yo^f;^1ZsQ)nNqzV_(3$JYQFT#ELpcG#_L*ylPsC1 zR=WgIUbE#7nKjI=qez_uB71qU!J}!(0ei_L%Fwi2&wf!->{M9RF3YesTg@TN_>&1{ zFsXt1^gW^Dk-Fks8c3ddEmCNWw>o%cy&km}tBa5~4w*vy7zq*!)TfM#W_7g@miMf9 zYS+>zO1tk$-z7f|mq+~=At>g_RJ3nO{#PIrxpiNANlVqf-tqsc`x1Ys+V}sb5-Qsu zjEI@B?`Dua%gorxlI)SOlU)cEVlZTEMYhIFvS(MJ$2LZ`XRIkHAzQMSl%DT7KF{m- zKm6`L;LK~zea^YB>wUeKj8Bt7`HRgGd<+buwkRfnAe~51uf2cr17WR8;ryij!7S>m zZQ@BfikNgVx7f1un|5l3nW$w*XM0q$+lY0_-QBXqj($G;MT9tuqN*1)o{ss0W{Q~$ z$00P4fXLSyOVRcX2Sj=3ZBw~MnxdD{M~UoAb)}mVvTLYxt}KKZdzYP{oC*Ai;Vu{# zCUFZMC6*&9ZfznN>OQ^xg2j6c{QSjR<`!IC4E&h`NlH$t};~`9T97qm}+TEI*8|N7xwdY+XC%WrO}}JiZMcONuV!c-^DAd|1)- ztM*Q=L))|u4>(d`u#W~pGcF>c1>S*h_Zx)Tl8vFP!=E1b(%P=72;f=dAp;LLoCTjf zRW*x`__)->tV@la*N@h&^+&&#k6kq(iXfshJ?a&~d)eg*GLr=U0D6*3wPz@7qotIs zNH4zX=+&Pa$iR)zcc@valRXSRe!`xVCTSsnS3jOI8pDPyY za4kok65fF|Cu*DJ)J+mnwEy8H)OKF^RGh~>5UKig;)eJ++_zpX3xYIrj$AfLexN#U zO+WPIci1wqaArVn?L3Y{)qy9t)$xAwaC_pm1k!*DN3+30>$jb3s=u zn9Gv3az{#Yrj~Lt-TU<-t+=1q-}{YhJDh0-P%|VA(f`SLGx}Q2PjEAX*(VE|C4>rl zK%xhL!Pcg<=pNPaYyJu`x!nk57IuV(`>}s0d!ViUw8M;f(3=I9HLd5$y;1x36_(^@ zc!ijYg~O+RIDE)kDNYjb#%qtshumA4aR>mS@9@|l5|M@R{Pq@5p!O9LYkdvS&!nak zzEW1sjV%WbZ*ypo&u>HWeV$5`_!-Q8Fd&;>_5wW6SHxrYDlB590ID#6IQOn(h21fS z<*{>hWNMsiE#IKy5{7JBtl9f5UpxpHQq856rd$@#Tu>+jcNmL3r^`UNB=@pB|2gb* zf&$El$MegR_vt-}DcfUmES2~a@08`7_WY)Og{P8}Nh?0ZX$Mh)+q$llPzY?a90eU~ zHGDyn38JDEP#4*ba9Q{BOW@|9CsUylHEIBW*h(3wnMd9=2-?qM3Uz;rHhRzWU88zJ zh!9=d(!+g}Z_wPp9kv-sB+~UV=g{3ly_ELJ34D-nBnh25jybG$c)(EbTUcFON+qWI z)TZEz?5TUvoSH!b)YC++4lb>rSQoD#bS>mE(R9(aNgkpT@RIKcustgzZbqAv^X2}r z;8E>dA*Fr3si@L(2h_Tjy?IfGWwN@|ey5!p+~9cHS$HfE%Dphmr@uEbmo*3)7+T)( zeo=CP9jw=zBqjzG?=qJhYVJS6^IM7Y>!qLyG@~o*AR6Q|x;x$*ii2(VtboR0m2lC> zp82*~gGIWs&&at#>8yvOSXzl6`fN-c@k~i5x|8U$y!r=FLm3Kh;=U(e{_RHilz%l2 zP_kpAXtB!bnJ;pNOw5aE+TsIKX@}nc6BtVYjf$lAq1ka9ItwmRh5nvOVj(Y85Qqgg zLzngxemMM^bNE%KG_$6m?m^NWLZwF}hX$${L?JI#D~4;q*$KR)HMO!Fs}}_;3|Y^V zQ@h6cS?cy)?q-pOEh`MVk0uRT#t(sXZ9%V0$0-EyH-X-jBD}e_IYhlQ(jmrLB{Ufu z2hzyEDP#}8aphmXg&A69EQtm5=}<2jFC{tTz#xsr$3=39F#HL)MM0;z7G_Wk+?^hg zkvoJFWm1&)G?Y_?hL2++`#rrwC!v#mJC><`rP?XPSz`_g%R`mYES266R=Dj4BAE{d zVt>E6*2#$&#BE=#i@xg8UBn9-_N@{J;J$p{cqM1Pz|;xZgdhx zabNPC2&D=Zi%+q6!2cTbft~kKfkzieFd{tF_$-wcN23tYwYp>r?y|h;&jJG1>tDGe zYYmsfgopQ&n5zStCqAV}<>TB!bi^($CCt8Fk_}8*cxxpAXjeWam?z18JSL(kD}Ves za!cDkN;X#JT@n4@_=dQfDm=AqzO(!IqrkYEW}KfVOmianP|L@{<#ki-0N>fh8cQmN zT}EFo8?~F?A>GuDPYbhLYo9}FhTSHVzMkAPT7}2at|_w$#*6QJpS<^xr)vr;(IZ5Lbv-sbT+B8lK9zdg43+m0a7pPq zd<9k-ay2<;_V)CPodHpUqFC0nT{3} zAN0f;n8L9O!XRkHIBKhvnjhsmB6H>+Lvk6U^fCuqZ-5M@gqgEjyt!w$wGDYnra4Up z7Q>P}QM)313W4$M#+J$6BGxj^o1o>*mX5FyWxF&^A;emk_FuFsY!xTGHd}V)r$Uk)%E!_fuAj6PlJ78p5}jX`89H@lWS0Z z;@x44SkySXn)73NL+L+5JV&$3+Pt^ou8j9A4=|P;mU?EwlJq|m7oZp(({&0n4J>t5 zogSpVT-Ta+gL5qDm}B;v#_+|v=9Yh>&lz@WF00_|*??716H?5TWRfB}6%W2?g{yfI9J_Ws+e&5OTgTn0$)YyV7a8l8i^ z&+}0jKQC!ho(Dgd&a=c79{Pt+@>nbknjaf#AR+ZOxikX+4&MbYy1(rP3m6+#=rY07tEGv zL)P5zqhcBn*x5u0PWFebQn9)a?JtTC0KTc@U+2lRUx({;4^X0%V4_e(sNXg$!72pK z;?u2<;0ngE>0Z@%3X4wRK;~T}+BTGbDoP-pnOhM)_s}WCNT%va)d461z?LDY$xSWF z3=gyqR}81HQYpf9Z`f#(FZO05bDk=HLq5F}A|hY5q?2ObB}l&wkc! zKdxbD2-=%XZ87ta)jL2p06$|Tk#VuJt|>v-zsEyBzz+1Xa&_Xmx^lR>2o2mpWF>=m(Ft zgemWz1!>_0nDpMTM4eA>;3?kap;(nmU}O*bX`U>4*YRl32RRse@rTpP%VjY^N>*oW z?HR;L;2*nx;I+fX$3d_=pUh0!AqV9gsHC2bqg#IB(u07!%s+#ee z@T*XE`tftQMCc6YSi~_M1UxUF6|~W*lc;y!hug-Cmr_HYh)umU;zA+|m|lpK7BAzLCCr5LOqpuID~whAPU*2o3D?)+d17Vl5doUh`sX1 zGo((W;*`2$O|xY}dFJY? znYzv<)w`a5@5xo1S} zkD&7b2B;rN&&J23-IY86agOWPn1lGeTQj0U z%sf~Nuc8}s$cme!Fi_6p6qlqAOM_*ZP7Qti-Wf2TdAZK(zdgU=57(uHJFV@G0KN*( ze#;EsWm$x_jI%SJY)EdZ`lx>}@fBvqT+$tz_O~y**>}m8b%**yX9utmr-#5rCy)sQ z9daH?c`j57U;ITqb9(h+RNk9BtKZ$cogC}DlzGe+f6AwOhswRFnkfxq;)Up6uZqK` z?1R@|M`L?vFRU1sf%+jD867c$|GD^{j_vkh; zGTrV^=2kC41|+y0b>sLH88<=yz2n&70f85|Oj#)GotJIZicl8JAxQvcmMwb7T)ZNf zmHf;!>C?U49Su0z_zcHYdONNi@|JsJy#1!Yp-UN;whwmI0_9WG7`_DrWVos8d~~!q z0wCQ7jek@8{KCH-dbP#rt!)VR5Mi4cmj!TlPwBAb$_YnIG0A>NRxeW{BBG#IlO;~o zW!;iEtsvOGO_=&C{NWyQ<3s$Rbjj5dS}2ot_XV|M}PaYCg&8U5~VJ(2Oe?z|Cav&cmK+cPWZ4gi^nl2f=QU`zADCk^83iE0i&RIc4+9S|XP- zo*Tp9aqvr$-IsFRIqWSFo?pu2^mEYpPtUDfLivLOcdAF=5aS#m-S*{&>Prb)qhNhn z;eimdb)(dsv5v#g2Kox&3m}I9?$RC+8UmiM3s$Ezce!;x)mVRv`tFNG+_NN~#pHeU z@fU-Sl|OUFQAsnNE+)$lcxHAl;BzPPoA`i$A>{cWS$=r@mgv~Ba)ryUPWThV@JK4O=o=53ptXr*3!eS@SRw#tTcErmQF*QX^Z9u^B7^S` zi^aO%RTp_pa`TzLu}<a2gF{4%6~9e|1h)uGwH%je0DlGvqtX}kBF|1PNBh_XCmHE z)do0W{W*-7o+||dq8lF0Vihta7tFRJEy_x%hfY{*$6a9n!dyrtJ$vPDr(8$0c3ct! zsJ-wJ+EG7n)Mj~=Lma{; znFv-9^8f+el)xf<3uIKfyM;R#cY7sYV5?Ik!$n(WEe%AZNIX)MzmdqN{5YqLBH1#s zkL+Apn;r7Bk=3rJ+PT3U{CDNUlkcg{#@6Lu)Sblf=9K#nn{C`31n z$aNlk-U5MNxtmfiVd16Uk{Y1HstQ1y#{hrldgy@l`O|2Qqon01`#eGggFzy}QOL~3 z;Tr6}HMwlXus31tv;;iZwo>zgr3N zHBo!vO#e zAfJ+Dl(&ExzM5S2R{OHnrW@uB#g#z@^S6!!4|Xx;wT+w6DMS`Y7%raic+QJ&e7E}3 zn`CX13N>=y$HTGMtW-Z-w_>hD?qJGay2hesrsf;>?%RJ6L!`u{MO3+&`TT?3yd%mZ zpw!&B2C(+4#QfK5S~D6mhRNqA$?V1Z)m}?YZdhy)0OeB2_x$bO=4|VA@>QY#LC?7W zAW44>Nk-O9{2noAK=fg+>^<}*Ic!3XHTk0n^{TtmkZ;Z*gmqx?=I6|46xSvJHG&_M zKe&*>6YiEn;YL-SL;4Tl@7gCnK!_a5ewOW!JbRNg1{x!czZiewt(`s$@}la|r|w;S z%sh2o>AN$#9?&~mUIt&)^9tte(TtMAcSRjoW|BC2CrC)$kj*mAP&0lFh$4hc*Ns<03OFwRFywC{7D3hjda>}Feg=#{h%pPZ7`X2& zo8ur{FYrQh9fc@sSve>IW-ErO`fx- zQ30~fuy^x(gwjpB5<(Y_g%XOv4u#>aK>LYn@eag;)j*c<#TY5H72ZomeMrA`2HQbLlhgS7wZ7^ObaF|2#!1fD;E;$qP>8rMd^Yr&yv z^m8SRC5v55LISL%Ip08UsOhB!yP8pC23{yZ9QpYYT8}J4DIoXo8A2GT!I9(>UDjL@ zA)f_`{In2alSxam9Gb3#$@Ibt;%)|N`*1-Xx{@`{R)47 zQgxQ24o}s2-330i;+ZDkmHn6Zp<%-r8aO$4NLO&Z%l!u-nCF;jyZ`PU(?z~> ztw*vLj{$b9New45>C=q1S+7O?r5z7TPX^OO<1i@-AO-DGg~`KVAQ8*`iK8Hd$1HBNnz%1pWCFZA$7oqn z;;Nt;bJWMH?0`Y3vEY zzaBzP5zWZDB{)+d;Q%V$yQQguRIDKXEB>*0dm)lS?XLIyaFI3VC z`&__XZBmB}^?Tp9dTlunT5vpHRfphumEEIHuIhaT5FwtWFOPz5aQpJhouTb3}c=pDAH#ogaUwAG}ux z@yA->82GgsU`t~BmFz=$d1t*=CL>|>V|3beZ0KDAzqHR+!`3VxO>F}yG3AaoRuxEVS6xy!{L;~fDgc=~riNc<$`wT`&ncuYiDxY-L*rYU z>gs2}gFQ&e*2>H`|L?%JUe+5$qk<7{-Ri%Mpc$xUvDu<6?d4!hZF(OG9IYK3fR!<7|Bf3U;}=~NXvMja*}JKv4}VRI~dqLB4UMEW$lrV@dqwpm3y~&BB?h0neNoffsg= zH{I=MVyfWIHv*J|?vy`QRq~+LXEIpw&*!83oKZI?e5Bktwh@D*TP>V6m6;wYh_Y>B zxxR;zEP4}g#3*k&>`dYDgr?4(Nbvk37m}A3tMd{q8)M;Xd?Y9wm{*!Pm37$cbRWp9 zO;$+#WE7a1C>((&c^4}m$-MFF-=q!k7dYR_1P$u!NuR z{le^mrS1X2M^M=_%3&b-)O~EI|E4sUYrwU4LJ;QJqR-W(kUhP~>iE>CON_Ih&q3!A zoomDTJErT*){&q<=rwVj7+hQcRwo09Tv8h-q~Sz$~5r9nskqe!$Vq9ja}Q(zf8NYq~S#Ga7mK`YbfPZ^Th}AC1J^_Cu=egA6DI$Klw4G+TIF-wy3m?E#?lW9L*jxTa_Vd z5i^@?OAfV_qg}G)@)+X)Vc>=7MJ_D{oH=Wb@;cf==IvLfvD?t&wFC|t2yPtp*0=Wn z+eTQ-7gWg^kP6lfstdh7z#{;9PXy_%&m}h8h>Q!D8b>#JhwKBPA!hCdx{^X@6CW=JM(~=)GzY=`#B!D*S~jEt?Av3V-0J+ zIgB70A2EL>_U#{z$_e-&4J8G{4GxgtN&?SWf}(Ip(%1a-s*3mev>{cc-G9)m5KWB} zk;P(ecQ+;{zW;1Lyqv9yW>Q84@XEUgj5mSpj=Qm~`m`d4Y3~){s|CA+QNndDrHKt# zw8~?Hvt4RS%-4Z~21^ZE?8`(U#md-r)*XX$l_Y(8Pa~DvmwqImwav{-w zwa$1x<`bL+l4fo=Or0De#gT4hR3(j?I-gT6AAmx0bw4`F8OSbzcvV|t%EU{`P4H$t zMeJnoLZMf63b-u`RIVnJ^RQQNc{GNl;)|AS$)1?cGUGS8a3YpUBfTtW{fR&jT*=n@ zEp}48;T9NNiU$LzX4_2Dpsz{z7U#yu8t>~^4~6_M(${|)n>L!HnK1^H%E(ERzg(SoJnIE; zR|z23bB&qIn%~Gpolh3JDDF@Q0LJV$>pXdC1eM4*imO@MmJ@fTB5-I}Q$g}k5Ebgx zdpZ}hN9Ho?ra{u*Y_AwxR{v%iZ)3=m`rM&~YU)XbyZgFc_HMWXxZzN<7<=DyqNmD! z_sPdWzP0a;Jh1?ZdKSP!2@16)m|H#)liR>8+!@34pRpdK@$Gwbr7*m*3PxGc;>7OF{)Vu&RW&IwNL7KV(OCa zI^8HF5{o_l5f(ZS*kJ9R>}1$ep!n-8?2UY%Or-MR}7h}*X!t$5ODJU{RS%o&SJt` z@Dc64s9mP!E1ySpus7lb;(*zna)o2KQR+V^v1BmzsGesN$P`PKm|;sml`HoRK5xIabD~xZjI==qW?u%BVbWtZqe-p zcViyqjcioe>h%X!U!eO;KbJo}!Yj=ZA$_}X1lJwT?FmbR`(XNT6meBD z{x-b9m-kU$8gKtT9H44#8W{AGCf6i(Yk?01qAWo8S`F~@0A-f~nZB_W0y;v>wD6q0 zv`w?Rv<5uO|Lytz&K5I#;T_t4%Uch;A^%(S#A9Z_@z<{G40y8rx44e~DR|xy2x1^i z`QI`F3#tEB0SCy9`QK84fk(>!*8fL8zy|w$hlb^I9#87i`wLh`7;|*3o@@O70l)c) A2><{9 literal 0 HcmV?d00001 diff --git a/Drone Navigation Detection using Reinforcement Learning techniques/Images/Drone Nav Graph.png b/Drone Navigation Detection using Reinforcement Learning techniques/Images/Drone Nav Graph.png new file mode 100644 index 0000000000000000000000000000000000000000..15d329a6cb7e8c63889efa20b1d5d3e4f886b3d9 GIT binary patch literal 37896 zcmbrm`#;nF|35w?BBYX>l~eLWWhinMBIolt73O>{9DIiCu17<1~N$k_}t zhvYazPGgMkeXq~u^8E+iKe)`c`yP+`;dZ>sUBgfV0{N26dg#Ik-ka_?$uSUh$j5ttr3SU0Wx>tDgxuVKi78DrwuPZH{9nWak$uGLR zza@N&mkrE7{mldVV(<#F8z>$;x5rESNbaHsZ2@)~u>aFb$BhZdK;rKDv|sE2etPxW zt8=^i{jpPlK|u@|+ewz?R^uOxRXxVX$9I>FW0m}6CRUCP)*E`W74d1-P9BQWQ9&~f zkioct)7tq+-Q)>Y*_QiK)>Wr-9$w()cK`M3S2`T-htx@|SspINZ_Iv`R#jE?PyD%Y zxYgfml9`zad&4bTPpocJ_5VdQ%2jghzrFRA>%xTzLq)=)hdzss9T|5Jm-M!yx99NHas$)^`V7!0AKo;|8 zJ%-#&dMI>YLtB{eu2fz-4s!Wh$5SR!a_k|JRga~cjg8I9*4E?Bojaj3?R5CY03>Mw z)ss8j78@IutM~8QIpeY8!~WwjuWHOf%%WFS(+|?c?d9Pv$13&xgX!Zb1@E!@weJ1( zE?=KFZ8g97A!cS~=Dj-hMImV69`{1Cd3bnJr4wdC@bL^?gZZav*_%+}5iHeK!vcX; zw6w4od(9=~@c6h(?Z~AoNuYLR#gp73d3$}lwkvUErG<{+q>YY_&Wv(oa%eZZfYKxL zVk1;j(BjEH#xras9w#qn>hMe-ACd9ys#`nXR+huJk5RT)Tz*;!*Kfs-`oQg`vWTaL#Tf6#pCGpNO)m!F;gE&mA4R^6d$ub zTx{IDC^Oa=FgJN+*?wv>z5NzOi)_%J+%4b~v+v5iHvKOtY)n^;VoJ87HpCt%Ht$Y& zIht5yj&eSEGq^>_?w5=E*`+6UCjR`j;Kt^$6p|5YbI!gXh#Q!RUNqyJ(V%a z4$(2r{GD>p!dsu|R>Cd`zu1|hAUzW%yAak7ofuEY{FvjH6^Ch2?8y_zu?E zhd5f9o{_N_^Ww=9`ew>XIf3j|XDgD)OBh)X9e2%eyy!6sE7Cc$bKo`nvPCdED~p#L zS=w@EyV2v56WLs3yF;Xl5`Ohy;7UX24QOWt9=nb>`>Zwkz^PGSaJ`5#Rwe0b>EO@u zHKd>-p{=6gzp!W(8TbCYkcPQwHG(x&=4h^<>q}W#w@T;)=MXb#rsFArI*`Idc)pf= zytfi_GUN7Apo;a;R@wR>i5TXo)LFi0nw+e!p|7t$Iai4vnd9Q)Bj#D>I=%I^cfEY| z($LmcQ-5@yOxs}~->tw;k(FiMIwDPSZomEeQ}T>e1S!$MYFv#w&BT!THm7YH;`LE4 z`Mobg>jlJDd2+|C%VERQualHsCVg9?P^erZJCnrq%X{)G$OR#EK;OSgNYAGl4UgT<%Qm7L49D4g0A1=?Up2r^tWu@>oJr)C_~r=eA?&x=g<0 z@1xC(wmP-LS&phHyAFL6mW7AqHLs*arV~22RH}O5(t+CXe*YSp5)F+viZ4O&dQ-&jfy_zh~3i)%Rc&9dgU8+{rISw3UnwyZRBzvJUW!N}F?#}wQed3bJPwYDGqo=c@KqJ?YenAmpI zldv)~=*Fm#7Q7U0NkXl3h8(bLPK*zc4#Z@f_d2;J`%NIYxqOie$+tIO9@wIjoS4wl zM?2Zb!Fe_6vT>E~{!^jDnFO4(IZHQ%8hn+4*+vg=o>wXENtX_)=AuqT2rl-+*JBj1 zDMZ!%TEV%+<+>^xa&p3u?83j&U!s&bM;W&7QM<95_i7;c9;Q!!AHt0y2o zFdtF5vOi2(0wPhhnK6^kCVXSVnoV0WK|k@2l>{@w>cES}OmT`(;?&5I&kf;`;c;Z3>G~93+*=6Elj{Jy* zhfM~&h&8K`QN4p(|FG3D*u+E6ZL31jtF!OG)-&xA)?;uaDC6*zCP6+@+|rTMl2m5w zqVjZri#@WH8+qzInoZ@0Aw#VoyvROiJ7UV>`A$xlmK1R8k#ssT-6ey zyleKG7#}7>qoeL9i&VF4zAoPxB}Q!i{Uwt_BoA$!jS|{cM4D7qU7_$?jU6JAiq)v4 z`2E3o$mMrr9f)wJ_hjRjK~~Get%Y8%$$B6AnMuXXClBUm4(`Vh^*}K~<3E4jhjSS6 z6#gb`ApZwY38?DMhO1E^`l)RYo)O@}?g5tB|3-)2*06R-Ls?33yb^ zzaaxzpB$)%8It=wA7+5$OYHTF33?b66@}!6P41&xxgmVck7pBpjEs!@kd58%Nz_f^ z55Qsj(MJ>_pI_5_`j5G;lyOen`*T$DfkVgDAz2#hP*wpyr`7~<<8TNa+un{v=Kr8O||q+@4v3uQhNl5$30oUPby&Z{?92@w@avNNxy$ zx~myFw}LGv^bZtO@7$bUSU^wfs#$Mu{rU5U7xQ_t(QjHc%#i>`dEpe2_;1w=;%8yo zp)V&x>^BFKV@6b}B8)=Xq9}G`+vLIq^BD!d;@>Jd1=X0`L><`^iV@1uiL#jO_Xp!> zKZ;{rxN?}^m&>)4OW z-9}l3d_|3rrGC*wdx8rrQGX>cu`ir%Jn^%~UsDmRs-v;UE2Y!bMB?ZAs_L)gviP0O zcL(8D8BM8QblO5x2oj0B5%J#=Da!}Yh?2oy^#kk0DVB-e#G}K1$+5v9#l3?emNEJ7 zx!MG++loEou<@EAT~|Xk=yRJ}J$)>z5C;`meuGr(U**IjPYb6)hTg$wQ8_U4$DW?1U0OlVy=ngRaaA=x^8jbmVY{7LR{jOcF1>S zxo?sNsHQJR*q=D_k%ohyE}hRh)ouN2-#LdxC^23uHY=*6pd{3wn?UYki? zVoYXVIcDiZOD8;^NilO&+Y8m6E?+mjKNKRLRcum#ANYyT$$qMcEo%h;4!iV{1N@gp<_h50?SI%u&C}Giu&R3d>GIDdrcTuVNbi>Fx5vU# zeQTTG<-#S`1ft;4=$N23q^}ma5Osjel_az}J?#(~Q!>`QS@(4_kKEEFZkV+#TP*|+ zmC14{imU9>M`9z4>O}Gv^}$BzZD$P-D@%*2!;a<4roS{ztK7VH5FCvuQr>caFgpUN z(l52pI5&MB!gc1Uqz#O<=o%8Tl5y_@69d&58Fm!%!WJ+)4aVSEKex5E8G=TELYDlv)@xqyzeDy zM$m>%RG4}*1`>2tPD&3xMD*Ow`QnH-1(Na;u1UkZ+BB&%-SU*51#8lq}jOf1JSWAHoZ#4U~mgen?YeA~5n8 zjtECDdiaw{@eeEEBXgg+3`NF`WYI;KD9}iPU zN<4!^qPUT9NdKb1lLU9HK)I#OHAc|{CxHT7$!^ZAph@Oh_J;D+%Qx@sj~E%@2C31M zpkn-z~T4t_gUgr916Ph#Uwn>Eeu?0HME zuBy4kUCtfX9tXFGps3b8hg!_F1M$I}EPwkZ~b=Fs=s zHXe&Q{b_l8j-$aZeibij&MO?v72;m^4U?Bbrl)WMaX+9@)5| z+`s&w;$79mFUa^iT*2qvLXGgiDzgFD%WHLpH ze}%$(-Kz9et1iO+(&wg{6S1OBsIM!Gm5XL=&4OMen^II3Jvvl0*rK3(>5ExqlV&qT zuRJ>U0t?8jaAkQ6STCX%<9Jc>U4z4E=jq}u%ZB2vd&%WV%u9>%y0P37{|4vEQv6i7 zBXZ06^{NlvkeKOSvIE_CB6&^fUCFlk8-)^G60UVu9%o?f@@LfEFND>gPV8Mty(O#e zr2kj8D#f+rm~D~aPX6QdW2)K#$uE}pq?kf46&3P#1JzkCPL&)fasM2_P~KMKX)e!W ztdcGNu^MSHI-6kx&9x|+DXBTFB5qfwMg3qoU13tTHPVE<#S+6yhx;SLf?-);@!>{x z>4=PFEfrPEyBK0pcjR{XJtPnwx8l&yr2xx(>|ABnoe%V=Ipj6&+w>KSzl74PO)R3T zFAzB6&m~><4VA6C_?>!AIL{-!0LO7y_nxYn6X~e|x-_?MDpQtAvtP+Ry zO6iw76Icl$vN{M$wc4gZC&n1yqf>3v`rDk*YsIQNl8XQCDf8MbX(E$6n~S^j<}b4p z8HSw<9&>Ie#+#jbx%O~)8XGI~B-VQH@3-T<p zz)~&S+Sc4R=1TF{hm(_D+6@ASV@_|MU@iy_ZdD`+Pq+*aEtMakIU-~%lPd(SsDu?P zsxNx!7B#`EaRqq>A!?@5jr5H=eb^9fI>%(opz6f1)~(#C7)M>#L)>KK^nnvOf+MEl za2nH;D{>s}+XI~3;r73&99gH0lftV@11+A4PrV%P#B0&r)i8?JDmL`k{LpILQP5;k z&~Tbi&%SfuN_Rw($Fxp!Y0!z>)LT-pkSbdr?mxx;;V2qc>O0-mPl@sAB`n@QTCXH3 zu<25o%DCBEC)-qx$wRIbJ2mUJ{h?EVQu$?^M@lxeek`du#1DFSI1-f)78}>LU+hgd-Zqv;}xjRi^N677aGTrb^Fsu z_~7JLnSi*XZUb&8Nbqp1UZ?FtOjV37f#diej!X<2T4>WbJSbf>B|B#@sudL+6fJ&} z)g2^L+M4@@qeqWJlqXU~%Hk)Wo0S4r9gQ1G@uTaUQ3ppPN(1NbScfNYR!GXzfzuF- zdWZbY)35b4>PBjH>@0Z$v6j~I_*x!E5df^|y^6R+ETM-$7vbxpkT^l)5FJ*c9IAo( zRi=zP7K%L#u%0Gh&#glsxxjwLIpq&AU?<9AtVDXUK9&B8Sb0>CVq95|8{Iq!Q70pB zGe9EZ#Wy|bYz3r7u$m#YSr?1%MrBRn>YOe(8ly&5zE{*g$$C`wD!ojZDQ@9R799i< zXJwKHULbV^y&}DyUyxs47}_6z_mEkAQyY7)%FFokS(fBNvAZEiE1!57bzzu#v& zUEW3c?DADciLTiY(F78gN~c0DH25}7??%KnEOMo^c=BqcG#h(^Bs3#EeF7kI7qYKE zd~P4pu*_lt#;G?BUfBXr;%ZpiK`sq%tYn!e9dK}RTI<|QRGfl^5kfNTFP{e^nceMp zEJS`gQ-(6Ud$Z)zK{_apu*DO?rVVM}v-+4hEN1hU1ZgUAJp{8gJTzo?y0Y#2vKpJ}48)%s+vTzx>-eLuY-i_M-0ijMZCRNXe#!1q zHglrCE^Qln%Q&9R2RZFoUYrUp`!>oiTf;WBTop7Q`i-@VWk8~*ob)WL>~jl_wa=bK z--q<;vVB;=SZJ7T zuap;M_xIqfET`{xb(gh39KF3-@Hb}|{nGr-?Gt_vze@@kW6LW!$M1|K?b-FIvRTqURv=_ z)m;iRJR!q3coJdAXsi3OKL{TYGYiv2A(ah`00aA%avu0hlA~f5kA*?gh96J0H*+#f{GG|clW*T|F{l;AoOP~=AXNw*e;nGSBRj{YIa%K$a>~GoB~-p zip6(NX5~iK)lCRIU#U{lB2)#|sC_YU6+RqffM}+uRvTH5qR-wj{OMJ_wb*a(=#z-G zu(Y+j(`1>JVee>|C?EPquUz#y;Rb=LI>V42Azq-hRr=Z!Z*McZk{oIFg{)g0$QCjN zfe4R46%;0B-*>Y!E<6XNmzeu->hhvmjZoCe@mR5MYqx6fcmBv#ceT&MT}daZu-Bto zNWtN#H0(ed4?^OBR_*97+zAyDYIi%XI>zB+w|ooS*<_g%E;n-;!py0}Qr3TkZDWbq zI}(c>ofyP4llHrga7hA_UOY|VYb_HKyo&S$p0%yost$e30WL+IBe?kG>E5#8O@<)d zsWa#&k>+LL(Z2>(PEu}xg+HBWS=NK;E>3;>-i7~p*L<}~HhOq%f91HAI31Kx=nBi_FNZfsj_ianl;n{G- zF989gVKeu$L&mWR0lN--&&Fzw)YNph6KMFl5SlbH|K5VbC$* zF#-O-FZp8Ng!&0qgP-gP=O006Wws!yi{d?%{s;zP~rH)qo@DURei}#{qF3PE> zVM=ok-ac1q3|E!8DIqF;vTr#ei@5~FrNp}$zjnqHVf!LyBp*{(PgTj3XV@D_(W>|9 z)wkbSohB8w9S&OE-m%8lZE`6`ZZ={gh57^#&8BMvA^Bun4FPgw>EeQ@bZ(nEI$Tu4 zKjlz`C9CXa<|>7BGtQ-tjE+uJIX17h9;^l7spRQ(BOy?)vIljVJ8j%At(55PEEh?c z&-bQZbk>|~tD{3)egHJ#h)W-J!&z7LKh`9HFWBS9Lq|u=&UkZ43QW~aGnnu#H|3ba$Hfw&bSWiM2h9U3sM-7?;1MF> z+3F=PGY2Xx_gnanwadp(6~^bx7%B%FDz^P6`MA8gI`(T(;HMcwUHdFw zd3kxivAQ6h7Rv~G+mK4W-=|#Bv8buJPCYrzyF%+6jo7!gPENiJlYwvWYpn;q2CF}m zijs!@!wb0gIPhreYHl@|OH|euO>8o;1$2xT550v?9o#K1t*XhMB45fTFAy0r>XN4* zo91VI9DK9p3xi3|P6?YWX;A^p-5d>SfhbzBP$6t>^1@d?506qRt-cEK9%Pm1!=(X4 zdTQ#U{r&y)4!hFLgdS?@n`pSqaFNL>{PpqiOwW^s`kb&Yc-Yzj zb&E*(X6K=awiN&5**{Ex_uY(b?O-QOdQ2ZAHU=;%Cm1m!;8x`>6}ALG4r;4|<3#u6rvvz6OW>mEHmP-<+X z@9?qRL=c~J?)1b?@Wd1x3%;IuUSE`@TrG{>JUBZfC+&A=VIXvS=mGkESBpyY%<&o22L+T6!p(spx=jpZFs~7y(*3apfe0=20oweATy{LaJ3mJ!r zB>O5Z`~A+mz81Rk9F%+e$3f({x&=RON#vEk>Q7Qs3R}w|)+6xmid-Zfdr6)_g?aUm z6){F$Y7K=47b=#I3!AG%eD+mUthw=aXd{C~CO__GBZCZ7aBF>%(`b6{aU_hmz_H@6 zdSKUVgd)GcWi<>d-bo-I_dWQ;Gb=+|A4E{PvZm6#n|?7kS0!62MOTEO>;=CH;n9UEqW;37)H}L>AO06g>tLg66CyPt0 zbp9LA;ur_WJLw0XUtRMW8dU8^k_42!zdmQPGBpjjbWbm+n1rdQT$EQKErr+t(8Aun z8aG<0(y-`^!wumAzYsyXn~SLmCX-R2O~HS`dL5vbqMc0>1g=!AzSk&PJKcNL)dD8? zE`6IOtuN676)_)}S`_1{Q`zd)gI~=8*D6#Fzpjt9N@uTj+pmAVqu7eQQ4>UugQ<~C zxZz(0Z+R$0n8cEgi?U-e=|{0&w(ON<_lPraK^ACWXyy15yMgn|e`R(l=v9jt+a^V`Iy;-U|gi z(#6iPJ$>u$S~|(Kdq)37+!$c(c^G6SE%7m2eM!}nI|~(a~i~i|mJcvX0uM`p+GkL5xVMK&9A!z8_y$RD@OpHinE(5z(!PJw8%! z?LKdv{w0KH6&4;5fo2_i!68(yD-=B<{dO~+BdXoEarSw;F+`Z6Y`B`YX9|0 zi^+RgDAq5nurNMo3YJP9Z`z<_ON&XX_!}L3d+e9{FlfjDmNXxIo^XYt8DuF84f{;U zG3H2MzvW~1uZFq|!oZvuhSj9wy^6%lYroE(RdzNn9EfVI8+cwQHn!1H!HOtrGR#tL zQ{g)!^SVXA5__?H)CLbf+LmbE8MXJ>UK&&gUA4j8(Ru@iy@$7g5}ca1dtXjKIb?i+&!duEO86zv%^mJeMR}=Kq0D35|1D zCwX`~9KEORXQ0$dX4EOc5$K{s+_FZ&J`veOM=IVC?N&em7r2TRZ%D zOgueKv-szV^5c@yjcrNg=+&243)CdB>3Cq)msoOh-Oo1c}o`X#vJHmJxsfDgVXA$Msin!xG#L)B$eOd)#K zRoXZA)bIC#LW|vc%)cRVQ$@(UueE0XNnfh^3eR=C%M)(nR^ux6{ahyJ`^!c5uUwb; zK`9h}=6%5b%kXagU1f;yqrYMjjcMeFgW9`1O>JRnlwxt)2mir8FdK57%R2Yq;eWDX z*B?o+FCBrHs5!+A0?~}u31%vk7>CGy-W^^1ATF{XDmGTKYGJV3sjT~uvkZhq#AF%y zOQR(D7ZXA`Yeq(9Erk-_n$Wc0CUna^cN2~5xHb6xPlUpSD|POX@Z^VqX3_wos5p9I za^X6{b|k`A&#gub7N6W6j!^ewVZf+_>wKhxAoN1MiQF*vHnFQwetSpuV*Fu%6L>){(%ySqQJcNqJK(vX^Gm%T@e84>^5^Dy1~IugUI|+* z>mT~DwTOaN5j!gSzc26eRHgGUb8~WM?R4exbGsuk7+0*vj(Es+=DTdS(tiQIjN;(t zANf{az53z}w0J$k!~DR_rivWmzA(2pZENr38StG^;qsTk=Z{1q;VJhhT904-jG&`( zvg;Yv%zl*g-E{Obp>A%xJr4rWdu?|i>Nergfzdf^yPcI6=CfuQmr|zOJ>4Em@`)3d z0aRmbJ^W1*m6E+c(3z&(P_A{)PJ`d_xt_QYY-#@?}KFJ(J7?AN<;3OO<)? zSk2xbwI);*zyOjXD{}WfoUjbLeM1>5KJVHHsn~p-Vk^0J7*qPnmr)ISg=}mP3~!zb zG$UNu89BVimyx~FN#47}AYFv$OA@^04OnE+)E5vJ(Smcio#i?aFTx|cJUxa946V@> zgP!`YD>nBo5zQm&aXnfP$P&xd{(-YNmhZf0%&LtwtzJDC&g%&X z2%uT>u!z;M>r(&yciMse*^81AfdQfQne9i}@3PnQ6)Zla&5-27zPHy-ER-B-MQ3)+ z7mdH=eClHolb5R+J)z(?<(-z6Had2(`%NSRWI*mD8}B2Alczry6kJw*ypb;tg`SY1 z({vs=Kk3!DVf79ywBy6_gYg}Z^Rhlf$ww}Oi1|Nb4LxrAb) z+=5V62&A88`rFL{0=|%@FxeVn&k{>mdpkyq+%1gCdWCWxTA%K(O_*BVj^Xju{QB}g zL*aX&#aT=F>B_7pUE5+Xmzt{1i}bSgODCF;NqF1^StsvTuU_qL4;wds>|Df-2|(hm z6al{3;@h{U@eO|Pw2TZUur>A;FWeZN(tH{@|2EoKw<0DU^&SdjeDIwM8YYywo%Fha z$ijHJsyRAOhkbdUG&W|V_^0L3ue0S2TOK6l;K)7UB zq(?}XX$4(VQ}62f)_C@Gnth36v(Zj$ZuQy3-4WHUuC8XxG9&8+8x4*4?2CGS`VjTH zVbd`hwb$3TibkXORJcoclNK!QKv&XvnhGQB_&uUbrtVHWfkYQnZTRGPTX04cE2)O^yLr-Dbh zW8>bBDnc~b5KY{BAA~H55TVK}y^-WK)WpO@yF3K)Qt+zth z-GlrHi@wb3Uu$Y=y!SWfeb=)-euc!rkR74|36{$R3zU-jkE0dL^3N8WK2a6`-FOVp z)E#VMNGRMSLQ)@Gc2K9omb5rDJWLw<@-P(eqT0pOVZu=I4QxQE_QTN%+cp1@dLR6x z8UEfAu&;b+GD#P&cV4}E)xqDbjtB8++4r=4q(jb!bGeyKVFyD=X0dmF=unGD# z6BWuC1(3bWV$T-Nq@R`S@Uyff|(KA6YBQ+B6m&*%yYgw?LQP7`Epm*L&(yhJ>eQ_<#qhu#(B|9iE(3?ux@%76FsOig-c3r}1YSUQ7bwV>v z`sjOE(-IK0GsT7V2RlUf42Qs1_^(!uIKa}E#DXJXlnyR9wMm%-8dOXyq1!&G8FXI$V4e){i$gDIvcgM#gdZPK z>jC&6B_;LH>;y#kk4Iq3$s{N^m-fxgO&}Hhm!L0FGBYnWZx0#x%(Tb*`q}fj@&X@G z94`_wXyQ|QL0R(Z)dvI2DoF$UZtvf}_nz%c@I{G+j12tXV* z|JLce6!2`}8qzA*b5GT4^uL~;Km8Hm{dp??lZ$&w6J;Wmc24#P+n}h6P)%d7TbD>a z#B11Rr_N1g{{#>o325^F8@qC)5F3a!)Mt(Lz&hj?pUL`a@!&xLEq_MMmR3~Mg%C$= zJv<~M36Qv#MJaAOzN0Mh5=J>QK^!X22l#&gRLTJ+DDRm{Yf_MoDfsxkB_0B~Y#A6> zbFgZTw@g&_ci_dmOSuUOuAy9)9+?@=QruAkTlA#=_7S zw}3r3i_f}PGA!>k3bd-r#*+_n=8KuRIpKjs!QFT+F0M7Nd}YookvQ>_p2-I_Ju*Qr z%15gliJlm!DLvRxsQ1{l2D5yfY!1QOKVfoc0mLoMl7G#1|E}C5vONM6(a?q8JX6{b z2iwvtG&%?u(*q<#h7h?P{uVAGk!|yqFwXlV&jAsBP;yU8+FE|10$Ik= zr*3@-s>|87;Pvahm~U!00Uc7+#{(vtPj?xJ8vS9ZdGVx<1Y0l{n1boSEv$l0E)y0 zdNNS9g?@5q7Q`)mk3#j{8>4)0cE6z>CDy11}KCtXeFxB)+*#xcR!Pb%n`o_`>vkm2`eQ5vq{s#4j#yvUFgtl*nlv(sYs-( z&h`!%I4gbwW4yhQ-BCf(hh#W@DxG<86Jc;*%~zzy9Ov^m>q=)!7ExL1^tiPkO+d-mS0vfO%jAed(-Q6|eTMJEM4Pa};jbS_LV53t`CX6_R{Qa2% z0LNLK>{1^c-7{JLPGaaW!$%-N(U#w%F8t@aOTOQ1#dvwoKd9p&X~1;ejF@WqENyOW5zO$-p`<`e z4jqJ9k=Mt_&=3VWHpW3%H<=?K-i!o#-dK{8!*5-L5X{I5snD{cIYMS#y9{-brTldh z1`W^}l`2@!%iIe~_{-&HEXGl)1r7y5dV&6iZvMTiD0!ywBDiy}vuEVmWRvfM82~R& zW*a&>I?jN;y=SeftKNJdT(B3|7(i&9hRhZ)_b#15!TD4o>WH&ZYm>Jc9?Xo_y4yOQ zf}Bx+PTU4&JM6CovUegb{Y=)NOGNG9Cw0T30c{rSO)v2q;O?5Nxv)Chry8lSnFrun z=hHlaVIb~%q1vVG>rINl8S?Q$cvYhsr5zdvek2L--Q?c0e&!Zz2YeANOgzcXztjx{ zNz=V!H^Ali`TKWp`Lt)pxqLA&C~J2pC@9D=y4DC78cW)iFj4r;!=Ec@(@9@~A`O-j zbwqmYvMi*eX|+rpi@TAs?#R27+2BLdi zHi)|Dzi#E{&7UH>zvcR`y^!bzYb>NWPbsBJUT_AWRc^-W^rLU!jMsqsci<@) zy|M@T3?3#VB%D5dhf`Ayos%w}d&BiL%{5nE{Aq>nYxb)OU*7*oZ^-=oyzggsU^#sg+TXuFt6275)_+$h zQQ5b{YrKrfn?174>l(qrP^A5pn_l5VJu=O|Nx9|7=bjyhib4Qdc%@p-E_fR@z26tM zIwy48sIonvwF}xD@t{aLsUHt2xV{^@ALv51Eu6jnDAV|I1mG*9Wl?)~O-)nmuYU#< z9?W&%FZB;o9vR-pMe(!k()f6F95EYDcTv^Ry@G&@gp=30L;;13zz+n}mDl1OB1&Mx zNF#}!@Yyw?y3)sZ~uG7+G}ZP89E(J9tUj`9*UFx zPoqHrwI1)+MwkL@WP2+stC?obWpGrXE3>zOPrzAzT`$p~Whf(`K7FEf^?CQ@+ydm7 z+ig^mU&H@sgZ4jUWB#!o9Fg1nV)woZt=7V+6~v1POTd;S>lqq`NS$Qoh5p38T|Q&2 zrKLslG7)fnD22T4Cq!M+B{ePP1(oB=4mIJ9S$oB&)@axC0jYJ>p^59u7+a>xLI@re zO~0$*;o&sTh%?oacTo;o`_u}A!3;Xla=(M#y6j8zL8u~~$@zC7AJOijqN0t*BIu2` z$gVvDA7hZO3v3R-YSTpuuiu6UTkH|ws+%dvEiTZHoUUNskab~Ih4oxH*m`%6T~^he zECiva3BoE+aq2OWrY(ls!-3oPolY%)eoAqKe}?0 zmRtAbsdy1_)eQ_x?2Q}$#n|i`%QrdN`}jydRp)#=@YV@YSTBFwpH_qGg@LfRs*od+ zM7vwRsI>p)2l(MP(Bc}~DA=cD{PeaG_UuHA^%a3zmiCsFq9yUd+Jc&L5s7v?4l(=l zprdwubRGBF;H?5+FC?hFiUx9C_2#+G`#bTrbP>x#g}yuO#-QnHH}cvsfcpSoWQz&F~#Aa z$NA_i?RsFPxpspd|2{M}Hd@(JV1H)JjaBA%|2T)wr?oeMYYH9L-t{_t2>7-^=jc%_ z^&op!(-j$5sX=_MxTTz>UDB^`GVC%dg2&~Kyz4|W?y6z3Dy0MiQjB;5fOV;^Bq8p` z+O7W0@~Zj*T7T@@VyKhMb^13f)?3{B1?`&x3uzRGkXN2Q!pyS?18+a)V?unc&YEiDBjF)B8kPsl7g8$Fm_0 zM{1Z}dm=|$#id>$m(lE0_BSd=dvm*>e%X|NI7M#7`8Lg8u;u_}G;FA36W|9vz}>7} zDHdl?-J5wT^PkrcoFeBnC}VhHME^;u8%=^Vlh~t6k6l4~F>6=E+^x{nOezJ}R)4VG zHVq)MzZ93L;9;lmEH}ydC6gkhN z6dNO-|Fc7E6mY8ecurRSvQZBk6m0|9vn_Bf(zZ3!BWa9QtZ!b-i<~@hnqCf)-*CmE)a&^~PpS61c76foUgldg^e5Y|b^Q5h zo(Hs63j!#Tx9&*eILr%q_;=|c&*&4}^-myy1-_(<{28?HJHR0Q>dkT|Z_rtno}G;^ zYOfG8v^4wl6=3AsCu097UFHTuB}GKOUXZr?+kG8G=ic96bNQ@vRZtce;jvSK;eR=C z6y0McNPcs!a#$Zoe(p0eGR6m;@c{F&wfm`kj&8kW%gDL_u~DJg%gx$fCN-?L1tJ?q z)_iWK#~obzG-(2<2(2}}KK3|9QIRR-#lYKlMKcwH3qWxuF`WD5(f~+1QT0zJYo}~f z&2GxVWgir80Xc>hh=3Urn=~r=?@vy}_NRd8ucJ52T>E4L0Fw@UN~nZ!(EL}6?2S?R zU)>+5a#(Z@R}RYT94(((`^4obZ|ev*_RK9qB47UZ%qaQ8#XDY~NSqpsBtkp?JnGJ&!k_39<>rT)^f|U~$h_GUP<`9b!p%INo z!cdV_Sm-98$~=suwcXVxN3TBgy_C8Rn(%h<(?_GUhS~$rdh2%pDq%BEP#1KULC!eS z4C+9F0E_`i#r)!8^WAus{u7HofioI2U0(n>l;ZdwklwHPXHI3-`w~`GGK4^Papb@6 z+|nR_^KB+6C`!HqH5GN^pFKUb*B}096v@wegG9n#o(5YYARQA3a2#}Ka25G%Bb(%8TFae%S5JQgD0hDBf zI;z($(*SPHJ7%gVp_BcUHq03HkY=uFSfjvM2B3Eyb>p&P7WY*H{+vMex+D#}eYseD zmKki{kmwE#(XjLeZqXg+0Y4|(!)I>VP|Pg=idiv%-6;mq&^YbE3pEp6$wFb&Y|cF9 z-j}e54-+-6Z=@a3Bj9-yv`8|)tCZ?M>%MI__1AfP87fjx2p~MCUb~6l@fueeV9_89 zp6j6^cI(!D=hb+YzW+ghXN+hUW9b2qzdtK{$vaCe4=L(?a&r z9%rEvx!Y*ilT8m9IJa#J4PF{xMfQ4Xyx7o$=~!%7yW4^4y8T^$pv|EhGa7E!0WJKk zI0HM+jc;kpo*PB=^$Px{I_VHRrdl1gel|2fz**{Mxx>@K20Dm}23+OoNw&aqBbK-* zV3OL!n3=%c1+b|e3F2w)-UM`-+ZJG|f5^@zc0;#8(}=>odmKVwh?sPfO8Dj@<;dL% z48RL$0A|E9;2noAC_BJ7uBDJ42VD*+`hf! z^hK$&O@5A1e++ccv+)08>bv8q?%%i%B2iIRktk6J$tEL-WM}1AE!#n6$c%`zgzP;J zN5-)wmCBySu~%8gEDmKp*SGukJg?{e<9@yF*L|Gx9iPwjxvuLyuI%hV@B3c|pM%uG%&%^b2mGT@RW<_;1;6!k2WS+&=!NaKa|dl3n6^QD)^ndwyghR6G5Id5h)kG@zmftEmCGXQ05g9p3gbu%T+Mx!P zQP}vScg3JwLpn9fmt7{5D(xDDsBLH*lo`@b+CKgC8^I8!&cj(*Vb#j&_5Cn>EREG2 zoo$q=XzzzMFkr4akRIH1xLnDKJ%L#oUNW>`%aQXJ{z201npjc-(%*%3=oU?R3{Bhq z@j7Cg!9qn=&G~G_{t#DGbi|Afr9{+YI}gA@-Wm`=@-Rn5;R;zG?Z#&ehe7m(}G>7GhHR0yiVL46zQx@75x!O(4W6jbD%8a#XiE{@Z^N|W4(h!Lc)yrW3Xerx!Y0<1I^E#=PU=7$&^d{sX{QMTSgt*|BzUXaF8>_V$(<4i&LF6p?A!Wrb!j659>PY{z{di9GwRL+AO|x1fKz6Q*h2rRZSdvc#8^_ zFSryDf@hFMcQ1V9dE0vv(AmX6X9ySl6pCKz^Kjq46m0-V!E7#%x?@P!;nt&}Iv%lI z16&Z0$oo!T;-3Yf0&x>BC3PS&Yo}b9CncW5EOWvq>1{pB(B1jhUu{V_e4-Icra+lr zZS+PUjy{vf-)x4|`Ip-3Gm&28*{djsuJuvglH^mce| zcw`N(knNY8JyL-z@9QY;mP5;V5Tx>>`>??d11gjGHT_zcnTu*CY(w)KOS8;LaTiVQ zK@h2MoxbUH;s`3R;})ijFU8^0-|kE`nS{a5$XDvO$3wDDP{JP^s`0>r^$(3OuutwA z3}1o6Pm01kRphzk=0$jsO$Ipt_dL+g(R?^*64qVb=ZP$GXsNhA=SzW}_5eT@*YPJX z%QA559DkxE5g^N985&{jk8)TzfpTI%lSgsVufnz*)H2*Ihic$dn^Q$_VZ@Gvu_$L9 z{0Z)Ug;PhrZ_FKRhMc&qSH|ieMkz=ul9oci&@ z{F$neQ7osz<9FU-@*(ij%K#7sQk#9+*uei#zBGMk(n~@^MdszJWF{MptskW&()n*=rMFpC~a@hZ&Xx>eA#|Rw83UkVTqQ zHN5HCCLLs1j?ML%JW)S|3f$yCldAkvkX6kMiU*3ehM zs@TnO8iiU)*JcN9W*O|fnkH>=+RwIbL>_UfdKHi!wu6U~=MfUVO;Q6x1y`MV-X0?h ztqbFn^l7}|UKsAWEsamSwF0zjt*>H$h?Toc-1kBPdf& zgR-rJo@;gY41$XQu0T1PAqe-*nEv~4{h-}jC7yQDWZS3n$Zel^t_nG?hcwlMk#(k;2))VaV6hq+I91L7aEy!oiqv?}w5PO98Q5Iv&*l9im7>ipJiSW5P zFE88>ez6GJDMqwyot>4i%4&FG=T5-~KN%E=dM%qFjzU;Wzp9`tO3C!+&!1J7kF>`@ z=`kFd8N>d#`>PLX2_$sNNx^Fw*CR)48=(Xk4HrY;KDfSW%Lad8X$R%B8arEmP0$^f zIt@EJ6wEyyqwm`5XI#fiW{?3eRXU+7SObYI+S)n?Gg?FNTpnqrr9h<_7GV0jZwi&| zwg?svh;?4M&!F%pO@4c^Ojw1O>Reu$AS-8Lf!U4_a3of{4tw+u*Y)~^vUp|`4&B5q z6u#(Dg4;MMj!t{Q4rWO2A-P~nl7Ox7v1#smmLw;>PasGZZ8ALYjnq?$u`#I^l5_1a z;u0wpqP7w~$8`}`evLO~+2D*1sHS|$Dz9tDuw!KR;?j7 znkxTYA6QGMz?rg_>2|a>vP+;-av?S5)>Bp zbbgv};zm9kjrmV$L>6OXP4ukr*$f=_|3=%G^mlc~4tWJOWoMb(*K|x&d+s40<9b0U z6>FvY1odD|1;`5 z0PS<{?e@wKjxYD8)GDmVbb^AybY^8>7{(k+c#5k@={n5)CGUebh(ZvO3tKF>>)eAp z=P=}#;o|JwgrBv&F%p~tt$7!ON}kA74sPJFOMR11j2>5f>`1xdlxQqcX~VTwRKGFh z_J1`tqurDjraj30j1*MTu(&^+Z z$xJze%yFg7`olb3?eBiM#iyHN7-HR;pJ#InaUh=Q8)mvJpz>O6#X;Pte**Ju14FiB zneFh^ly><`NXegF!2p(d2oztRbf^QxXd>RdY;avGjIF7orM>KAq;MG`O=+)L6iAe| zNzqDf_>S}4Jm|R7CgZvBMO4oFkJ7}@Qtq}#MQOi)Pj#l6F(kjoZZc64o;pEBQQ^6S zW=nws6+lSFGwV*cn#n0rjVJN)K2}vOV6QGw$->guCT7~o38$&)=s5BFMfa{ievw-% zCTu$wYJ%`PKyC4y&yGXFpF9XTfLy~5kgHM%C}_Iv>$=Q{)bcZ=1yWIA-uI}BT*D2- zSovR77!&-+EwRf&0TZu2;$>B_RQ*1w^7fHz9k8_zL;@iaFe%VNER2LVLa%8tSS%A3 z(4KgU*?j0I&Sh)vuJ3BCWtq;XYmDDyvefWO!@ibAYn!_jd-SY1dzH~QLxNO@pSc)Z zp9}iWIT4Z0SV;UJJw)VJ-4N=|2CBXjT0?28a!C zNWZ8yq$0dIiejuW&^9(Uo_)a#Zk47$JM(2w1cD%^jO&*O4UO8YpV~}&Z}jzrg|ETCuM*Hnn$yxQAHkP$0l~s+ z;$-#V%&%F+j{QZdFgMK|RN>}*PU^l40|YHV*c^~ZEP;`e`R_u_o*8vq}N!7+K}yp zW%cg_)b87OPIX=NU6UKTuQB#(EZ|W8lIS`4K~;id{9pob+ON;Wl$cdJw^`~`f$v-C#w($Xxs7M4=83X|%>}<(K}1Eu%t3TJ z*DoE96zwOSy>_d_WSN#+0_x>kgTab2&SEKxwVkqxot2lhcg6$0U(!(5scZpyV*R{? zpo~|)b^W|R?Nq;<Y! z$P#?Nk0<#(X+1yW#_n{}p5(Y4e_764ueVvdW%SxhTMO6Vs7{T_5B%wyQqUCX65i?} z3Iug3Y!_}%m{hr>FU%G)q|6u)ysy?4^wVKUg&DXpQXPXdv1)8McwEAd8>+?5su*PpbTpZCH_?Chnp=7ymBK`kL6Si%q`c3=;6TNqt`ZGIb`dZwY81uV{|NAtV3Z|%~;e$<9?~zMVmnbTeaU8C}hXBFKIk``H<=A z<>;x4A~M~Vnd%v|M0Ba@wK%Pq{iU487FC~neD{aIzJY*@rS-%HN|Q^}3v8B;yZ!&R zTGkLG&ub<8RB$Bd8;|=g6jcr(o|?*cbb8flx%~0`1CqNn^ZEPuG5Vc$hK4OP^Nn4t z28Y#s@}C0-@9Zy31QsrolMPJ8L&smpuE-O4CCC*sDz7=ZXtTSm<$cv3ib`e%(F5hjmve}If>1Sp0ROW*Yo_66%0QA?rcpsdQYp(O{?T+t{!cjQIO5GEd zzh6=f=;Ai`_x;>TL0k#F8ci|_5F1bV{hc*ol>qQHb*UukHBK5g;xLc`zucb*#?yyR7m!aE>&@8xjqfM=z9c^Q zsH+0I>n?iAFj>4}dBln!dMH-@@$+mlm!n@DLtE_F4Oxwq?CR!2k{89AwzAKmGd5M} z*Uv?raPYq8@v8dA3pvC=HimaJV1IW56xpK+f17oNrsFJ^RTFn#Y6lA)GQaaPDun8c3~$*PmSi-XT0Q;o0&N>_rz3D zTAv69RN4h~SJtt(nigFB2D#I*>Sf

-!GVqg!pf8SiI#8Di0>`?)3omP zjqkWVov}U8KO1*ut}hjp7l`e?yT47AN(XBMqZp?o0OUVx)~{6iScmFsaW4YOAm_@X z6@XLqN4ilj#*qJsuLNp}Ff(>KQ?=Y<5Zb`zYHL#z~G0;{Rac?q%c2K>Ym-y{(82iObu7!-Hj%jxj6v^Tf3xSlb^J|Gz| zKWEWp31+F;y>t3hpyAhay@_vJ0V7)MX3%Q&+gnSmgoe8XZGVsZH~sxhsWd^dmbSZw zk;97{&bnS%4`uB76%C8nscckfmBj+-?V$_M`1cVus(VgprEZx2g>A{(yVrt{@ws)b= z0#T>KSR}CesB@% z#qRyYTi=meSX>?l;?lf*h~b-b*GR;IcLU_>BM2QGm)mViIE8gow!}76qx<>aa>=@X z4}H9QT3}SS`MS&e!7hCP2a@C3hbI;LX3uyxIVX0HeDO48upwNseAkwoaKgy^)w-0< z=3x{@wf5{EW+U>M46UGwd7_rilZK7Y&a3$f_tq)0y4dTeQ*&P}9JHX;3|RYIqU_|t z=;UM3t3PV(YbS1!Nf4Nw1F~}BW^Ov+n_KE;+YMYWXWjUnY! zoJU?mH6N`oy8L^TBvt*@WRrg9A;%*RpGn#eT@fX}1h)vQu__2o4Vc`EmTlZ5jPGMsbq+MG3WlfXzvrHp~amJokQc)1?zjN5RUoG>knXq zo4WmKmsXdPo%)>H%Hv}dZEsBUY;+GB<%u*7B?o_Y?mad#(VH{-H<2skiCU<~2Pgf+ zfbGV_Id2EqV64!ia|8P|^LD+(zOp->{lMTf*D4KuPg&+8(wQjLxhw2bCw{i*n+aFp zW7f0G^DE}XcVmv^FGR2cYIP!JV!nRQ(J(5;fN1KCsW(Kj5ML46$7|Q;ilr6!zTTR; zKk}fVElavpL)+b>?bqG93&1#4O8kEr&qQi;s_aeY^D$Q08>J*w{cN9a zI=WF-npr@$VAidW?JUc4{i%CG=VivWa?YVkH~mi?`g{V(e~oVG+YEQU9h{Fy(0+ND z*l#fWp(t@tEp^WeTZAj^Yt!`IJioGJVB2pR$M^1er@9BeyF2v>Z+t=N>4Z8kH|35#HPusot<>dR=IwR`)e9g6~JyT0xZHWjh zVVv2=gA~A7_cvYo(c0(YKh9re$!dNCLL&pD;mBs}-{hC33e;H>Dc`2>}JKxCP$z_C8uv*A|End?d^WQfUE7GIebEi--zSi1=wlTgYAS1eM0$` zs>?Bf*4ukOEgjo?Z2ox|scI$ID{gWUIF<{mhFvM@rf~i!5!Tg-z~!{;E~}4(Fu!b5uvmDF29inC>c}%|%E# zJ@)3-t9L-AML5SZ9m&3TYk$7c7<)hOia`%zfR(cBTV6U0kme}K3CTFb+C384^XG}h zsSEf-K(*rIN0R@4nKyL(^p{KB?2%f&Erx|Bie*=PJsb0Xmya%yDwHcQ%?o zAH;lfa4aYo$Gqyh@aQ?)+k;2h9TE09#Q;N-eSVf!{SA+J)}(irty)4a zU2*++g9At(M}V|i)RDtjn3C;}>OXjRk`1i#P{CUf$cT;lRJ%(`ZoH2~78IbXG~|&X zoLNyb1pk`IL%$xfvbEkCLZww(v)@$! z{8q48SJB!X1P+W%zqG4hlnQMyW+eG zIiFeBO}xD~a!j4@wfk$s`=wFI3caoe50_(|1L8(^8X0O|uyYc>mG<1aD9_8k8UWvC zFH#AZD6v{CdS6`cq&yfls+2&QCL-=t_w$UXOw-e-;%T$x( zl%utQw;^Oy|0>b3Mswdx2PyLR3GxRuJcT3ay{Qdl2CH*42CHnG-wNI9{acpzFQ$Ngnub{&D zfOFspRKejo?=sUtgUmKNJG=il2&jv2V$#^0GkwFi2>N?W4Oc31n#F2GOqc6Ch{ z?Sj1)RqQ1a;| zCEfU#-phjk1(ZW8(iAEvA>kL*ob}Ii&Z1rnRY$dImGy-TScvp?y%{mGwBhMxes|K4 zg3%nXk3}HYI2~h(v1&__iQaHM17n6Jg1=PV=17dTwyPh>&-jqja?<;Tb2~L zS?iZnu$hhz0vph4`a~qFP=>y0_=E{+mF6%1Gblz0mzjLeOFP_}`m*DgDD^N&?jo>G zbr2h~k;AU2aCac9Ez9djv?CZ`VPWA%-Z=~$yv}KaO`06u!SFVNR_*5uNyB12OjF>5 z5fRnWTK??Ew?RW=i+R=CM#UD$yqGe#*$!&lA=GQNCsgcr`+Y}Y7|rPA!RMF5j;0(! z?VknH2b!$&L*a|e3yE*KmLxiAc9XImam-WCG|o52P5~jE$JaeHr2}BB2%<1q<(oC8kmPm37HA6ddsO$LyW65sL@+%u@ z>*qM8cTeHtG!AXaz!)E=tm|Um!hjSD-T-)_g>RJW5!A6+=o2_iSps1(}CtH6OiyqA@Gn!k72(lTiU==Knjgs^!RW-PmJ3k5o}+Z;cLX>O6PjX#_Dj z=7wtNwD+V8^y#MVZ{k|h|?q#dGTab*LIxja{LpC53i6F@4@Obg^ zWhHrmIGm%EIFc2=wYBvTkK(SI+jRhv60T_k*m@X*#|AQD0PEAVrtaMvxv}&F(*8ay@@P9*#+uw&p1*r}bc%P$r0N_9`Z+7= zc7C@ay3~q?KU7U&@(`ltjOw~XI?SD9>;IH*x5%uz$D{e3^ur7g?jI1oo`Uv{%nAMyCOY5DfpyCxR)AXE!vH-+BW?ARI zTD}vPR*-7{I_sV2RS;O%>~~WA7wdQv*_++Nh@p4bskU9~#N)lcv*un=85tQM{N{EC zDsh#1`_Lp26&TxWG=EYVD9%c`c4jIP&3mjI>-dW06H?u_&lT<<-U&p@fchxV(fOee z5Z zH-m)qo>HhJOdTCJFP;j;fkP{!p7>Q4;OBZa^Tt)78=;XhID~f?{jTlpEtA=S@@WDx z(-IKKgvA&9>=7z>O3LXf=1JIJ+*7tcLFNRPc{3RJOv2JDBh|ez4tY`nsP%I(R*t}T z1O{{XJ0scak6;0W-!8zUNI1kU%okR;({&^i;S3M(6H#6IpvXfa#6RBZRI0L=N84nW z&0!^#-h7Sqd|m|%I51;xf?E93?_pF;^36}>Dit@s^hKHk#c#MyK7(r!$jZ*H zJ~oSxdkw2%h0RGrJ+MUF*{H4Cv%4-27Tiy{bT`=H^|MuImNByQQAvo3c58j8hL(<5 z`x;`7IB1jVQIz_Qn>G!be^`@VI6t5c*z@;ktWHiw+8k9f=(g>IT?A_dA@L3_B2+KA z$2XJ30&y9K0zjx^Rf;deZF1J{b3cY0RE0B28e5@DpPpB%3X)pW>$-yO`MosoKxMDV zO@QE`0+^5p6WWZ^O;wc!yB8`00VXeN+5r)$x4h+-wCOlSG`|*ofP5yGLC!vz!ac;Z zCK8B}+v-+U*+{YoQt{hg&QStFqaqZwl_!)OJDwutoMIYb8g>iBJLcEIj49IO#k+5> z@SvX=Se>*N%}sU82m3_T zj)GV6Mttprch-x3eRJ^3elVgT(@4^ZdPuICBJ}mHMTlR>Wum9=%;5 zs!wScPCFu=`wm*Up6-Y?1?!e0#2J_){?{2o=yJVs(RBHbc3MQOL!~5UFq;$~KR?t{ z53XdM`vHj2GDL4Tc)}CIkcnaMZ^-?Auj%;!;(-!9^IQDR256KPN!a2F@Mfs8=pfBM z-ud&;xRRE;Cci#uj7_{0;gS*K;`L^}!x{;U>PcXBvP~)h%(YE*A z%Uapany972*tVq_D{fa}u})j-^G>}5!9dt_pERjYp2tzB9E`e@3W5os$<4k{ zu~S3)#q+m@J3<_>J->hL@*|e3_?+Gh8pv0i_~Zk>XEivJ9}@L)00ypk763jpHpikb z0D&>^XxF)`_*gVxE%aSTo{_B)Hw3lz$U%Y34y6Y@FG@UL;YU8qNZaxd?s*}CL7G7A9!Kx?gofRX z;n93_58^F~>xjQ~gxfXm)HS&#kPhOGSlQbPc(myO0}y4dG%6uZDrC5Y&p{^6(RXYG z5+==1lUi2B2@PpIhY6zCD;fct;ir*HIopV(6~6uc<8jbSFZyt{7;+h-Ce=qTBNBS$ zvYH2ZzDJq%GXVWZ)x7h;+q-rx4weZ465}_312K};@hmecT17O4LF)sD2MD_pM?Ux8 zr-O!i@;{hFrXS{zY$Lmy!>|qDSSMGwE1du^sRaJJ`uB5aKh`wZkltkidl^-uzA6yR z#HZF_9fB6+OF~C=KR`s1kekG8!5O*G9&(Jw!={RK_1?9n-&A%3f) z6ho1S5xr)Zzu4u=X1hNDA8`ae2u`ZdN0tlN22n~>bL@0&$h10y>gz-)++_qmOnb~; z1KrPQbs&t>fwT)*>i!}t74e)gxk5SHduGvc|9~uW*C6Z$c-&m7+3i4tK?gMsj zCSZ<<*~{BeO3py^f}LrDq>KM0TIHdtFYvFrU?!L~=x;YdMIJZeefzS8)lPeV0bQ8o zfZyh*4I(!cd^Y8LxE%>!;kSy)R6iq$4We*HOng#&mt}y=aU%1sl3bpriJBu~*!OQP zB-nVS{j=?@U-9ca?f>Vl)GwoC2V@N9_7L%dHP`@n3Q|xu!V_nlDlIEp0w@@d=x`B~ z$@ZPB<0W>QaxGA|foi_Wa92EI2LX8yG;s(FJ{A#m<09CDx@NYM5^=YpAOeRri0shA zf(en1l3vh7M086KH$7qVUPkoDRkAj!Ujie0f0Gflq~B)kI3AYBFoK9}dacb!H4Nqe zhYA`KPOr~|&b)ogyt&!beM%fzwU^Q+l7Ov@&`lt%sBO}9r!`4N0STk1EHKtC1YtXR zf}CgwnO)(#;ydmDlT^zDeQ({^D9&tpiV*Gg#y~v}yb{!16{Z8^Nkt&GA`KHTGi?D| z4+qGTN?=+Tt^MVon;D23Uj6Y9M{8I<%U=_PJ&)IO)%^}?zTT% zd$NUvyj3h&66(70$>boNYMQPq`{7Zl(eQAWTT)bZ6A9_6Oc?TJ83?C0y{HdBb4}@8 zPuM=Bcq8BAmCMmq{L6IUH&8g^@C7buqip7i{Q4qOCvBvbos^$9M!)+I|0<9 zhnd!3E#j7oPP*Fa3`Da|kHfaDE!ONN`n!DCv@^%&JVu5bWd68@S~rwEmF=tB9$h(V zMp<_ZqS09;u$sU=?9VGx{)jMR@=P4E*=x)q<>zV&X8SfNCvV>U10av^0V08bKasM# zhM&q&eJfFdEb)d>|Lr9w(KBg421kW67IY>-;|cri6wqO@y^feKT4x3=e@>={op$Bv zThF~N-Q!?>=FfS>zt0eRV~^>ZK7LYw#_)*yBr5_q>y)jf$XbO_;eM0vjRKciiV3DqS#lG)CB4nws*H+xrv7Iqa)=rin zE?9VUvWKRC#6}3tCUXYcBk)Qx-tlSdPBH|z;FA+>yj;Y=5V!W;lQNYb|BRYKt5oD$fvhb4>>_T6Vf3)o;VZIQAFLtG<=< z6IgoGFiN8{-WRC{%Tg=HQd447*fIQfg{IH!A&=nSsFrDE0mowcxU{1gao5)wMv~tYjrj!RR>H zr65JuMu*pjUV=QfSf&d}8p0{*jyn7FCN9F!{OZpaAqX;Wu4deKZ3cSxVGT?bE6!n{8RK2+QKV?+B zuQ`nl>Ojr$;)^I41@_QLark;9YxVUr;?2%rqh+M4JMpQQGMut($j$B?S};FfD^7I{ znTkAkjY0mWYQAA_VaI_UcX#$VC!f)O?j)ew?a5MK#(!U690ef}N>4Ma5T74c#2Tn; zOcB-3A7VSnkydNHF+9LhKVh6Ltgv_ zRPyR-*TiKEG0eNNe*57EyTE<}W_?6wiQmfAyB}&rP{1}|R+af=WMr0Qk$UHjgS$?i zjjGNqzk1gBZu?k-V9@%JY82F1s6T9UO-L^lL`~^=f+|iWpI;TALhVF?u%Z^aCg#a&fSBl4F0LXY2Dkfi6{dxat5xA>g4g=8 zXF*G%4gLBuP)C4NVw0brAEXhq3@ZmEuA$-303oTY0Zeh7RCIC?c98Tm0|1(`waGQbF{EQCFI+H3q?T9-(2d4jvB0)lm)5^N< z&P)15LbnpSyJJFkJ z?k4o7kx~dTf8-?V#<8WHhocmgoTE1b0eFEVbV-4(^y*QWd9Ag5PH4q>5 zij#7GN6EO&41juj5psQ}>sL9oiMNK8)bje&=-=5M)Z}SHhp1r~gT|mTLAjsArzb)= ztOZ_k1z0QwBBv9-6WP-`gL~+j#BY0%TuzZ9<$TV|9_=U}BtCX!i(hqsS`1O~6aB6= zdPBA6v~EJq53wm%Ej~sNMJ(cC{|Bmdf_N|oKNBhU=RBa=kIZgCOlDP>?uQ*~V+aK<+5 zX6plNtT!UF`pw1D2G)9@ysp$6(5rr`nmi5~=_l zfRKWcSN7;Yo47za?{xA3btXja+GoL}rpURRCKqJhJY>{PO$|^S^;jG|gKX(JJ=ie+ zTuAO-%jN*9rF$39dW_xbL4Q96QB}CjY7!ki&p9 zY(OZwu-Q_8nAR`jbKw#j8(ZzHrQbUO<~nvyFE&UQWHG39I-$_Q&#UOe*U4Dfiw%$e zx*`ogFyySg6#6|UnaAUnUM09f5{}VA`!D>EGLj;7Ify5`OH6b?{QD5U5`xUXbcLl6 zSelywD#DzG(qQr+*xCJi0k(0jDUC8K@>dIplTP*1p&mParzq)Ss3NtYY=dzlK@Ml$ z%-sk!+BGe+j#|KFbO`)|27!gp{L;lFs%U5(kG z6LC63gKW_E2r50o_&j){0NOC< zB-#Pmj?x!DG;GGim|lMN3+%0f%+<*r}sj( ztdK45Rl=v9SmC<7FRBtGB-1ke3a$G5`>F#IF?1+eJ81Xa-Qm~IsnWB-pX==z9ul|D zudt%^OK8hKJt9z|7sl+N(H-$hsS4TTpMqN?3}zogX*isA^~uPaRsa%Ru!rn}4u?qM z8T!uh!9M(0IB__H36=-9W8UZBPyG@^GeoObfy5C+#lja;5^=}2ryzh7TLMA>uL7&m zu%n#pNGgfk?torpC~{Cyi$as4gB;pHPjjYWG62<8dfbrANM ztp@QkM6b~wxLGAm9fR0(+({*As69|;VVUNOJ-JCCKCekGM;~so)TJ8L@n~Z=@4t_G zZPidI8TpQT-NPx{t)6*eHTL$csah9uyfDN3` zf)lxKxGbNFx?F5p*#Z7S3#uD(P90Y>+Eslem!;!4;cDlrz;6|*T_`@qSD^K&rP#q(!Sl0JB3(j!Qrd^6Hmf`={}dgnCf1tkVv3Z2l$n9=!(!tcNhO6DSP- zwJThIh6`$h&rB2^^O8U6qgnpw8J`{;4c#EVM=3ESoO_p$Kr%X32kgnh($bz3|1G=W zs)w2X{90K2nBN)3roXnrFWe6~*^RUZmBg5nn2sNJL^@%gk4RM=a!&ZOfe04?u*d{Y zKBjZ{^(s&H^3r>dE>Xpyx`W`4K3=~dEqF-;@o;;|wL(ga6R~tca84$g%pg)V!D1N> zM#S}YQ(8AR$QB9MX)JW%pm2AS=t#J50TG+PIC0g-rn0+EB-5hi0O(gsKAcjKx_dla z5_!5qO4IBhFA^3nxN-)(ZlXTeU%wLdQI(Xp2C(gDUX9UK?^(VC6s-ymylvD{+M(e4 zU!RvCi3%Kn7*I+(LA&-&Z)wkKXniWQk>2W=nK>d%j-}}ftxDy{EAP@Kv5SI5qw#Fv z>sbgJRkxzRNaHq)6*5Jg8-eb$=K;@^u_gN&y!~11-kAg>)0#uUwpIb3j3r{<=YP4% z10%tiP`B!*$_>!JpA?mm8O+g)SFSv)B9B~HavIta)aXK>ib)Y9+(z7-6#Qf_#*G_! zKjV|K=T!;a2j}t{^;ZxrZNFKfP|&Rn`ipo$nUq-%f;i|OK*BWlsmLG`^dJE5fD3_j zXUY<~jTa0dg{db<>3;>f&cTuer z4p@Zk;KD5Q)D`%6zHqRNUhYHeO&mO;)}o@2DS+1v@ty^BLoebC2SuHG=havCL&yHc zcpT~PYPsR1uKvvQi;7=7!lG}vOxyNR@fY}UDM{&?)*x2nVA&w(rt1|I#UV8WP^#Ib zCCwr?%x7;oQxk`<2tmwdwQJ=Pf8qQ3>ns&IiJN#ivSjj#_Ue*xc_ro+whEYM{qK^Ux3yUZNFK$5 z&;c+Pu`b#=IAQtkH_p(t#laA$P}x~HKhx+79dRtBxJ6cHj+VBo?ye6Ov?2vSw#YJMs>(#=Uh-FT3u13!MBe@Je_%t)C3{ z{O?;y31zOXnBO~1u?ca`qDzZrdN2s_{L$q~EkO$>PdV?oKmwuf0B+PXqB&cF4Eyh^ z{Rs>WQe&_4h4#vdM6*h+&v$*PMaGx>{dT&-dDJa;ceR%bpXxuU?>t~(zEvI*#|-jQ z1sHm0a2;=YC$z*`MGo0D^?4Q&?Qk*K4IKx1ll*rVNtF%5%R7q!AMPer|Dn@p{!VL# z^>YsZz1zrc@2xQ@9B%&2E>$pmGT-i`E*R@O)S zkj^GHEu&wcPM1Lid?MhNZje9O5SV0E_mB2c^7`E?Ot0vmukpJmEZG5zK!}gei0y-a z^3kqcfr5PeO_33*ZX`Wd5|J4nu*F-PFjV~6A?vo2C%>`AHQ=T2+kd-1Y^8j=fowIr zMY@T-C`fOX`Ga}Ufy6Q5I`+TFuR-dNLT9t7%Jp^^>1cAbes3?E1R__L=nuzt!mJt`_ZMt{=$KqqZ zdiu`f$z_KL2X6NNzQk|q5!aXG{B}l>c1bD9$9p^8f(mY5LAQGm2yatUOq6l%&zEzT zMHv5ef7XvvcMoXubtjPQvABZ6J1eQ$T=Ea(hz<77_?v-i{hsZS+@{;Tx|Nsn24o3F zzztwAzWMX+gvN`PO9q3Vb67-%p}WcJJLfz8es+KTebM8Ym5s{n0PFp=zdBX8lVYsq zcYj!S95SoD@4o+L>fS}s*nz;gCM*{!(Be4P@V8raT_Yz+DQDy?O&vP-R;V`qi1{`3W>v+?ML zFfsS<*Uix-AMx>>Aco=Ly`}pVf4)`@eVpVG5>`-vH`cwY5fN2VrOkGSY7zm>AetB% zHD6OzHk(M=Xl-jQd)R9;SjS5oOmzA{z&#q4bL@_CF3G27HF4UfNIu&32J|SO>PZPf z2zm(no?m=6m+$F1bM45_5be0vsDDVmlE^LF<-|9PrP&NMmLb-_@jxjRN0626(8@{E z=XgWRxE_oq7k+u9vAN7eZu?(sFoD5=N7^-)-8*N5XGfE-&a2~uPBSk3d)$|!rZzxN z<0o367ixP6btROWSMcVLm?CDs9lhA7~| z0tN-1Bh`+PlfMA3Oxfnm{`|&_HzB8eYLdMzYOj`jepv-P`Hr(~Uwz~Dm1$O*eOLcA zYy6?0 z&ikskfN$&U&D78K8fA+*ZQa3q0o?pO)N?2=DW~T(@MbWH_pc_2PI0epj96F^vu=Ck z@?ZObH~#9E?7h-r;oZ}%sKYD^8hKOb(fprvB_dUf>!Q}dfZ0}aU;VeT*Hb&TTh3AP z1rMm4Ww-!5&2#{%F1y}&2d?XC>Fa|>+kw}&vHgC)ZlB@l=?OXtm7(E7NOW{IXoXKL zaF%o%a5H)Ya3bsL%ggEoFQvC?ng9o?fO99`%s?l*#MXYj3OxNneg_LsBZoh5*#xMS z1)9%E(+*#^<;|Nn=USfuS7zK&xBJKm9N3KQHV3I}Sqz%e0o@&2`}^D5m<&7MF$cg? zo_0xJ)G$6M2~_aV&oBabx;1c-kB-{1r!VVrxz1iXwiDYJDj>yzVgOMQ6p=2z zBn37;=F`a#WMCLEni)B981~s$Gn2vA`od8hM`R)&oZHcKd;D}?pqGt!g51XhS{17y z?NQ*p%ny~76MhYhxW|FTSB6LQ=jRtwW>ovnQ8yrK<_+7O)Z8=Og8Vt8q$!2`na=$G8X!p-7#w7-ErqPLuKwU(eRU@;E~1C;`S+K% znD(m!_Kg0O@BLiG=PZ}!L)NN@(~r_B(pJV?8$ICo2&NtyQ$!98`RagK3V~7a(Jo*( z=ZB)p_3PIY6A~`JiRLZWdvxgQ^5P6(q>G&R^y!{j-J5>nw4Sj%^%ZhMgYUR?V9(1w z=ZMX`(`&o9Uh;}6^)Ai~j<@Sd(4Hx{ZuS}$ZMrX3zP1p*RzhG_el<5yb^iVS-qya3 zQzD|G)RL06`{Js2@4uf)+p~0+TGjqMX;{u#VK%HJ=j7)01wG%4F*ko?TOah*cdXa( zu<`SfgoGUpN9E)`zrQQ|yZ_C%YHvbUzFA}Z9;=XlyF(o1>lZRt{(7zE5=YF_Pl%vg{=u-8s4Sxgsmr`@`@@xzY;<~%Lzupr)HTF7ctM89j8~DX& zG+OYFqR{PfcK!oGOEDn}+)SFs6H;O#gV{Hy#Q!D3f&6Oa?M{=0l|(t4zZ+i44}T-S zUjFm(5n;F^C-M37y|p=BU0q$hsj7iv>T5IVgx8T<5}!PA{rB%*qmBKOl$7yvMqva= zoTVjmZk#z@+9X~+m=@CaCMPv7z;49#7MtZBQZy2X$=`e8%7v)|++SMc8$4ZGQ)in@ zxKD6|hRssFh;eh4976^uehGG4%$Ug<%VgYS^^eIIyxsZn?~}n*meTQil`pTYPOe>T zJv(z(@zg19^-L#}4n_PtD(V7mP_U@->UaF?>};bA+y3g+BC35upW0k${6!ZRmnlYl zmVQonIXbJS$aZEYieU8Y#Jd8|N#bN+M9;Qus(Eu0-#z+Q=c?*5i>8+9=j&Q+3~(E| ze$TdP@h^H?9oEAV>%@p@w*tgDIWl*W^f`t&dy4JnHF9>fsxQA$uXq=?d+FRuiu2ap zM_F-vBlg5uoR@O#+UimrDjT1wrh_xY-MwkHl#AA(>?K=gN8G|aW?esQlFDk%TU902 z&t(j^WoWG~iin6578ZWulTh=_GftTfO&@ti@g>+O%vQ^w(aUP=TdmKPf3GEKI$|&h z_7i`8G)7c<4;qWA1-)3S+W4`?XH@pUfj156M6nv%p8i|?#8WaPww=6P?a*4~QHsv6 z8YPL$5T(qKYjP(I2o)5K%Hp#l*D+QdP2`P*lPh3$tBWi}8dU_nJbe9Z@bZf_CJu*7 zeDL50jy^qoBjoICKgxhz8*rBObab@yH>Jt8YV^ABS-+AH{+f8rB)T!B+u|@MOQEAD zqqwT9tV3Pb%&cA1T7R~8bg7%bPGT)~-=T~$EqP{VN0c*K$*p;51!_g<>8~32R#XTf zMPlvqGoQVJJ7wO(+N+4GGigYB?$`cxtR9$BkdaJzB`g8T`>*a}S0e!=+`IB|y z^E)V5<7B1J4fMA8qNUN9;hC!9ZJZqJ`)E=m@@_Ls$(&bk**bUk{EPO9LRq0?QM~ZK zyHQD~O>49EYtHuUjwj2nY)MC{+*lc^=Bo&PwV@5?-{{|LSX)e6`=_6`@vgNXj;qu9 zMO#A-YWP;ek}dy@rTNME#7`2dQ!({LCft2zr1_&%#kxjE+pSHhi{_(6(HYW`wlz0D zmX(z)FTLm#F^$sa;uB-ZJXrp7SiLlGqPmG0G+SDQB8lW@O&U<2s;~ZwA0Jd-tLEn6 zN_cocm(g45v@+V&v;s@0w$u>veIG9|DIrmI{kP6imOA?Y{~iUGPg8AKO;e-xYc+Mh z#U@_}x3TI*`rGFzA?6Z!l6g%(ccv{w#u(CC{{H#nXN6f{GkWS>)Y7v+{J}r$ z2Y<(_Pe^3Zu~9*)iSV8Sf`|IsoXE%W?o_32#XI6S=)W`5ESZCs0t1#=3lOn}jep zySde-Hb~sL(PMjSF>DzLq)P&+Uoh`RA|#g6V~#{gadB|f*_ioZeLU!e7uCqP{_^lj zO{!)l#VX*Epori}!5UmUVNKa5L{)s|@8=mw=62%U@YvV6=!8lC*1%e$i#==I_A4ZA zR%M#yeEXJ-sycXk3*6*<@Z|h*gHH&TB!tO7EI;x+EDodEw>G%8EU{MY=I~I{U$^T- z!O{`QBin|rFHOa$kEtJyDsNa@YM3w1ki#YW+|Y2e`pNQ6TYAo|p~{clU`d+v#g2Ek zYRBiGhY7=hlS3V;d)LOLwHN$l9h0xt*!F8JA#;Q^qUx@IqLH@|);HJ2T30`Xq}}Y$Ru73HaA>Hb zmLG2BV3qAWY+SLKFWLrTBcmo{ZI!O^VN2h%Oju|a`cQV8 z<-;6cjL)i)0K|{elMTMdO-I~*pGCQ1?HrFb|bDtW< z(ILXKAN~+n&ZpBgq-WwLvO=_;XbidYZfc-EfBu}V!NX#npX7dB8Is!O6L5C+c-XNH z_S75xs)^pxH^uy$TInW1zjji?LKz}FEy1>Wdbic-)fBG-+X$eV8i*d#0P$0wc4lM`>?<#YjX@{*)?}m+deC}Xwt7q zW!Yn!s$Jmx1c5iQjII&up&GPM(m!vZwlZu|^><)^whFF63*jXUD`%#qh#$7yxR0tR zuxX|8&Ye4Sub|(e)UXG=H4cs8bbwpmmY;FGE)7YmiC5DFza{|O@>m(tRcF-rjx*>Q z0&}f7OKPhNzgK;Rl-GKl;uo8SR|7m}_jb&$zL8ihQ4~11;wD2@E?5-%vWkt0!tZlgW$ zf!&NVG^V~}t)EP8{b5{acNvUsqpaZKi^aFDsIX6UT`uq)m{Z?MRLv+hneS{hj*qj} zq^+6~ife`fa3ZwLrjw)8VBea^qS07uEgbRXd|%*-s}Q?-#JgZbn8#?fj$EgpO~}re zz0Xd%`Ajvivg!_H#hOrFm6cXppV~IRGqcH-bWOF1wJ?;~q&-d>C!Zjv#Rt2v&jvha z5l04#nhg3Q#Q9e|Sw6$AnN3FORdZcR1@14{r-?^bf^gq?H`#?4$E4Nq(9c4zG1*!+O+snFw_4&UZp*>V3$vKA5XJ#ePia>%^IEWNGqRxCqY zX!)iD?IHfDek}dTu=jANJ!^8P-&`d#JZfVcA4^EP>lb-89M9dofjE?zXv1r6<~FYH zk+EvT#l;(L7FSIF)Xl{tFgt%wK{!}^d}$@wD`bheGHSZDsNR@JWUp%fJU6;+mgY82 z8JeNkTJ@)Cx-y%JRB7`gt0)FaWnaLhn<<)R%(R%H(ss51O;qOEum`pm#r4&OXrGcn zi$J-+c@BzZ7Hf^CqpEA-gDv*4pB1DivAl(dEBH8i&yBp|!#6Ycvz|srimMaTtWS}f zwBFo2!>*2@|EbIwte~&qiDO=Cb6!iWW*!&2GYgd5xPIT)OxswITCfjwC*Z8$w{Csr zTwss4rMf+_VIQg-m0V-bT-wON7DrAnmM@5AVd$tI;l_yGBPKZ-dXbw>I3gX1wjZA? zMr9AFohjjOCo)6C&GxjfXf|qgA6!XBp}^Js-<*%|t@t|yVJVNh>q|#Ze(~t3;NPc~ ziPUH2r$;|LGEo~I9j`FPoYQo~{?rjVLR`r}=SYW=F$Gl=EP8BY`t??MKOXaUrCF28 z+VOSux4!2Qq&s`|1OzcV4t{GA5B$`#GW@Umj5cn|Y_IgUp@SOCrrHA5?9gaiLqV%h z=DgNneocGt*a@Z*HfpFked+t~sM)~9wOn*|z?de>i(*aDSX-TM=r0JX3Xl~FWvT^d z{>1bzez|p(ZwE#ir)U*VqQtY=j8qm+`+Uc$YsS(@|HKd^9*>Td*-H~2TQ_pF`2c#` zBS~46))?lv$UQ;O%H$hkMsIB&rx=qd`36i*S1wI1?04O65wS~E-E-bmIU3}+`psM? zaiJ&o>dF;}*Q4CL~4x1v2K3I{bmqA%joqENoman^(IyZ~8@fsTSH27&I zWPo!Kl2vrah2fY_^4Wd`lNVV;^sD@wGQxS2crqmuj%GEG(t*G5a3d}Hi(B#@Fu^l8 z$Ie#DN>7gvI{*+%Kfy*ByMXC7>5rS}TpeWW#6P3|&ZZESDzD%qX1y&8$dsJ%w77lj z0EYS(5y|W+YLg|Yxy@TQJ~?-|53oB|`S^^c`qq`Ijb6I_OXI=y9HFb{^EZWVNS{+T z`ivbg=ANW%>N|35$QL(`Ej16t^zv*WIA(JCM^Tx$;WL>_qobx#rWqPuxKhu+Ewnqn zSh1Hoqa3*~TwH{l49VV9`qv|G-3TdkA4(l=`~gZ-jCKQUif<86O~faEFLRDl*8!;V zFJ#hJFdyr@b$onJ<^yslW3}IW)+o&6=h}MgeQ#}$-(*8li((6K9kVT-$~NtKRzjZC zioaLc+{XAM0D;0TbE$&hKXD}GY};U0D^j6X5j-aJ9W11K-a6tA)Ba+-a9_K<4L6h$ z-c`#H?q#N(AL{RD)fBp1*WDvbdCST1njaj5{Qzx5sULQ@$UNmncv^YGlqcZV?ZeAw z#QbEmzf(j6Gb3(9nNYJjEp{;eYLS$=4)9Ky9W!lf9~{9?nRn~%GbY4~T+YfkL&?O8 zrO~gC5V;)c#*Y%mkvu+?f5$nHvXR1|P@YX>RiW-MV$AnZRdL0Fd^o+%L~%Bor8;yY zk0XXt^G zn)r>EbqQ$!V?vR%mD|Dh8ECDa7yKL2PYW&mJ=HM0bPg|;uZd-%GB;8w zHEiXfKVkK02*Rm1$q#qd?GmXCUJ2k&ORA-)p7UAk30biWDXj3yLYJrT`le)D%iD0q zTBZP9IQMb+Wy6xn+B1(2_r>{n-7szR`OL`%g$fJvZWk_$st!AdZFf>z?=bIG90BKt zebtkiY8_9GZwG8)*sbpu?;hLR&&GrqK5hiGg>?e57A&6T8}vNvW<oe3r~^=*fi-0jVTh!d6SJ>SucaQsHO3$GgEP1zdwf3lWk0`aZjG02>n#qAe&H?#DQX8tsIi%JJEL@NwCN^C zQJiKTA6vy*mpto_%Brc$YLjHw*2J%hnJu)3-CUB)poOs&0H{%nhdtT}gogWVJw>g> z@#CL*z9p&|_eV_htiG~OGpQP$8TBQGWVGfn8EY@0!mJy1Vp*h_^u!DW*EG0gS~82HytZP-_cV=Ew*8idbonWm-I-RYzWQ5zPOmI8o}Vb*-jh{q-!nYwwzOxo z!AG6=J)@P%^l2y5sIg`%h1jdi)l0L=v)2j3OWlL~#4nYaqvw29QV@J`iG6F`6DG z@WfiRLpK{L)9lkM*MfEXUyAQ078dcZ$Z~KH4Za_QY^h<0Ic?_FE~Tw?r>ki3RLIP! zxrN{HfujQ{(W~i8j2L}_V+TnN;Z#jB5`dtC@qxwkN%!xW3^`gQhFXm8=~{hi-OzkS zje}$2F7UgtdieORY;#^_JDZLWq*J%E@Wk$#?g_rL8#yHDZL264l610QOHNXD!I8Sm zE!hZKcGR?f(i2RT40ytK?j+Ymb9=>WdSR&}$2hci(f@}$R{W1m7T@ewA=$AVtwPSIes{I&l=XE%#@s0UTf_6Yc&gRv?2MLGa84hiMDE-Z|-@;#Kz5er6wA*(==Uzj9r^XSv zFrH$4*K@d(kcpYFR@)ssh4DIj?E?*nhk_#;!|kRr0||Oe%h;4TuC8irkE3%YX63e6Bo`+;C z17EG5`2~&qZKjT<=ce7R=X5Lb8>S0(A8r{}PRAEngVIX^*rMD*OW!!7d4)L!dD9eqwKOW5y`UqH+LgKZI4>u`~~=<>DtjoeYS zeSVWgw@~f1e7mTkV}jJdL-oO0yNAqk4!-@`eEe(Tv!~Z) zypcoFcww4-||!*vlP$fS5&r(*z92-(@36ucQdCfzoyUlQt`AR>ASzcovlSyK|!^=!e>5h zZhE)qBPSOo={HUx4m(X&6=qb=d4w#uC)2J}_tSA`{baU%{MxWlZ%ahK?ty2EF~PaU_Df>1&CZljp+I>lU^b9cO8ZjW#vL_D|3xPkBTM zlf3lKGavlsUkSa7`+z-enTnRLdYgSP&Sa=BJ@rBKs~)m@iS^pLSoZUfiVJ{-jdZl6CVhnJ1ndWB!Q>m#<7EP87JiO;b%^UJl7`Z$0x1w?>}CaRi#1J4M(k zhtPxPWe%5qD+&=h2RoB453bTa2YqjS_M-x0T~__FY=gX3f` z;%9wSaj#AAN`xKRP~Uh`9}yes;fRz+=9bB?L>D&_K^f3@kG zKi6MSHjZ64)mR-^&FnpXk*@N;mPY<^M_+g{?fu@*UF~z*>H4KKCS=J;?RnlQ&Ve7V zdcMAq7eaQx*8UXT{Gu^JR_#GoKnKp+KTB3XI*rzox)kNS?PFPB->h28hvv$WJ2wi@ z4L^7DP7aeJU-eKN{ySS2(}HHg@q9|g$1jOE=2ub0Mvs~a(%}%#R^p_Mg_#B3JF&Qo zJhN-F*CNTkV4|#j=OM1Og22CjU3y=95;VADMn4waoST@akzZJvB}GE! zxxKb*8Te1PzkJkkYb~iV%a>siJYY{4XZ8y%7f)O~euk-&efZ+u?sZRgJeaGMQ$M^s zEuwX;10fX~FJ%>TfN|J78bvF}-l`-it&S30SN2CJ?;0AE zb!n7bQQ3|xvSM*zr4}XD&YD$ZaL31%Vd5Jy&A*#VUI20zW4uC52b5 zKi~%sJld2DKq-0Hxo*(+rJb(_u={JgWb7T^88Ca85)%ycY5C&&b8HZ zthdy6sBItf<*j1UlP5c6*WD)PTv&;wb#+wYD=l-oemBd45$cQFMo1%t_0_H(Vz_5r z0;!*}H;JYu4Fz67zpYGRQ7U_W{kqI7b&9cl>HFE`bJD;Q5N}1#KAk}p#PRw~Gf8F( zDWzS2Cn3k@o(0x+a$k96>DQ5sJ&IKo)`Q};7Uon1Wr0Hq2|MLvlpAFpT?}&&z7@A> z%{y{LMyA}-p4c5Rz#8r(%#D2&m;L=~v&#bkWa5hR`D6Q4G2Qo!eB}g=8sJ6GUQ*f| zo`X)RS>PnEZTX{p{ya`XNW=pzQ&>vr&~eHA`c2P2@mWH4pl>q>)t*2rTbPc>XQf7NVkj__L17K^y!x2M@y4GVt=3HwNwydP^F)CvTqD(TS$oRDE&z z^4vYoB(3s^eehQ_8vUQ4yn3|{JGYTm(>H>_;haHj51aoKkwe#2TVZvIqi9#l%0cl* zwDd~9f0seaEko4tm__91UTN&d&K-|x0;Bs8@=WpM$p!X>C{3KKil{6%ugI0*;bA4$ zFMIhD*;Y8!V!OH#$Mvwcd1FRdyu0cZTicWv&GsD@TrK6Ut&G)`rMiT#7p=9FuY3?l zKJFAPXI=3@eg6GD(eaKP1A1@op4#2WZ?Ysboh8h3%4%xPEZ7&DpZ@ge(-=KnEXtf% zNVlY1Cbu?#to-uY&+r&aWcZLtWV4!uz5Qgj9xwCbmoJss*#}!%TFM7no&>%-E+r-9 z*ZRf0#L&QC#=?qPjx9OsHrhdc9_pq_Y_ zOF=q1WKO6+kunsY>^x*R)d*z-q@^dld1Yzt8m)AyO_ zIa@_gK`#e=3|5jW-XLBvWE9yPybBeCx)l`_rM9I~eyHEd!7lGxGKxsCxgsE2b9I3(Ykb zU6GuaZYhA~4t;HBXO}7@Bs4oh-!FzJ{9aC(D^7yPT2oa=$4fRDAgitmGgaomQn3bj z9FA1%Jr=)mFosw3ueqb*+d*h0IA!CwB@r1H5Dw!6(KvEfHr=DA=%SC0&s1VP33^5v zZ**kq*_C$r9uV2}R%CtB@8|RPaxkn9s;YjE<`ct%ZLRD=ODQOHS`=D2f=AP423wh1 zaag8>}t4#OcA#q-?iF-^U`HOmn=o=W6b8X$#3o1@6*WB)g1up9P8P`OaDu)W9 zy8|c=7tPIg)>ckNp>q&D+~MNIi|$B6iAmOY98m$8Qd?egfTQCi{m-8(#XHcwvxkkM zK7aU7;@+9Nc*TnLqndksk^WT5Kvk zpRLV*Nl_UG_kb8Nw8jgAISAX)Z$c>~#sQ4E1MS@h4Re(VB=CPuQdIlk3d^;ltyd^> zJS0br49riXoes3h6MLnt?u(xK5|PtaKgaM0c6_-G4v?ude0?jOU0m3v&wu^;^@GM~ z@+MH{o``eH6ZtBn6$`x66Ewd1)t$(1N16(6-mzoHSu1@rvxg15yV;DB8NMGAq!5o+ z@f~|Q=}ewY``Jd>3S%7{V0LX|C3@k@DmFZA@a~LD48c<(|aFcIFCn2OU@+dHgPntgy@pcZN6W&4^)3R(Qb2({#;1q1O+;XzzVV;hWm*wuvtpmht240<`?&LcXx+WIFNB-$2O6Z9~%CGMSq1j z{F~Ig+s?1?sBMj)uT2*6#1IiSmKBQAGY%+QfmIk!;WQHU~n=q z{1OwR=r=@Lj3P&d-BzS&$dc1FyGJYNb zfK}S}7Z&`At&T!QY=AsD&m^1YxkVvPmboqC#5Qu&&2KNR*Qa6{PheuczkT;^QKW?= zV;L}uc@t>-{PfRmgSj%q;4?X4@R3lEs6R0siZ4~~Xy1wL{-WaEanPpfYKj-B%<;`; z6~8G-<~##_{#0Vk|!H{)OBPY6o=hv&MA~PV-VplEFSs8i(j?WxL0wY@uHZwEB z8XDtDK7IZ?tC)!Tl*IGWt6yzx75RDXLz>P{JFK;-=RQH!2FJ^H7s6SIAHN(acd_j4 z`}<;}%-p>YB2Zhm3a@8TZAne%J?73{tfBV4{nj{~5H7>OLzebEw!R@ee4|94);fyX z&kt{#oRoJ?bzoq??9_1_l6r{os6=a5a-;Tt_I?BG{ae0Smh6!uAB%vcB$1#d%8H>| ztvgVq$ydOrRZEo>6`R%*vgC8{;^%Z6pYVydkpF%@aeMse(eK6^U^2do)6UEn*Rw2L zl9Q7o=8=5~6hYKETG5o1+kp3Y=tg?>%pHuT1niEPWAJ3`_TkhiS~eB|(V8^RWPx_`g%1#d1TQ)ktYx@1aWI-HY#bO==kV15D@?QGAi5=T(}m@42#Msa&jr_X;_>k^M zELStw{tsHa$+T>mBErz*^ffMgv3T0?Z@t|QXYJa(cs z*iu}2&{QLLos@-8OI_f+HCXhNI1J@r@60$6p3imj!-IWlwTCRUa=;@mLJIi~oq>Hj z3h+7MIhE__zpa6Xv|Sr_#wZlGbqoxE=w?!gDZzI80_;}`UiL#!>^QTkRbn0ZuEdxM zI|`zOasjy)R#cqyBY0vytos9m1;ih^nVj5wz2Nxa>xS0W1G683##{g+BRfrmQlAFl zm2UjG(BE_ef(x{w(2^SynvmY-p}@#yo-DcZSZY_L$ZmPNZFXC6vb$xiesnqt$g(T$(QofE-`FYYeC5i5 zNDI<62yy*NtJ+c_K&I{Wh)<}2t!PAW^VeUb9>n@09-3>E>@pe9^RkdaX|@accRr-> zzt9MM8z(f6oV+Kl$~bCY?+GqcSm3G4yf<__>7;wY_mH&}@!Bfrx`mFcviI-b|ENRO z%@RZ&I_B>6p3M%B(8&r@^~*9Xd4ATvjA~W-dMywzk?-=t^^kSSm9-ZJziVo;fsWm( zM!Y2NzG1qctm1ZyH-QkZ#-I{}9_izd4Y#fbD2-dNO{|-3j?!w+obaY>rg=%1NQ?i> z-$lDLNDgxjWV$1=hVQ!hcO57-Mo*750w^Nx;ni}xDu4WVdqhsSaVvK=pE6YhrD60o;mh)MtOV|skr6z4JyY+77OwYbHgPnw&KEj`>jk%j zvE?xKxW$^s#(?STZ{Ha$HZ zH1#li;Q#fF?V8Sy+e(B9w=+z?wzUb=?y^<9{FW#AlvgTu3pBLzCq9w4=j%hRHKeP; zP}4mf(W|GfeoMFhszre`09m!Y$6}(dj)_8{_Jkv=y$N)-l;$W}F+UG+PPrP7p|%XA zkkz1MW$#=-VT^*}`VkLVQBl$V@_;04F5^gUb#=9!QKz7l(!WXNC>Egq1r7<`$*&Nw zi)o&CJnFv!G2_G?X)ON7-P~6gvr#cJnQT{jsUf(o>Qz0f!vMhIs3r1#1<+Y{G;=5( z*5)78;_7q*Ly?2-dfDmgIAa6+dM5OLSx{8V^Yf+sEx~E`~`>id>M$5l{{W^;+D=NF?UQ-l40EM~g6>&(y zP`G~DbrhBm>kbn?N=YFAT&piaigcLT;Kq$IZUbt$p`PA9Q-7d}3W|&Q*Ebd`2g9@G zEN$_4yj$4#0aW6n!zOcevfVcd9msKX8;lslCyhdgy~4OwK{Rc`q*K5BR2NF+`Y&yp z3b%)r(eo4EM?GY5VlF3;GU4);j1$e$hWL$z;rEqB5C34LynU-J3hsg2?U0xO4uo-g z=V6Excbddt`0)r+;iwY|3aWqLG*f&?L__91NKx+rimD;_l<>9eU4*l zb>hT{pjLg}ctGDfMwi)7b0_!!PKgs)W}=Gt$FR#%>^me@#`?m}vd52N$z1}^pioZBAB|!I86h%R`2)Tax@B zOsk0jV^v=1(Q`C+3LH+7vK^iEnDY35&fOB|Y%fmSF1r*Hp7VM+LCPRVz2)_5P5#6H z1gUBt0L#V5{GIywhNzlDA+6H{Z9RgrwD*`LD`Ol3WpZ~POapY7KojA!g z2e&VvPS159o2uWMxYXZz0(ok^>O=5=mN9NaE7(=v9j`VLSs0W_|dH>6jC~^0<*bq9q&ut zKxV#tIWwmD#fulo-TK?^vRF6y6ALVh=Q30QyJua7Bp;d&S>Q6`vAs>)-Mz{kGEPvG zHrgB$z$)9lxR!y0_CC~0{}~ti$>u8v#@9XpCt*&yvApmP@}43;sjy(L6;zN!_RYW_ zVcbCutzn$pW53?TEnkAs0;N18Gvf?Qr*5|kc}sT1E52HQ-~Dfv-LPpONf3#e zi8Q420+RchghUQUu&V(<3k(KRE0U`(m2o1-?Lora&TdAJO8dtRQ6{vH;>tJP)=x#r z`;}a2L#m?9A{i$(L%AxZLI>Qkq8TMqCVc@N1dXc5y`Z|N#p=P-a;T5nz98Pa0larR zij;H$YKal*GIdLMGkZ!b%!8Yn6*P$@DR@Z zsJwg?@SF^%c-6mwcENMyX*9Sp66m1-4;*{ILprV*;dsN_yKV)yf$OIX_Sv>^dvf!% zfqdN+qyw(jXAx;LNBBc=>B*BnkQ!jfBeHo<=8+PB1{n#w^KTx#z5?~Wy=K^TfR}T# z#UbC{47jSz2m^mcD=tNj=rt&f(b8DTWvC-`XeSKG355i$)oJ;)4v4=&lC4O$cVO%? za#O&Dh9{Zas}qXCARAKOj&`~L1vY{xlJu!m?FF-;G$`vm-!49>%iyYrX`+LBE!Sz0Z4opzr+!>>AHsgoY7jF}nnEi8Ap32~{q4fadkBiW=95Q!VMHxiyUh#yW zGyYIlycEjaM|QNcA*;11s)2NS9Oe3Cst*n0<{5g3FOXlSqSB97YluCQl+P+>(H zlW|L$a7FAbM^qwQrCMm)4Kc?<>UBIi@zEipG9Z5VWAQeSNXycAOw+M`WBI%m5_xxW zk5Vvrd|{u2@{NPcc;sw)$g#(zuZ1>WiQkin?}5uxXV)uC8@cWE6;U66)i`?rDQVU# z$iI*}`%YMm)U!|HvT)-_Nrqe=`r`^`6l$0E8^f@7f^L4aCF%er^t$oBS~3aOkPpq9 zrAU^BI}ry0R~HAVrKSHW)m6SjA@2-)`M(TRis4K-65{P8vF{~uMJJsrva{d5+44HA za=WmC%UwCU+TOokQaq51cW>LcJ2{SFD<>%glppFdiG@3 z3EYBfX^^}tt7-@2#4Q9a3QEJpBPXap=p7xu!pwe}G2gl23pWlRU87n7Y7340jHSML zwcsx>$B@qmH%?S?kmIuq*$rEIo$C>E_M?|^J;(nccddc(68&26feu{6}Gp_ zR07W9JND@%u+@Iub^3_~mFqSYBD-Q7@WH9hkS3MB?X|leY8>XOFrGHBXD2|rSARLu z611w&)ruMagujRT&=p`fZa~@6P$e>g#1q!0h=9va=QO)cn$dJAwmTkbF<py|-IeTHDA>BZnHkD)4U*@7#rz;W5OJ=6=l zhZks#+_DqFvXvog!ToW9$T5L9v?m9jNdIxf3XhV_IB`P`K$hC_Pky8UJ;*ekehC4F zD^aGxZ%)2CFINJ#tfu_fLAcrlD3XRbj|La$@b-!^w}a|@uJqtF-1%nnhYwS#vb4D}xEBecNC&bn)${pxufsJfpIazVk-y zB(blxa?m7-l^qCefV{%1B(331rgcaeB=*8RkRUfCAFk7NLnkz)t`-$^N$!q{0|FlW zz?X6L%GWYyHDL?pU4SJ`U((b~)+yREa6>k)nM5I>cEQcN!h*Z|*k9$rE-a|l1Go{W zV-ZT>DGHEDsPR7RuR~G#MjN_=Nrqwf(EUVNl>}x`iqv7G(oR&#^C`E!QP}x0 zJ$?P@J2ZwPLcF~Rglg#A03tkBY3IK+!iVhzxHgF+o9acOmB`jq2lBX%&i%c^jToE( zL0L-$L6eLF*k8PYXhq)2!os`M^Ov8Z6P=pwuV=rKv!I%ao%L($VcsZ1%nW$qf1B|k zMnER)0t|3|O#i}#DWA$D6c9fi$c0;|m)Kjl*R5BRhvdgeEr3eq-!3anDdYtL=LCQuxYp`G#g6B=TwSj2q7B2X8zk` zw~@SPnwwR8bU8-?luV5n=KcK3Fc;di#_x;8|V>=bT!=x=mTX3aUd2Cjw|u zzCT}c1rFytsa-$E-t)+8Vkt@umP{wObUbDKW7fio%K#|nIO8+53%}wZ6Zuq%!t!Fx zkoAQ}P)I6s%;T_l1#P%02GYvr|{nrWL~0;?z^EBmJ!j9egshcxs6O%fIs zuBXLna<(Og=g_TyDC?9-#D@`)Tg=k~Ep((JLk!^ZhKwCzm~?Cjc0f-^I$af4p`f5Z zfZ-s#RQy0GvgC2t4CE452*9}l4Wo2axP(^{C zZ}bSe@18OMAlnmea@Oy<1$vV2#5ZN*3$RdaW%xlo!ad}6c4Fc#m<|KyM(^S)zz+bt zhP>AvGynYb_19@yFgn&4>^cE$!gyrL)D=LtUqmH#<{Fg)1GF@w+lb)|>TN=na0ZrO zlYt*Vm?7fcMvj#2prL@!SOOUID}Z{!;Fpw2rzXB)J2+X%8UYv$c@m*`(*BT-lpq#k z6UywIN-cG2VvDqZT)!Y<5C!%9$a=*gzzfGf1z;{gfAsvhClE7|*h~Y~vKgHB-cwhf zBhs3UqvF0q$|;CsHzl#ZDxo&$+E`%vwW~|8mTPD)P8Nx()DlFAY*b~mU;?doAZEK? zB4fv`Z2Tk5Mw&-YP~i4M{+R_8?=fK*b4S|yX}FH%3j}#TC3+A96Qn%&bzf8Nu1Hy? z!^irFAwHuhF(7$OqHrZ=iEP&AJL|<4QWsp;rJNY}`Cp0yf8u$eWxAkDSJ=*lP@fLzhv3m){ zg5K4&3Fg%my2jN~?LEiHkN@_3K#pOWTd618co3_ctRreZ(6(A#CCLG_(>H0@ zAsFGIkaeE2P9GGMee~!N;pgipgq;WpM&2_7aW5dq8Ux`W$!}niQr6~(4i5~?41Px& zv&)5gy9AY(bTSAW2~yo&q#%|w+ztaNhweej&TGJri;kk(cUMGxhNM#~WHDZhl((Sl zTWe`)tyh9PyJ3sZtQ{au1ldY)FAm9w{K!&7Ff8klFerJYkiV@A3=IAo%#932lYmF) z+gLy&Y1o@ReSX6E4i$2@P4OuL;|l1|P7(%iCdV}4OmecbtpMj2Uq67&EG7#4%D^>wVYKs3O;oabYn{ygisg_fO9xj z0xvMpEKBDrd`qD2@)j01mx1ae(9+di>}G^%ogM8_E=2~0Zsy{9e_BNANq0}rk}p4F zbsvbnJ@p$_&V`hLJW+?a2vsq10rYFRYvAnj!F^zOYaKhJ&@eyvUomEfbbCK5$XsR& z2o=J@)K4TLtK1xV0Ia7Of+O~Dz+oiwO>B9*M>ZW}FH5n21HUELC5;*!vl!_n$uc`>Hja8a6T)Cm8&;^7iTz!ktIzF;-Xa@Y8N{vji4W^!Vp3lygn zKBIKt1)r(Td{Xe89l`aRAe1IC#`Lzhvj23p>TH*}_@49J^Fa2_RatBK19#=68#F+& zti7z4uWjExa}jcDIA1yU`T7s{Ib>$M>Sl!2pm-D7hZNtpC2}{2D(fPZq&l(AO@Lz zpVHL(3kDb{q;jp(ZHb5T+b&iCm-G7PBp2aMD-%ki+5yvZ&`^%3BN2;mt_-Ak2UvC` zd{_PtT~4CzP5>clW4meZzoe=%;iCXCtcF>V7}wLTJ0RE4GVD%Q}`Up!!y@< z7?lV}e{ucyS*wwBwSD`-h;r@4U2_yuL|ZJzfDm<09`V8STi~oRCj|zO>&?hbFZgH# z@zXqC*U2xyeAy3f-gc08L>WpY%g))LOC=6rX&ie0({}Pb$MoZN^#CaUTVk^EcaZBg z3ZZ>o8K-NXHWi&i=h5ks?mDAD_$JwpFt#&kdSey(E5El|sfgn5ny&!LWYm_b*eTw&1)4_Y~;D zwE4P8;#|?Kx)%6K%Fbn3jkQiaJ{)?swo8wX%K&%ct2x;Ik1tl{x9zexuhE1km#c40 z+NqoJ8_}`7*x2R8){u$agtNsXe`Jblf4#wkhGqZ6#O;=!qa_BY;nfXr$CUdaytOGu z>a#?mKER%th`;hb%ph_INh&}-12GCZG<)jj6ql9<)h9_Az+QQ2ZQ7i$5#%V!-zP_H zr*|F*2wu@F>(ICnk-Ju=pER%rPavlKgASgdDDo+5m!(nrH;`PtPDr30;g58s zhT;|W0-EigN51$_2j5?r4c!tM2RtFd-y?l)X>Y8#FJUm62p)LBmD`ZnsgnBVKB2`x0yL?Y0Ep|wurnf^i z26x-l3kSB^1G(}r>v0Wy)JIG;pld!4TQEA*o<)EzBDGCiv4R0ddwO~TNw(c{K;U@Y zgWLaQmc3x)m&G!65cMMhPLAU|(48F}SBr`_?Y|d30GMuB`!;$KKT6-SBgznd!7A7E zW4bs?n3@c73aj!QPA1BGPpmdY9|<{CuiHQFFp{&dDP%bP-?Oen>r3r_MmIx3f0bza z$A=(dGT;kAg$SMomNB$f8!lrScRc=ugd!k5Yj-q2$Oh36eHLIA4*A;1#wb1Bk?N(1 zmqh9mQhBTRj65!Wc@QLqP%G_x?S>x?qU{Gywl5%8DI2=ylo6S$P7YZBFKo;Bjp2G* zNGzISwa%hL6J+w~>zU*5kpQG*1;K>}kqIP~Ajsu`0<@wL2w5L{UBIWJE;f9?_SSc2 zP+ivrx%wxMAFs>t2)Z9K7xB#8cgV8nQfX#p<`0?%%T#78cKd-Kzj$j$=xG~&6~>7O zpzAm|QxrMjJNZ!D>5V~(}sY~t)&SaK4)??FMd&k;E}8iKfK8aFXA(0oI;0%J$u z$jaYHke6aDz+#VD1L6-xPjDDh4NaT+N^&md;jf) zkG;5YadC+Qo1b6-jq3tNu&LcB(wi9md7?~9bMxtZ9m72*-5vm*>aB3^9LtCipH_UA ztVAe7nr6(+&DWb|9^Ny(9h|}G5v4D7!M@h-;VzB0+n_|GDnOHyO}WcGMI|K$(v=0@ zoLE(Zw2=+i!2T^LrND%kgmtq|P)^25WjHANj9_hQ{Yvfgh_dm}Wyx6xPPShdS$)^$ zeB$!SLS62TLaKJ5SqWBVtk!>K`PMHed>}6WKdP$aG}wmMNiK`z*D-Y5|Haao$3xY= ze|+pq_E3?v?4-p~vV{^7VJstS2{Q(H?E6lsRJM|RH;fU6veSwb*+;fQb}CB|e%I;y z`{Q}No~PHNjh-~MC zXn%NxYv*VapcQ|#*Ze$$s+)?b5CNO5QK2+nLsBq-$Y|>I@hl``Jtz9-R~)>4PIuH| z2c${1Sm`C?Gbt*HMIN>&GyJ;xZC*&215pfn%2Cy0sioL#AWX5Vu7$Hd4_tZq9YPjl zFM1RWkF7AuB}N}K$#QZ|KgArg2GPL&puA$&a07|ua|_#mHw?ec&}cg3c;Og_w_`yt zTWGafltB~wZ>?#T_pM$uH&0bt@6itZ>@?9F656XN10SoWF5DvX@{lsLF(E1hpVTAkzP9c-fn>XH*sWWR<@KUr6z0gOc&eNZ5`yQEg#)4N zG^K^Bl^^2W5fFyRYG_QK3rbTKXY9`s{hkneO9t#=k6R0?ay!x^(eEFKI!gYY zQ=B_QM1c}* zljBQJ$&u`p6cv$ostH0iJURWXxJ)^rF8@tR?LOvZ=83Y+!9n93?xvwVuDmUN45m?R z^Rix{K+ktcV(sJBupx#>X{Wjh5i`fulKb)^B5h?UOC1bfFz_`obin~dful4;-hfDU z3p#ztP=ck28l}@P+q#%Zxt_?4rsU>%HDGL3dAe4Zopg!Ss&=+F7!stHzTD^Y$QQHp z1v&%GCAnZwYYR#bd}Wv%L^@Fzs2!2J-y^Iuq;e=+s#&@mpdgnDOFrJ5IT74t%L4{O z#LD`Qd_lK|ua0__627mr^Q%uYWNMeZ4)0AriO=pC9==>ct8yV_7ZK})Y>hdyva;6t zESjH(_&%;H%{H(@$!*vkj?2x5Oejr-Qg^qi>WE6e#)8ia&oJdL6KxmPT?e$v%qhp- z@c5QC4vyk)2Sw|%NU{p{QdMddwu^;Z_w^4!3iS*!Lpi(VFC^#?KC_TB%2Yv0HtIda zWdr(6{@C@vYd%djgc9{t+I_#sgF1;?=SvY{^gBeIRWm$xO|u`|H|7rG^Ah&-oY7*{@-hnXPnT!(rZ5sb>WDjoPtMaoHIeVCm4ror^)E9(O|5ypGro9z+CE!)7{G-o< z#{!#7XSh8s!Mf>F55`C!tuE!Gj5IG4$+Zj7_XfpqcfGD(&#)umFL9sM-f6+I#@i+j zD0xeBh!1EL*bkdB6ENTM&eTazXK#5;{xYYvT_0Uxr$=e}%@=%6X~h{>;cr-G)btPK zR0#NNl>B1wc%81#@&e>4h}&ef!Eb+eYZN}m|D(4Kd^y1R* z4Qacb2_86t%`I&3LnI!0Qb7K6zd{#ZDvs%n9yqLSUB86*H+~JNG+xC?Go>8%3}i<1 zB%tJ-=5GY<-C6$w;U5Vk(iX3mVZ;FKa7vlE^}_q-zAr1@3|-nx;{=PTm`ryp!}z%4 zRq(OY6?#_Ht;NC3=9K;I5hIGts(+nfy5bO* zsYzsAIxGJf%8)lufbRMej?s z<_ILrB+f#f*Ts?X~MW*U)C=7Fm-12tag`u+WXSH zGt)vQ?RS4)`VqEwcRBRW#WKkz!A9LJMOyW`t6xw5_-paCnS&!(=nFcMC;hV1Y4XUm%4;lFV{EvU+3>X$r(D`&EyXm%yP^j+e*lD z0xZpxA6(5D*S~QipM50o$D2dD-xPRu0n(^GWhDd!8{hvHg@w81X%ntKfn<=9y^08+ z?E*%J=riy226q0vOL33uEQ$@3k&>-UC^oYE82?D=?Ao>|`kMP8BY~|&ZYAA&{2qE8 zEg0t!0gTZ(a0>A*Hbd&hDb1-)$;!=y*4h5^DPiupqr~h+OIzHKg-HeX0skhyrvW3)9+3$Q(+sg3!`XTfDP+H)ZyY=2# z!9Vpz8w09a_U7}F%D1ndhFVy*8cIhx({rRHtOe0kLYJ?+7Eog}??RbVb8o2oG-8D= zlUsc27)$I4pHecqBJ=2P(z~UfPfeBF`VaG;x$U)ftX@KjL%RAg zm#o|=b$`PpQ8UrX+Mkv|d|~x1o(`_5CYGp-q@0jcoDegtsoAh7p?`EG{HxQ9`8J z_1^Px+J$V9e#;amjr~8LLOe6sy2pP!@cS39&!pMaf=YY%E|1J#@}nf;;mf%*EP-VS zgwWi&+=NKSIpT@!%pPlij{Z5nouKudWNzj6r)hG%7fksoDZ4~SNn56Y>VSb@?-3Qp)X@Z z!b6+8wTI9H$bXpF*zCq``IJHxAR#L;*WlvC7`uMgq6ETXy`=1d z3Fv0hz?n3`@_742&yC_8P#Luiu`dSkt9vDnxww(5wpZdht@SSJSAkcz!Sid0$N8$w zDd;pe_T2egu9;&dakbpE+6$pDEC6JMqafgF*g#o zIED@e>Pddk@R-<-YuP&UawCG~E}_$Fr(0t$BYR+(O@KP_s!{F8%Oj~*pK&)*SZ>GN-7m=IW1v<36*YO@Ce% zwCs03Sjk`XzEW_1nyTpjE8h zuJ9Q=?OkIdNt#a*IUDEaMz#yy(I6JpckV6lYpkUXuXM6BW*K%~t=6+DZNoXHZI&K~ z?_%!CFj8-m>s;MiS=|;oOn(qnSA2&QmmnR?XJdpOf8o$z7uqJcUo1bGy|<{mRN9)b zO78lj#+>q)TY1?0LHF~cALm44OH6*j{SKwdT7Atm;rU?Q8&NxG6uP@;x8hizmoxp2f zKz`e%>aB*pW&G-)K)XxOtV3&q(enX?YGQZAZxjS?%k03XcITHK*xp9ywG5koDWu)> z35%%3<{$SxhASOjEg_ZV7V+9*^A1pfZHH`x&f!?*JH!0G-_Ul*%QuiT{<83SZ?lIg z)X&2sY<_9EE^u^Y$9rb8N339Z$E#s~rEEvvPoq|53w>Y(${E3#&$G&~4B1dpv|Hbq z?t28hfsrcgd4U(+ewV`OyFsX9iD{VfQr5q_{BkvH)HY~E$~th>`mbVzghGL{{?+su zC$9|s5}o1RzH3c?CIGyKhh`7bJ-17u&bdM9TD&s(#v(1N-uF))K6Ihj*M9NV&U?Gy zUhz*^&ij9#8V%3ALxP8sdK9s-LwZl2{5o&?duKm^R_WsJ%;yK zox2g_CFHtquJYel=6L7wN`BO2&qc~!-HC-PD=4N5F)kK3&xH!~Zddy?E!u>J#dJbl zk=`TVSf=qVEY$B^8r+&1po_7_VhLf5Dt>#L9{YpM+XEyD4HO58pxFNuDTyiK03N&X zMXCpunBVHb`snEKmN6f{K$)?ZcwvC65xr;CpI^qQlMNq;w-R`+x3DuOrDMxOIxkA- zA1GT`Y9;@K>pmPIc_f_l5P~a=n5vk@v6Osh-v>auYg9zs<#bR={Rr zPsOG{W+JL4WOQ%0c3&VcsBBByhG9~VDqF|5;<9V+MA%C;@kno&9JH{)Mj4RO2Znyb@?!!J#n71kD9vck zZlG6XSz^;z3t;!IFU!L-9a*HGVM!cFU-(Nt$6nXNmRar#| z%TbF#>)_x>k29y;7rY@f(ib+~bQ373wGm8viq!$;l_-{u0?>5~7JBsA5J9_N2>f${;H3wV5_Dsz^r^=hQwltg) z2FIKsp=oBYv>?-mlC0git#Lnis_Pe?F{~}K&yBVS1tJSAZ4~`XEA9MP@$Pbc^vc0{ zx%G)<`LRD+K1^ez{86n#FUOYs>T~u>sY^M2=L_w=*Pc0Oq&h`)O|BAACGLv*RIMl2 z{mqMeiwJdV0J-}o{XN1d`=_?}>f(QAFvs)ph&6-}^$jIlRxQ%|LrrSG@JRd!KJf|IasZfG}bO#T6ft;G0Vx{Jd;??FIca4TF zDzUX&*dX*y8O6R~=iT)k6ZNeokCBx$I~LntGCWR&gJ1gROxJInuyWXH`mXHOYqLe~ zv8=kg`Jn5{^U{bzQzCk9GSsLSXL$5)=t#1_4+s1$MxqAo|e*SRgqa~^n8FOSe7wluF;**+HYH+rv zZtj0pIY^Z0rE7iW`bjsYQ}D?8w#wTVFMccAG%l;I?bnB_O%4sk`dDBcGsI}sp@iyp zT0yKWwpbjaZ)Eo^@Q&?n?D03F@vTG2g0~!$kFG5|s4R@KV4VYr`KGa6vC`TtW>>x2 zw|R$jd0PF#{w6Mcv-^G5FtbI{-*Br$>*<#`I|ca9Z!3?F#6-HC&^a^WnosCfh!r!1-=K zTfKhKhE()3a}|GMqq?sO{-*NCr?z_+UvpgJ!d+!p?B$3=r&bhv3{5grjZX(NN(?2h zm%g*V8TdF3Xff`(nXZbEMa*>aoUaUP$y5t&rAH^T4NrS!vUD37)-XLSO%-H(sb)#X zHQ*nkYiVF;xM7&T@viWnsV2PEggW=MgxD!r?Ps<@9lR0iPXOo`6_MuO#vYf~`Oa;jyf+dWkzXFM)_B3MSho;C+ z&(fSy>R0g@viwPp+zwWo$ek%&EsNP+XNnja%t)r4u(QIGXgf#YxhzSUiHnN|?%+Ti zxrRaEOEKqE)XtULuCJ%KbS3@JHVHUIkMb^o(E}j3c0gRppq&Zy!?>KypT*u2(ilf9 zex(1toi=sb?(z1BF=T11SbrmvU|XSp4)GVh{PAe2Lq0W$n8Dq223FoUD0byQhO$4$ zedrJaiLNIVb44*QRgIGnS%<|GyV_&OCUJ~RW?uKti|WPzL21E z-9sEr6)x0^gi|B7FU@}Ub>1EKkLms1gG*5f>tCt&e9ghn>u-4RJBKvqCfMDBZ3;Q0 zBdq(Zz8raVT2`H9&|F#@8{Ts-gXJT5R^0X81t9ttMB(P^B@$@oVEQIT`MS`Hc1AL^aIs`g%JZWTPq%ElV+Ly_; zai)CFmyX`G-GZr8+CG#Mbv;4L^6=Y`QkV-9bXlIyKn#t2fWbYb>Jf;d);Q^#tUKHg zx?7L*BM-T0{GNUa=WIT$+IGooh#Y3u1ME2_h{%7U2 z&)=j|XUnhamuwEcZvC#Wci62IP%+$xzLQL``G${iT$6&3>~+JOod`7+#Y>DCzHDGphF8V{bc+77x;Pr0uNXD_95Fea66tqL%w zWN2N|F>Yz%^;~4X;^5!_OSvvjX}Ix2^3c}CLfntV1tq@p$My%SOoEx^BDkO<1YI?x zVaJ}V^42s52|~mq7;H66Ox!?Fp#%;bq5eK};7ij3<+gF_+i58olh*F@d0UF{x&~($ zlbaHZ@5JZM+arR}3X^3nl)L<~HOF-2;{)POg_O1aFxfGdHvafb`4fnQW|u4AMW>x7H;D$XC274j-ihMH;c%S9=TOW~zoo2x zW}xVMK>*z~8t?wiKGSU$rYH=tqWtwjg-z|3L6t7UyT5#-fE83+Yfh(6u0=KhhMz91 z5Cbr$#k)0bA9Hj`6uqA^NbPROMALH)qj6eRvEvr2LERDUKD-X*aoszD*GS5y(AXJu z&oDY&V&>8Gv%_~EEIt2bZCjJSvuW9uA~XK^wFwOVu~zXdgUx;9FsW%Xy^f3($byok z>p?_R$$9L=iI1ap=;w|91g5CW6mB8s8)r=2=1bhHPpNc`Ix4E{Zj|~(1+(7O%0I#U zEO*PN$$f|~IU`x;S!$+x7mbjHhVm=EF8y-y%Mpn!wf(=pn$<5cu&IPY%i1g#nVZtI z)_%ZN_ywH(!R-11qarFNcX>E3E=mCq0uh{610wcYjR9(`K;!TBFH&9lLyNJVn>?)D z=A*-IhD5oDQEGXPs1Lg3WijT9XG{-%RkH^uk6s8lA}ZP=^w%?UTiX>86P#TQ{UzcR z8T0Z=m@>4OO^te83FUZ1^Y%}xmf5c)BF#~0dpZ!gy6!R;l(cGK`$d>WippCP=1iIj z*G~4&ek5EbL_SS8tG6R2?{hf5EUYBqf zxe8|37LL@XIYQF=9RJho)JG>UGw0xO^Z5(NZWMKc2mzmWY7P_q9%9!Blt z{k8aRe4d7mim?Ew(&20}Ev2P@La`Z*)nAq<`>}@5eWDmpnoHm*Ut=Ostb@U!hUhpo zd~rL05py7HeBJx@1*WX;+QjHPNGx>LZL$ai8FvnnpggS zlwnEi0P57GE}@#4QSj7)Eci8;W>t+rMJ4Lb4s-!A(FcQ`u1Cofdmp7MQ(T(+rX`3L zC^0r0?5*8TPQ5bv?ecj7lvu7t4B>}!TeehkUm)6KV=OBoi?HS7XH1Ddi$%Wkw+i~IYn9;Q5d{;5KAiXX6g$Df{)VEDiZ@ZoCF%V|Y|#6}u-{X0 z2r5jymGwDj65|Vq7yHd~cV zupnZbz{M5V*Zc;&vHCg+%V7ooP!)T+Y?}T(wkb%0Lc?}H%{hk`rK4{6Whn3u0$Aep zK-6HGrCXe%@SH7G_>1%l*)V7#SY4UNsqJ%0F{RxV&}dy5O(?;1+z~>>UspL-a*nw3n4^Dqiww#x65zJGZ7?I5*c=~Jv2N{5a0 zdf%x*a4v;%X01O|zq- zHR$x^+^tnT|41I?m@MAtH*iXV{)KjitM@@b7$N{NcLyMcy z4r5XS`r06HBp`gd%@x0v(L{2M(b*o(tRwNv>8D4Ahh0EYSTjiFAPH^0xXn4u8K|eZ zouWoL=y!3~gqqL{)+qK{kN@NqYJ4l0{6auWEH6^4koO+W#tC8qI5(%X7>-eFkHc;Q ze1avAym8oqGif%$XGpaa^j&URxP!2r=0Lua+B9g7ls=6Iv2j4-4-MfZUddkmc$^sp}!OD9K~K47E86>2sIq+S5Xf z2I$L_%0LLWZS`NMGgXcUxu)iKRTMJzN6Bq#BCLgdM(^@v5T(rt!t1;n8}4GC2t*Ks zp>ja@sFd+X@M(qFZLLnM!t3l&R!G)0V5^BWG0R1~cYgjcfa6F@eZGI8#uLNyu4kr>zo*IUTjqYZ8&rze!po;r2PpFPJJo{lud+iLC0iZ4!dHF4$l$t)ODFcZ}Z_jEtsYoWso?VuT3STkJ>7Ot|OYle!@My(wg}~NV zl22n6qc5l00?JPLD-0aXh|>auQq6vaq0Wj;$gbd>c(n)wz1zNqe4Y6su^8>rjm7d@ z9Xk;-(S`0?$5i5!FMdGI%XV6=Gl{)~Le=PCwFZ z3^I^d32%m5HT(R+O(0`%a1e9t8s~t%Fttm_4AjDQ-2y{Hn*k^TW)jqwJGD-qQ$-Nf zSm!iIx0W)kw?~=R6_HD8%^*U<<#1`if8+d6(PwtYv15s`ZeZ|DMQ%89?-oI&REh## z6f!6$KNU~WfK&2L33s|A2(?|n5ds?$r&dt+)ok@K37&=MhoNCqsJfyDvc&BEy)Ou7 z62w_Mo`TZJ05{avkrT+k-cQBM0l%}NWK> zH)w^cQwhx(sea=iYvr2o?_;%n2q~I3d(!oHR~A|?JC7q+D2R=ODJKjwk1|8del5mp z<;zRZZ!?PlxRL9cLDI)qFx26gk-ZA|ua7P;T%yzgsDXkrG|iww&4#i2R3VXKXmGw_ zGW-pkx;d{k;dNr?*~{oRU2vS4Z(ye8BkfH3blZ{%JHtphSy`5GYSeQB8w=*-^q+*Q z4-lV3SJ`I%abrhe*r+$mmV2Ho6A02Chp0G?cn^kvXtr6&1;lSl=MD%LNf}FDUV$wv z3gJ=g=Ha!&Bft$|)@OAdia|}GyDIP&BPFj8Vr*VXfKTQdjnv^6bi%x@_K17TqqY%7 zP<}3MBpf@y2%Zz2rk;9zax1}+N!ZIpwz>9jFYg6JuU=nY4|^a7e}8VS-taa*5KUYW z-vJn3ANpEE^T3c~O7+mT4mS7*3RIRLP#nS41Q;GF642*!Nr!XkbwM+{qqcab0}FLPGYMeXGYaKY5x z?BKFvdx*^YWZ+PTy?_a^U1_w#A!H^4KX>LQHVRO1&q-n?Mi*wLQtvc#q9BJ>Z6rSum(aq97`}1;(V7cZeFR&H73t9S45h z&rqV_FLFRh|=nA1?AMkSc1+1VZ-yoIw< zSbEOm>8v^cZN7}!Zuq$m5YWwXd^kx?Cb;1v(0^?1vB62BiL@L6HEIt*xSmWfud3zJ zEP%b|x!$PepUEipZB<4e3>DDD?>xyJJhz)$0jLJpcR=(F)#L57;!FMmco2vxxCWup!;x&eZrEtuO55ithy_?BAv4&58mHldy@D zF_vAQb*7`M>lbt3)o_|eU<-Sa2V)ma$SugaIc*4Zn5}F%K&3)@O;4f=f1i7V9Wgi| z6&;4RU_xnnBNVR_t^b-kMn99Pe^6BAFdfHJZ?DU3rxg_k*xxHmQlmsK!c;V{XO4ht z*lqU1(`I(k10$D!iv?ewCOpYg%Uaj9CRU~&h0D$R`6E^n#I11fpp`X~@Rw4&odg-3 z+i!9dEeT&@(0>7J9Hsu7qD6D;wE&1Y3WewyVeWW)6}^JnJKLG+A=?V3nN-o_w{I_z zuDFlYZ`{hsIOEKw9l*ikPk(F{Q9R45pa!S|P>=Km^bPehPC7)gFXqC-xb7OZgg^+Q zEqwI5L1zvg9A_xF?A5Wvd&B)@fU;Rb#?sEt=zuK8R85fyn6A=5b^5FA5LTWh+%xwZ zD?Xxti9|3v0RjGy@dB-K1Q+1R?mWpKv>L;x^#sji+zh>qGE zb@(vEUx>vD@rfG+!Pv@Dz&Av0B*p8imT@Klk)@H&d{G+g#*C?&(Wcf7lnyfmT9hJb|&`xwGnZjdy~yk6tNxm*#Cftx)Z(+R76Ts7e`nkL>2>nsF0AA9rJ+h3zC z=+<{wQM-l_CW{hv9uq5>+-2s(pS&T`$?>;T8#t3-dCDS|G4t8)-w#ShNajQ-lhaDM za+uqo-d;Wg?u>_F^&EBdQoWU0zBvu z@2bnD_HYC&M4eLLj>=U-Z6{Dxkpv#Xre7~vk#I{cQ9+mkAT|20WzmYr=w5BL8dfUU zDSt{?f^vIk)M0=UiXbQCAdc}i!R*-L+RGr3`$5LX$Hs9=a>~HNwqi~J3e8%Sv0+4E z9+eIQG0ogZb5R=o+-w6dXpz)~SFZ|z*m2nb`v$FE?pAyf6TY|Cd12eJAEaC2E z*>vl{cs9P+Q~%9g(a7mr^+n9dyr?-fj7BMW6!A@iLU$)4wqd2d3ksk(pzwl8@p%NS zkRpw3tkFx~<@ABUL8uDGa}mrJ{Hz&*VZrAgq|zjTZ#c%p;WW48>dWtf`=j|ug9u1S zw8(WVg)&`JoXMt+u$byl@i+P2DgvfZqsKHT2;pGD<)6ab1Be0xbNYK)kTaSghU)oU z;qXW>tZ^$U4NiVF+>T$;xOvkM2_ym`}KIWqJeIq|xUjX+WsmG@n7UEJ^xWQM^( zqG(AT$?EEAresb2ze*@7AVskzkj=q*A?hy|?vjHojNQBfFhcM`h9q#J1yPf}HDTn< z`Z3U9`KgqQp%0M<4oXHSe^sVtG$xz8QZ;Kcu5@#EXB(#$<|`;J-suq(V1W}pZle$7 zZt#uUdjmMG+|LLi@DI|wXrZT{t*bf zpT=uYFj4H{`^e2~#)<|6>EJ@TH$o2x}ilb<;y@KkT5AVh5I*WQQ#5{_5ib}8y?|7;P= z%Xn@epwBmn$dV_5yb$Z&utAs%${V~OF4{>VKBaIB{(~!`^16{Mar*ru^%~vLdzH0Z z@rHaKU|Uj0h@J=>bjTQx*W-13G(7>)`Z*xw@3Yd!E9NL#pz@Li%^`&98~sAAeLQtt z)2;W;aUU_)E)E+7(+dJDP;#k;#|LZ*Z(g{pGlZLak$F*909cLC$jI5m6DcUU+K3RFtqLXF!ffpb5wblI@a9*&JANT5Iqs&f!8 zvi`G6J}AZnze+I1Qe?u%FMu9C$GG$mKVD7?cIvU32l_NBW-rhFH_I~0M0M@BS#I#` zQ|Dmev|1Lcs+)IOKGMvo!8@R#WJ`mA9nOhhq4TI-Ly1TI^kpAum#uV1&vX2#xrC9p zlNGXQ)d0Jp$C1;3B4JO)EKuict?|=&YsxDDTa$Yj9GCxvGwGZo63q%tqJoe$h>hJu zJ%Y@!kTM?Z)C$1}Pwkwq5}oH=+zcikk=2ZZY(3DbKB0Z}dd zvpq=jcbw+Y#g=L?BmEomo{UhW!7{OZ$B|mB$M5$twfhC@yDsc9L{cMUkC2Ch+n$36 zhjVau3dX_5vvXCA!)pC}nchbg5mgXPkxUkRGD0L_ZfZ$NmilC>cj|utRj_^j`~Jjl zR*gwoj&}52^tMF!Xd7ow509)KXEYLc@zufOdzkJ~}!yI)!{P2Y*wCxG>tK2+1 zbo&Q1U;O(&sx#7gi`8T{B8wFHAfM_(=wHpVm}Or|J20GfI*dXcTXq^+aLDL(K&Pw1 zR_WQEu0P2JL>7dzs!p}pt1Gl|rxN9u6nPVp&wtD+M1%F(lCBeRR3Mq>qP{m5v*s#b zj6&`AcPIAoh;t0laj5&p)tU=8&XE(1nZ86|Y!Lxv+fRX2|2QN(g_a%A|KoWOZ$}Fa zg5zZW!3SZIA;3I`tnHwdJ!G#AayqrcIdY2Xmd!z zs$U&=sWf_!y7)vW)Gz)i7cTtj%igQ;(51}@(h4%%8(-bcf;R3)5b^B2DT3lXtNpf24--K>8a8ph+%p9z$2f{Lnf#E=mnK* z3Lu?DTp~hW7CfT&)Yp`$=gzTqrGw3~u&9Uv#k1XlZZNwny$W2fFF(S7^j`j9nqaY> z{)IYhkK7pY`7xJEr>dOSj}VF%0Ll~qtHC0ucBR6q`Yli++^@!?=a2~k`ys|LCMj1? zW5q+)cbj*og!Xa~L{cb>g&#%0Q)gJcO}-=3r9)Q!%l>unJkst(9HXlu;St)fMdBornNpV2sc|m9Vp!o`%Mxg+6+L@py{(+MDfzadOE1ypa zvbJs`1H3)J2J4>rNwH@K*^{lRZ~gIGaLf2ep? zl^5vv{*L1UFJM?E)lWEe)GtpXqQrf}p71OLrp5A;I`C0@e&o#R-;b;Q?^$|RpVDu@ zZvWd?9W%;;V0R;~nrvJk;#Hm$bkoNR0OE;+Fieq+X$Ne*ZirNG84+iO%p2HM!6?7| zpNh7GCyk&2cj^+!fq=J^4P}UNKR=I_2)1W80mi>sjMd(P!*_w;N}e>6s$Nce3nk2>4! zE?B5t!K##t%j3e?!}s2$ifSIR0V!|sr}^^I+JpAX+#LK^94>?-kuot*nzMYs`y_Ov zj9VnH)M}g@3|kbdm0|b*p3BvXFg3u)8*NZlyRh&fGzs&rd^xDbqFlV4K)3lTd%rR4 z!Ryzr;S^j~))MQvh%wjzHBtMJxwILurNp80;8L7sU<00-DU(-PW=EKs?k(UYH5WqA zW@mfo#xE}uws-%;h5cqA?cuto88m)hnAq948l<^+gX}Q_0T;l3`w?e*0)`8)jpF9!{@t9c!ZA1z-g5yDr}00Q z%(eoLIe#@StO=R8%N{@S6Xn0Vr9;Z5g#FwK+uvFSi#%!ns@jj&2gg4XmV+ptSD%DV z?0pa0dspi=@>KwZ=_@}Fz6K{~{pDPf#j^^Mnm8@g>jzNXMl7dI0IAr#lY}ozR52b* z$C1}d70pKzATfRwRV4myq4h|-lL}Q*R@O?FZq4_CL9Ni~V?xgvgo1mVd0kqDfamc= zmFgh&*pROXb3P`rz2k_mYVRJi_oKnfr98SjpG!CJmnVg*OA811Hu8$=x&t-Vv<~~9 zVrje`wI1d@hvGDnNcMKr>&sTO)JZWAkX+1*awNZ9*fk1SF!cq0(N4O2W^f=_F7Vsy z^Xk(H8+P$dxw~SDMD*&SBD#eiV_pS8A98?C6dgRPa_v9J=AOaswEuBF4`vrm#cW#S z@N*qZl9h2TA+tQFE-O@Cx@42jV>USQw2JS1K-0p8fon>p6tOm8M$!DbsYeRyeeTMKh%(Ri1l8+s4khlvi!HPFjjNlh7JXzf~fg^ytx49qz6y$KrYrXP$Jy z)t=xvZK0pLwgXBPH2sK~03_yW6YQH%25q*Gjo@OmgWWIz`z&3~r{BNp$;pQ`;_etQ{-vL9{E)eW;Sm{NvmWS~ zMjN8#pHW+g)2rJaLOr?|ac##8AQN`$5hB=6rVUx`MFeSRKCRa_A+|(-klorE^UEFs z(_(Y6ShzAXIl36Ox-1eU;U}1yo0s1s&_Dnn6ylFE-l%Dz_RBFJSkUA!d-KEdb_|dC zfHnF?5<|PW$He?!t&Y~>pX5}ZZaH(z=wZfUv~NL)D934Bh@m)ChG?#nYp`Plk@>Y8 zy_ibGqdhvY=c{oNS@_O7F!5BrB|CPfl8$q2TaRLW?O{K+lwDeRwkJ%vzPjBMwtVpE3VA6x zddLIC!Kv`v3re<-9W#8S+|r5CorU=}NF8MPVo8l~s_T;hq!nSAGI)7hS~fK`6{O}n z`8%k179{>a)U4>4%!$NRFYPP&Yi&iD~f652JCq{CDz#lG3p^ zMY9D~81QAzUOW`<0>u$&wJo%dD##MpiBL~SF-ZwR^}IM3G56?Y z72W~Cv~88)Ph5bl(t9mU*9r7(J6yR>GBQvobqMG~U>X+Yu@-`WiR-XG-W{L4jwB1BmkvJHQB9n9P-Ke^wCPMN3-kQp3ah#PmkA#TVt zUXANlP0P%%KNIKlTRjye8b@6io74!}l1(VlQhxvVCWmyjWFT>*vg%8O?9&}G0ri?2 zuscE@wr#vzlf~Yc-7)KGX}^NP$VNRqZejLMN@|g~%u9^RC-qIk(ftJ(^Wd4PnQT=- z#10X196xcWgzq*gn9|?>VMbb zPkd6;V{UA9h%v2ArryDGa`Ke(YssMB+CtR~q076VX0=Iulp@eb{@zIgtyKfmBQX(? zsatPmAtE!!U^*uSb?(Q;(z7QcJwjI!a}qLGsHUa{P!_Mbpd6UWww#W^1RHgx3Lc$v zT@3%-+IB-fFfiNgSk48t`t@lXZO^`0X-8-0&!}an&ydWqr^Pwu0g?&?Fr=XRy(a5h z`Z|DU`5GC*Ew!OiXL7j=k6jt`%-Sp99RuMTj^#Q^M^L~MM_t6$PO@pZMCRgz%4VMp zIku{z;-j@KI`_&y#E_;e2vBY*GPK`BN7tlayPfe*-2A9>a5c?HJsX5T?(j`G;>AQC zUyYSC#u9!Y@i$Fis=VEbgyG}IPmI}Ks~~rz<>aGX?J>sraebrIq?8~X{=R@_72HJI z$yaQ`FX!i~2CnQaIcxkHTnSoj8bZWgxHu}L{6B+}K32d=6k8i0u<~l&G!fI?*>ttD zCbMBHnK-0s-2d^Im#RNe5St5tE~*evUh)kT$PpY#6SOE3K9@`61y&fj-<$<=gDJWi zI_8MFDNdj4F#)7ugwjV1=L!@gZ%G-yz4+dvb@D=#Yz2F*3{_7U(1f}s!H~RbZxdue zJ+%M>KLjPw=ufcN5cVG=1}*_~JtD}j8Hq8OeDhqnUjG>%|I*(d$9%VYLc25qzF^A; zn$4G?7Pe%4r!tRu2K@4B#)KJk zgvlohcnCo56uniNsURn!zNU4gF^?hr*)z4vsob{D!A-~iRJqM7HnFmPL0U%Yg(J9v zh=ng3f*flxe{;+YCO3}8Gh?hvm4*SSiVQN0Gl&$UPtS@XWUN9*(At*l>-FR78(S-e z@bgEwe;;d?IpUbQ8Tut7Y-}QSSzgOD|Na%1=Xy^&Qeh0sj~_omd(|CKqNcDZl1hWY z1sg)7Ku>W*Q;_D8_1N6>TLdu%&{Jfp9m$wr!i4fe1`A84#N!F(Fk_W@LgXxwXm08| z=G#>NMlfjU)IUI)oSx}19}bl8X(>&ted1uLYZ?8rb;qg#eI)ikpy3DVM2LrJ7r~#(>2KroTK@BYjhal{FH=q% zUKdk|jiG)xS^K~t|%guw2<@kGq%#O4G2@5F@!I-utkl~an zw$SRMY#@xMUO(VjQBJvA zGj)ga{=xthGD}{x>tp%KpNpx6ihbrXEBsJ-%~dazW9YVIe?&z43=~&_vDxi~7G|KCQh5Oo8Z~P}AL~?^KH`M|y zMb@E4CgMT0RC)$1dom>ip@*)Oo!*2iA3M4$r%LsBNspc6ji10&mgfkf^CJ3+fW71u z>FWqmS>}m~b!JA!5<_+QE86X}*p0@&Kf6Nnbd&5if|%Bm*?z5W*=h$MnO;;*jjtb4 zW!w@(1>QAg^3JKL72%M@mFLudOy9X3QpnKx`|LAyg;#HHiEoXJKgGnA=Bo1vh3)+f zV1Eje0LIzM1{*+THgR+sSGGA*GB* z6tTHHJLy2(B?KrCEiumn6k8pht^^)(8*bY+&{5cU_U7QF|!V(LKCBG>feK>l#ar=%9ZR$X1qK+R<5q4*;E$i%Lg46G%w;# zZJ00mxFpd9UTX0}+JrC_Z3jiH1EfHCn0B%2=Q`;z%;%hzUQiVglwS>@)WZzsyZyGcu*02Jt4RFKpaR+d;;*aR)m&fctuHw?I!QR?x}v|PUs#bytI~sh z(NC3d0(*bJnmE$irVsK+i&N;Perw{Z>GHEZYAONM&^obW_k&lBIPjreTUXT5MYxKX z#EmY?T2_W@GUa@N2;RNN{20Mp`ntKY(jP$joB$+@;7RQk5KX@ae!{lcd^6bGJ@04ZKzP{c$%efm_dm9}29qoJZ%t zx;=3$hL+rhecuV7%fnTX%Dod9bnS*}FRh21E|fk!{+vIMqro9fwXQ;bgjWNy#bAYTbuqD+kdqPCJ;yCGO9Bv}UQ-nzMdj41)dO1Vb?C)0#Z#6z zNyUCw050#<@uId5U`!~FP$>GSj@9Vzq z>-t>hd4A4w#Gke>z*SX-Ujh^@)OGruA$9AClb2WE(#y1cS@!TD#tj|qX!kjy}Rg2R;q zTTCl9M;Q22XaT(bv|*#RuBm6JdtdF;9EAl1X#?};Bh>a^!Lfmna{%d|*qVl{q^*w? zTTv3Y3$gd8E@UOs*^;98!YwAAvl-M3(fJn)-IonezN>@K-bU`v!UOW@a+}lMgA98$?TG|{M8Qj(avMKI8$|R+t>mECPTec9gVe*svlSu0|tRppB@H+U>RAn8J zN+YE=&}6X;*f~S*x@y&V>Ur-$e;xca)XG-a8+R3GnM51eV9h`HJmRVo87rjBloVt0 z;U}&90+ng>bkRi>&`C7k+H*L1>E6vlD-r{2W4bz4U)HoZP`py_;QN{YpiMVL9Px$f zLG^6=cB%2r$fkcSwn@t$a-m9C<986BGd9~bO+W;vtJQVcnljVfvvHK_#hT9jY)bS- zxAXeoL3uCf1lGPEPm^|tcKJiw%7okLIXP3{<{oIn=fGsSp@BI=R63Tbn;ja*T|`Y~ zC+l%7KUon=d6W z<7NQ)I)QGL_8TP??e%waB;GWf@o8G@k}LmZZ30~m^RxFB>$W4U+h77S`qfnE9jIzj zDa1K)yylx#$`Phwv2oGPULi$_%YLg1Jqu_U$3@i31PESJ`jL2$I@a2UfJb}Su4PnQ zo>H--iQEu_iz_bB@)Di*2ZPp}^kQt$&X>gJXj)la(jm{-=zo|d`dJnx1+5?81d+K} z%s@z%9{U|ELY7lpk~CLj?Xg^2y}-xO(qu;I*gM_bw8p2PoX+`e)52&tN`Hw)1dVnI zDbv@JFaB$km-085x-a;guA$#xy9oSd43_6ip{irYC)iXd=_cV+AuZ#%xp`+Rk*hyf zYR50M8*46xQfo)E927OBze3A^q2d9vn-`1j`D(;Lwp{wJS-;4}IDUP_2WudxM3q6! zI%sJHC#zkuFd^U$GxB+hqTK;;mwHLTL7wQFqr#^I1qGXML5yO{h=DBAozs6M1|)v~ zOab+Io~Zr~C`cY#GOq?V2r&jvX?9-CyMeX8-u`QJlk_f_XD?4lWRwi%TTr4X3G4Pu z9PPYSoAz@n`!rc^Dz)>PdTWf?O<977kkIgfq*L$vh}5rl4I=%8WWhO-^Z7VvCFU}u zEx2zA!N_^)37cY!af!r)(w)nM9>PsVmI*W&2nZdePo0`kKHR@}pBQK|YUYVB!L70_ zT~I(b&UrK3Jw7)S*Bq9qDZvs*S-ygsV0!fWh}t6^hGJ_V(C=77KEFiJrC>e z%Tgq6q|6uO*nm1tFBp`8uHZ4YWVSWp9I{^kuC+nOK3Ucloy2vAEDMdeRF3LcXQzVQ ztzKk}-AS+f{-MSDV`%Cmc-~7!{BkW1tF(;xWf@~NyM$_xXnFwt&GDR_4uU{X;F+T& z2X)*a?FOW1Y*eD@b@-U8^`_%B?LMGe9Z%fDn@-r@zkBiin~-;NVV~94@4w-D`tUlm zQ;b>Fy?}zh>0=-q^PV-!PD-I(lib=${aj5XcEEtzA^IyQn>z2`zI}T<9<*5c*&v^) z>soH#Y!~jt2_;v5%oTbhC{DE|XWs>P(_s65`fktX>M88_Zv@m3IajS>E<=yZcu&i} zGRR$+;YgFIj`^x1xnvjZ1)+iwa=eMD)4XM+_%cP+4)gk3S@S`4j-s;QW^MjE;5{7QgXL7Wr0=X|v{e8$2;}=hU^%?L3(e4w1djYjf1J>My-BO< z;Wg>TlU82Jf!VPuH@0wO_XGu5#I1X4Ef1fSv<|#OUA8AG(j}f7YJL~UF-sUOp#JtM zZ~BztBJ3a{Z`&erV3SdE$%>t4SBcpPN=PXm3I_`6{(~$Yz-VKP9SN4av)3uocOd#1 zxRiHC=MAq%_zpD`Q|_*u7-;`l{%nQHzhO}vHqX);*}q5LJMq?Rg&$E&S&wY$`dJ zc?bB_a{_P&sFj0#JH;Cu(aC2B-6bUJxrP}<`^F$z9Txldv^3#)rONHU^HwR?M<(E6 zIG>(4rO7LflHA);^NbHYiZhe({9eJ%6_zJj&tPm4=`8Xwp=xQ-)jwWnx52p9ve zIq;Y4cy~wk(dWCWLt23J;PZ8->2ucVvJ{ATpkpuzD}_HKIuaa!G1Y96;vno0}9knL`FNI-2f{{v?~9XP1wEZqh2`L3zWw z=%H{?$X0;ps)rMHA15RwJeS?=GME|dm69?c%*lFm9rxV(rU0;gSd(m-+W zJ!LtqJgkkMwDGlX{q_2E`FfY1-)JxOx+7hWOe+0&2^ ziJs`sLL1a~YOOARNDj<_LpH>#;6?+c8cjVDM`Zc5<r*1+{{|hdVUS zMJ^gfx})1I&4^t-VwJ%#2)J1C$1)ua3xrec&vOVf)fiVmC^VQ+5O54=)t>PHCtZ8{ zFQ3IjoN_YjY%S}d=CNq`WFUQimL@gaGEg^Kb$A@)jgydr zkxD;p=asyqPMt7EZXSbuIK7IN$o2RLve9Ib|9zVZz$DB@pWp_0-ZDnr>4u4R9UDjwYR6Hmq z8eMRve5Gk1NPGK7uD`lrh53t%U`LS4-{~{~92UDnYyHydJ07hsqj9G9Pb{3XARPOS z=9i&7>@&l>*6Som;)B7Cy0@zOI;e$|rmem!q_C)5<$LrmHBFSAKYNz(zSP=N<6wUv z`Wj4i zi>-Cu`_N#vzQCI~TIW{>SvhQA**JreUUQEOA!pF0fr!I5)N6TBu2t!a-pu`Na)aR14UD|esHwP6YpDTIFsM(9rD7vBu)t@FJ@unX1# z)3my}k9v{XX3jLj{DrY1$sDjL9;68htOS!It#E>;Kg(KBt0LhPr6rI*v3s_=-9i$% z`Zl*kXUpS9T+&^XkCuAjsKuPK{o}u=oI_em6!W)Z+<6LgL-K>7+PppBPtHRix(ktr zT+9xCWr<*+#E8Xwso#AzdN~ZWp1y@;!T__u{lP8R6MbH?TOV^?dVs06TIXrl4fj|& zI?le)a)vZpDRwnPocM(@rSB~VNYnnUY-r}D$T&_%uzy-eiHEANh?)Aw#ygbTO9( zIjM;#OQ_iX);Ud-Zb~M7g%yPJA7O#fzCy+@oHFx79Bv%vn4;={jg#aYJaPQQ;r_#z zGq_;p4fokO>ar_5=lRnxky|9DJak8siao5nKJqu-)`l zU1DXrA&>6Er)T#_aU(%uf;V_D|A2m8+(N9hC}VK&x0*%=J>3@XM11}L68@l5u;-xc zCS?2;-0c?u+zny{=#PJj=+Ft%G?|3yCTxxLk}X`@1^^fk?39K z$V)YPSPs-Ka;fCc0QeU{fJBV;Hlz+xa4AMZP~}$#_OXaTaCf=r8?AE4>IIW$^6|pMj^q`n9CN*LO z2d_>*^9c`GV?s#wY$a#+A3P8NuhhL(OIEvyiG-8*CyWp++6zX26)_2QRhStQLNcUB z8;=ss2%4KeJau6XWL#jU*uzw#{bZ5`0Vlgk41=f&%MFc9+R$dkjkLx)B_CC=CjL!S zX3B&@Vmp6Uh%^4AFgI-JpNYqCDa^nxdjT4i`<|fm?2CN@7&vH>;~2%eo}mrSx4e{y zvjY_Ez1=B(T)78feT}Lpy!RMdDfqcyNqe^Y6DrMql~jf&o|#b=juzUvXidZgBuP5^ z{3?(Ch@LR=G_trGADV}ZKZUFsr)@)QM;|fW+|6hp9rS_3QZE2c55eJ74^Jsm;xXn< zbx7tZcLR0h+NWG8_Fi@Kq;lO=yt&3lFFtzPP2JF=rR9tUON}e=EV&D1-eN7L>;K=! zC9|BVA%H6ZR;w=5!J;~<@fi{+i^l{`7lH6pVx|cli?-PN z8;g&%mih}fVd%n!WV#h|2of`;UgdAAgPO4#%HiMs*RZO{;!b!Oq^FA|tfBDT_~XCZ zHC<>nTS>lx;*WQTq27Swth&_ZyVQrT29xR5S8;?*sfIw~a=7WBm`6OztV%Qs+r~ zi^`98p>RIjHnS9gEp7KJJNP%_kF>$d&7dUeaL$rC`yq zN5<*3_be(1|CsF4zlQfxrt^FPG+D#5{rhG+4NWxk+$QLrB4=Z?v2M6@Mm_OA=Z8Nk z&-13H2vtaTxh9^7t=fZ2l~?)JdfW4;Z{u)};+0BwyCAyz2s5az#ABrGX+}c3$G?Ap35h>(F;!R!}Al5 z&J|&_8Z^Fq`xaE4rp6Nh=#ydqPbRjX?NqXHp#o&^$N5DUhqfbp5NUxReZY3e=Si}o z)aW11yScUYyuYw)_4zo~<$}x)-;BODB5!+p&BXTXsetNynDcYOnPXbt8eW24 zvrhN1Dlwnl9lMBGM4*lri}_Y~pOKweGZ^GGx*{W2a#6GMO^d>cOP0c?!dD3y1Wa{( z{YW?@u{3^k%X+~GCAz%X@)r30#&{2lFJXf~!PgHxHaL})NkLfAozriRyv~)EMzrw`LM}+7OG7n6B>1(~Dn?n|mHQCo4VcZy>tqMT^N@oO1gr_f z)g_kzy8z@%RkrFYYI4zt7A7}FNO|euc*u;x?k{K%QuKG4Q)F8st@!E{k%p#UYdcQA z3XOQRx-0xa&XqD}d_s!Z!&6hbWf4k&Tfhs< z(YWJFlax-QS5=iaJ)RoMi+?YhX=-$SFEx;wbMQ*j&>>BU=Zj2~G zbq-!4j&gH*VnFb+5E;gmg;7Utav8CyGnAW z<5Xq2s^7=7U%P9me(`HTTNcUZ%&7|=jyaPLZnSzF*;QMl&tO+=^E%V!*jVaoxwy(0 z8JTMR8oNVm>}0CifmEn}o};UNZtS9hEwlUibDb+9MchRsQ>J3cbP=orV}|>T(@ypX znDw~!*6G%}aRf0l5)Ui94hUNRD##36E{1ORq~Y%YVxA6*#Yc{qm&(J^#me z!=%~FgAN^%$(zBO&f##r<&leY-PIlhp zVm9;-hEQXvb8Puzdh54l@TS@r{s?mQ9NTiaZJJqc)B9O|=*q}oy=&;#yKmEb&e?Ts zLbxCh2XVP(VN#mDy12aDV4%gDLEc1MGPAch7D;i*G?jVl@M)H$zvScGeND)0>An)* zqc-EVvRfa%uDx5^(sd}S#33`DT?EKN{Sb+>8Ie{-UlMt3k`rK@iL#I>pIqXJ7022F za?M6_Q>pi|Itf?Tyt|9jH>22CjAaiQ8#Ny9yR$6uQ|Wn^*Yu~X_$Nr9(lTdS!DQ z+da_HBwR>wbaa$fQqmn`9%G5=`(NWVKkB(@);q>+fySfvt1l@zu(I4fR0WKE^XjzK z+rPYEfM`pjPsY|=NM3jk^Aq)?slx98@gizwLs_t~PbRZ261vLd>2`sD7b@CL7v)Ai zb?I1*^?71Z8k}}Ho|=}OrBd6VIMrLT8QBan6(q{QlnV$Al?%WKYd2h%?E@*B< zERDQ5o}t9P`0T?B9eU@XSqq73jQXS~EV*Pkc_huaen*9mkB_gtH;AZlirefaY{wO* z7T$CS-R_{xJ`5UN`f%mz!uf~vran%~!?0z8(8a0q@}dcLHlLfnGVa!u^gVp$<}tX% z-#|=`5z#A%%pYPqgH;;et)wI{%3O6+_kPWHl{Zao$Vw`3@n)jP1qU{HZpr+~0sXG( ztD(8}w};l}Lsx%#DUGrmL%+7=aH>`^r%GT!I*V^-u@08lAPD`XDY|QJ3vaY3De+9S z>PQSr_ubOY`_E|PLTt&_UP7TmZI^r7s%_=J1FoT*LamXzk(?K`;Xmw`*UTfG!dZ(` zMt4KA2Wu%OXPV-sVPf7%CQ|ZfdE^sCT?cmC*ElVqUws zX|Zu)IIp>x9OKX{(-iq_>Pg?jtIGypAaO{^p@`bIc%G>0DuLTuVy^$^-gFD0R5|gn ztKhbXiK>`HVW%lea%0_pImLN{6#*upBQGW**rN9L>uF%+-$>y-NI2l9g;Z z+MiLIW|zK%XwxhykQtQI@9@#v!iBN0zcYY+ByfpU^{9sx&`thox*l*9=71PMY zBj;Tg1rcQvbUAV9y^wfBhZwR`aO`^n6=BHNwjs=sZB*ZdsUbl=@~ zze;ZRcpZO;nf=en>nvvd1h3#p`=-hl)1ui_=fmOCA-At8sfx+~JZDi+455j(l~$Er z`N5%|Up${qn^GU;lr^n?)?&}M?C`Ry988|N_0eCD6iGVnQg$=Q|vRL$s-9k-Wt`u5JK1+;`D zN>!Ks{Bdwu!_S;E-=VTIH6)x`EOTHCI<71%(9!I@TItQBI9?G}f8@Wj2A_O4=l`()l|;|_9< zqo($BW-#0G?^|v|xX{HK$+2*-pN#2Rv1QO-Y%#!!)_P1mDQrqYqFm4uU{rQ7Cy?ma zig_aa(%55EIP*yfp}lpi0nzTCKdu4^cR)~>lqzIbq!VWK?(6zEo^tb=PA(&XjS;xi zAjq$1PuUNc`c#FbXb&3OWyu+*-}=p=%lnp{F|rkl{*Nbx?XdNW4YIQ0?G?V?=l&?8 zWI=9MG5YZU{y2)nwD?>|yrg%Q%^v)BI_-B}aBt$LTQnadQU)(<+M?*#jHQ3Sk4+cL z9%PN*xy54417DS&twW|sqRaT0n$>|rb&EQJW;tQ!hO*D>qy`VeNZsH*qs#Pva2+83K z-H4BQk)9aqaP!txEPM7H8VLT7d46#EChE6Qrz7kxD+cb6eupm-5o-3*S2UWEiDd3i#vs4rFe0Q6$tM1 z9^U7>-x&Az{lOr~NV4}id+)X8nscti>1wMI;8NqFpr8<_t10QDprC1@prHN%VF9mL z&wj54{-Jv5tHMyK#%OneCm8k$PZdy5YE$s;EHQ!SIPPjMy--kyy&wNjm+ct*QBdAG zt1BrO_?sQ%V_T5^A{k)IS`IpDXMXyHiIXvw3{^p1Sy`#(ltQ-;p+TaH!4=8K-ma0c z9K<&jbi@N+3hNwpZH8+OH9UoN6oPXWe+PYQYVtc;d=qer<~Uup28r4l$=Qg2z(7#A zIMHia;>QON3SDlZ#|M3={lvgim>TW>&lhB^PBw?98eL4Tw+q8YS^IcjR2V_4J8r(< z(}<3m0z-8~dG)d?xGptA%U@Kc*IEyL|5a}2^U}hi=!04sOwewW{rY4pL(ulS+OIFq zeO}7Thr4?5x$jMLT6ht39e#buBIPxmGo`^9!>QWte7Mo<>FM!)xA&`D zv(O5*oR@?5#o_PrNZ->xKmMf8bzgooZg8A>uZ*Xj#hKM2>_J3N&-=~y zAf1FwTW#{a@_CRB=$P<~n^ghHe7zF(Z+K_2#%(pc7?Pg zGX`d!fsPGU;u#e2K3EWu`4mSMJfoSz`)i+eRvg+FhOzbIT@%HF|Mgam532gzs;cMy zOr>DZg>%5e_4d}hePI?hy}vxCVO51+ZZpZitFugwXDs64MjDyy#b#N}(pnG;qr$m% zT_pSc!|l;c=vbZv^VavQpO<-}F2=7?z{jiIQ77lK=KG?^M(I0bZ|keK!VcavVQEr+ zu4Gy*o?9BJrMlP%)kcuJXOb=L|Ri4Ppt&ZEngus7D?e%X4Me?Zkydq9BS~?rg}DGV{(3Qmz+TVONz% z8cBt_SYG3=YK1g~^>75jk%AiH|q>b@4)NW&n2 zUMuXmsm7uIA+`ex4fTlbh)|xi!n8#n^Et2`yv-r$V^%nWz9*aNGKAvGGC>zR0TEr@ z0wqsrw~G~HY|i(7amv>$wQNLzqWlPtn4M-Sh>3~cFK*DTy0u{yy@F$`%}1uzU&MLA zZ6S>U<3w%nIV_irt7F>1sB!#*jd~x}0rz146mg0%#A(EMjqkz2$*9oyPMvhXiQ1ph zH|Oovau6EvP=7ObY5z`g&1~+pdi!yWz3I=--BIA7tF@70SO=CX;!n5-gZk{_Ptm%= zJ3Z*uP7!M|Yt-nke_pp8E;i}RRGU|aZTN^2O8Nes7^fS=cmJ_^qiWKObsVt1v}&B9 z$-Ne`mYX+DAnW9x<+(WoO_6(OMl3V>dYE4QbvLt^5!jHCWDtVq`HUJNHu?lM=G^Zf z6XMu&Slj)QcERTEl~z<^63HWIvp5*Mjmjp?W61kHPgBD=!YXW2JR!T$iAEvY?;rMo z;fPia`gkL8)HQU0Lz>r5EQtVihssE~{HJhfQfa1n$^flWjjX9LB07zu<#rM7s4?tf zN%$#}8BZaCVIA0`BbO^-)rTSepC;a{4pQgig=SVVSXKlbG|YY#QXLfZ-qEEJvPIZPTW=-;uD zqDa;Pv1&I+fi1!7Zjd2t=-`&ve;};a!=YF?^kzz$7TpFy6qB4-WE5!TJoq=Ok9&x3?24l(y`__>DD7EX%MTgu)09z22e-_;-JKe($!_ ztd~MnNY*!@NGS86@DzwR=Tgy)?#mt_Yk3z(D{|j&aojtOsaD(X?@q^WLSQD%#}QqF zx4pIN=gkij^i^D@DOWOG4N*sss+YmZaLCH49D{(mE>dy+tHZN%$SU?yYX5~q_d9d{P^s`nl43ADsQekOp}Y@$!Y1x%#Lj zzt4rU%Wo%OAUU6Z8G7f|@fk*V0J~CfM$2Oke(}52=jYf_nks!7m`+j+flu}IRLTAT zkCD=2jNg+m-#uT_M|k#&-H*2mX<00KEdgbnjByFm z1E(5Cn$bVy>04nv=yXR&kjx6?t=t_l3b!OzUKa*h6Y}3k5<4?pHI8iVa$ zjvlY~*cjlN{GKxcuZZ8hXt*E#A za5YI_!5AvN-D*?aR|0;Ne)ZszUUy2rT5!p!;H=W%4k=xK0)-!t#Rdf2mZe|WEkULB zW-9mj50mLsKJD;_R?t~mTDBg1d0tMdvb|dN>RY2VkdMG6=+i!Pg_E_Cb+#ja_$6@% zqwy%dRsx}35)nbR#?v8mJxSShy9E3WO=BiG zb{gjf^CY}z38;nLDd|djA>_ap&&)PkjTguy!=iB|s70N3_$7l?6UcdJfmG#+nezQV#Hr2oqg&!CU$2Y?A3Vs*mHK2}^NXRZ*+ zNvmRi#1D^mMW3je+}&*~QBCosq^opIu>J?+b~-2&nq2X+eow*^yQF^B%PCeN#1+J# z`bj&Vw!6C|WAYj%c;koHfiMHg-5$e3y_;fJ{*u3YbsI_$UP!_sz znae!0SwwF9!VE+VtO(k@v|ISN!Z$>(p3 z`GmQKzk&U#T^Pl0ANir{846+cBI1$N5|kPu@S7Jc?rxV1_U(z|N|(~Ytx z7?iP^yV~xKWd`!gr1Wa@+V55x z@i6vR;r!$e0}rXXi5q%raMtfMd5FqiTCQz5Nz3XB75 zIi!lk3MG5EE<`$FzzzNcywO~XKZqNZgR@OpNFyB}?(1Jz1D+*cX6UlF*y>p`MK?`B z)^(NRq>#Y61QbHaVCpm5QRCp-ZV}t9SC(}6gNfs)gL`;ZQg)_4=lH6y^Ad6?#h`)O zmDU43h<&0$fi`)NrU~#aV*2*n!9;$EDyiTY;y6^M(8J>JPXjT{6`Q zwvnlsHZ0a2Y2uR-rHwDQG}ePES2eVv@V-W9XNU0%BU42lKAv~{4u5SDnKAl~F2u82 zmK!OypsE@UMt4~sq*EUN9eMwq(<=x*Q4d&;W1EKHDuT)2xC^Q=5C){|#C*wVgb{2I zuIkNM1#=g7h2Pc4s7y!{lF$nEQ0)}e5J-x9=K?42=VjzZV~_3-6sFIE!6e!6E#h85 zdUaCriMQixit$ORb=qQ*fq=+Z`4|V6gfYS%oRJXJDx6p=u7CY|rnPdLt!t-n@meJT zIE`l=vVaJ!u8$alQHd57bCpLV+2;wu-8X^;LnG6wf42HK5%fcI@WYs!@VDo$1M9;1 zJ;rS7`Y5Y7Vzq-i$RU5{mIL01t>zxf5{W8zkoOpa2GlDu~{isIrc`BqeL;%rMAdp@#ki6$3I93tlgYX$5mZ4e#q;g`ut zV}#VnpC9j>4k3~+?TNg^Qgx!o=*$FII7)sZ3`fbt$w7i&kG@#X);xTxPLw)a@FBwlWTr~Sgf|Du)H@T5mkUJ5?8^r$18fA z4vlzG%3OzBTy%T?XDb3_tn~D{d!^aV<8KGb5#eCsoycF3_r!%F%Y0Qjv0b$muABIGz8k(v$BNn#>4JD^;h1+As-6CHwsZ*ONQOY{)d-a@?W#rDXEz~Dt7v}$Whj=X4 z3B>K-UTX@Gx+=s0K=?n)O@pLBL}Cwe^Q&Lc3XKVM2}p%~avz1L2&7OQ5n1Z7eEoKl z+_n0&)QG9ij6M5MVWO6a5TnFvVs}lOH2>G{@KlAEq&9juI`@PCBR-};gbUL85G;=6 zT?KIgm3HBw5R$;tY+q9h?tEYL5L^8meu?e3fz+3nt? zr@>U0YX_))er>+olnlN*9=x$Wprwx`0I_Z=7ey%+YfQ%|+zB zWSC)4Ej?@;WsAu_)1RM-d?m2ly!+jkDGV8fWcjD?Zw9SN%I6E2)*HomC0!i1$lt+& zUt;P&>y9OeV8Ph^`otLdl#<*_yBlEANUVG;PS=ew3T8J(SzS`%04PL`d}oQ#)HFbO zg11c$pk~tInKq>rVxfkZ(Z`R>C3^~5O>%dZf6s4;(7wu$5|T(&T)8{7O%+#s;<|r# zr#k2SUCa?^!G7p;cqi2p0t2il`Qt>%-3#Q`B9yimmf^{?gW+T3BS4j*_(QYX$qKF3 zCR%=#NB;GbCv${m3HQc~YhqPi@bT_z+U_XyG&qt_R@0xQhJG+Q#CWk4{UT{&-~mPQ zWu6|&{_FGd7kXRldE*qxlaet4(a;6uT2)e^{y>9rgc$xd?(-kesU@-#@$D=8iN>ur zk=w@^I(zAEL58L4+nr z<=#TDb}%diy7w!-SsTh7qAYf~U&dcdJ_*g6Ebzj%qeIUg#AmaRFiY{7A(WC2dU1QT z=qOiZ?TfX@%t5|rT{t#KLb88lMK86`Rl6p=N>n7{9HVOJVkNaNV<}}cdN4tcKWN*Y z(mY1g*dJKoC97JMOhC`$T?C=tk+;76Yf3b0Z%G$*E@44Kc|k?;HOj@hAZT9*b?oRj z+J2=qia%X)??R`KENVfoX@m7z@Mu?H10_!6DUkQ6xQ1)x+7QAE`_?>_>dkJvU=|ka2`9UY2 zB{gvsx-axHfv*Lg!abIVFj&@V`f|OJcu@FgV4fg1W(;bfGfj}X>Hj_>Uxvdx37LtU zMcKklJ&lqk-K=7?T*=ywVUdM^6+5Un>zNbd-06tV1#(d>Uj%389*t34zkoyjDby;d zF`+kvq{?9w!;xe#?jal)nS+6+-QZjA@UCdxNHGXKEI1n}3{8x0lh+F0*KX&9srAVJ z?_*}z_$I1WGM+C|gA?J7Ec=5m6ysU68T|!_!6pAz^&$-`&^=o4|?4U1^S8a`_*(~**0~p-g1mu$G-1J z#+F=AsMx=+z@D+j5bl|vq)NDk{-*knPHC}@4(I^sqv4;hZFM0FgI#G?;ktsjxFulP z@8%X0IPs{~@F#oe#oSo(TcMd%-Hk~!Vl$pBW%V&z?EZc0!kiM(d|6MAn;UYnIF&yL^FraMIOlb#1)ToX>LEYzKgG~{sS z--nQ@E4PbMsvxaG)%-JcZ}FZ#KtJe~@60yi1Gh@ERMp}2+<7oCljINGS^3^Vrv ztx6J?6;LsJQTcGb3|oI^_G82GqfpWbrM=5P1L9N*Q^%W5LVAJN%-rXT0zPCg8|2|q z(p5a`G`1pHfL0Eim@T&oyQ>_2$AWJWZUnpM_s`{5>_I1#hBVN9e_g~RQ&57hq0gij z%bI7QH4l&^B_9^Cf8(?MeaHkqUY=A}xv=Ln`*1eTx3S)B>E|hOT@M{17{d$<7ugiB zIt|?8F$s4~+PXy##Q}Tp1T8ccGO`w~OYzYoUgtBBU*A-DbqD8TiL6O zMUgV&OQ~?V=+^1bL3(rdLFqk2vpL*-{fQPOUsT7v=w9EWSoDC#{Pl*0i9=X8I-b>U zo7|h?FJYvOe#-dP@6^0>rmk<&pH09q&dJT3y>)S8wK$eGajeok`=o`hp9c36pCl~@ z?(c?!ibdR-_6=_1 znxGg1{tOw-mufnsV8RVhUu<%l9U_u%CTSQLE0n8tVG%Ks3% zEA}|?o>(zx3*fLeV;DjwQfaZgepQ>BbA_^rJdQL>Tux7Lu-wpxyGbC;j~XG%PpIfJ zM5gka1^yjHS_M?PCXvlNijd$CK=lT$!G~s(g^bfct<~?SDg{Ydtjl_mR}gx$Tehpc zDii77^I978#J|Wr@98_yEc=3hfuk172Szq<-x^w7OOksQKU%PKAqjb9&%)>Kb+M;?3z7}UGcv$DNeyh8eJCOv-*>) zz{ZK8Eb}PEaMMH@u^yJuX0MI_A=AR2hcdnPLCoAILI`nf1Nm_{C2S10G{Di0rtjZG zy%I=W6dt3<{yTMol!L{3Ad#4w*lJOjqEFU10`__o(^>;E4%CJuWT?Ve!gau@O zym-);9et~#f8A5>eP0($N(`fiPbkDFfcvQDk_tAh_GXwz`wkVjG3 z3B&+e|N7^Lm~0SCI@&4@lAg%lm+rAmpcDDLCdJo{TGqZiTmOCUP5^qOtw2E5C(YbMd zAz1foBiCeCi>5;8p?U*ai}5n;X{Y!&jUouzce&c+J3Lh?*nf4fP3sg{Q=gm(W5!y{vB&@TSm44irDLxGeB1{3OwH{MV#!gY3Hd0 zH}C-8IB1dj>sL9`_IQG6bGSbHA6y!vdf&=1@|Ei(vCW_3vKiyD|4eU!&$Grp{5$3A z90CNB&9gT`waFM8pjtR8eX$g$N04J;?|h`86^`xXU?Nq?Io-o$=f7cqtNiFSaCWe0 zn9XBicNb3C$q0vd5~AgM+_w&Weui4-{jx}_fR;tb4r6%WX@uuRg_==rOK~9((B6G@ z{-yEpX+HJKa#y5X)!fQ2B1@I0cCB=97<+~5T+k* zqt!l%!EDYQgAT9s(4anF3^?C<0*X&YW(QEkpZoyy&O9?A`!NGT(jK47*$NJ3)nwu1 zBZALnB?xaJS5J@ngf|;RbY;)KHD+>|o6!sP&CGdh7|6fG7gRDz$mX%#A(T^FY;^JY zc0(w`5|&I?-ZO+oQe(yR0@Qp$#<>$}b~LSiiw6?2TGbpU7D{pH-uRj5d7_#^pM^xa zlc~S>K|IaZ0*Ei~4<$__`0x+4-9MozE|VMvgP<%N?uU6pAJikJ&MPhE8@S|Uv<7tE zFGS;^3I_QWo!zh)Wpmf^DG^r=q#g&Ee$=A+{5qB_mSQvOeY{9$PRzfnk}hxUIBjmhw)1);jgv;FDjY9uhP2J z1^85gO7@=yk0e6}?e9-h?)aT^fwfc}pj^bie+a_C0cS_7gmM84=yYQ&hj(OR=ueZ= zI$ZHM2KqwV;BH1w#^gGiVJqGw3_l@=g8TRYhWQitA^$1A9Veoj>paS%3CK@zbV})9 zdi>O4#VCSfB1SPctQ|o-r4OkQH342lcURUmvN|A`qT;Wg@byGcG^#;kmDSQHK>3oq z71XPHR5GV*TVuGX)G0$7!|0n86{4$<@=9 z7Ozi;g+`Z^s>mNb%VbY@JK+`0@u zRN~B!zt_X(gbytulfGfuBWd?dS^ceFVQ#p7^4Xs`nbPF@+#u9p02m^~ni%1!eRwxF zm5V?qi73>WEntpe?rMI6pX#%ZZo6HDaxTt_0nq}0CmM=Al@(4wSZtZ_=V$xVj4@!k zDb88I?2!ZT_8I{7&FZ$?reA3+GGA|>68Mq3rbBCYDljT>S1F#H=gZHyJQ+W2x1tnU z*$T4?GOiaxZ0$jsIaRN=Dw|fak7B@CfX?l-fba?$CN~w`!%QUAE->EQ`t%PXw^3`< zlY?)r6pUjXn2IdzZp~%FUDbS9WhxPHF>hZAqz*?wiOd9qsazAlS+c%$vV|fb9D!I~ zM?>39hgMu1Xo}Z*A5XF7>(0E*lODQyI+n&9v%G1{NJY~*;_$OnD5r=Stg8U`$(}&F z`aNhd5mI`7Xxj3=!o3)FV?wBt(aBc+lv8Ps_Sw1r z>oiM4m*gv|>OOryJedyirtGABLU~Z*wj!I~#UFBW_GfBmH33J!mTJM1wE{RKdc@-j zujaUmvBIH$qgSl%2FQmB&2x&ql=t955WZMaQ~3jQlDp)RJ3OWA(~B3fnVN~SAB00k zgeW`j)dY{GKWDTZ576k%G-y(MHf*Z8An3y_p~|nJ_y`q`XEo{id;to!j3?!I&uhYR zM3Smz13m zFk7UfV-xN@6?Tn$_EDqsJ<;&itlLs5V^~2VOC+!jenNz>hlLWHGp;DAwY>l#{DZ+~ z{W`~AoY$x0az3$~xCTsd5cQB2uWivL7I&of!Del1z#u z9GN2aQRyDAY5>V+x#UHqv3h&p`Ps;?_8>o=&Xsz5ou^SYda5}n>bBqP@pJ}eK`tTi}^VS;D{dsXeHC zRe=SibCB|LqAL6+cRUr^HehPXi6`T7{P6)0i z@(ouf9B)n#^2VLq;TY3T1wgP#6|zz`?goNPQ1}(@oeK1&1XB+*;AC^sl-^D9a3n|B zZVW$jT$V7cJxCA6=qUknBb0X6l3beFY+6jE5Sf5vt2U3 zty7eT&KxWSeVudhse+#&2)}V;JV6ZmDfW~G`uxLXg`8fBRjpV`4@w$#j{k3BRoT{5 zqi=E#`e&X%)iEWJ08T-lIO-)zV@pxon~6(hD{NzZ`ffQLF#e?eou}*J#vtYz=tp1M zX{UNxOVNZ`UJ!j#Trp z6w8-i>Eq_#jZxebs8it3DvVVZ^-9 z#=lWGq`K}GnaKBy@9r4b#`}?Q6!TF4R}Li~ES3T?y(En|usNwmQwcxm+??(DcpB(ifwb}n%dGdSV$o6bTpzdbJaX!HJ(_iWOXN`FaO#kw4bzG^fzQ`lc(gkc)PM>$M zhIIt%S2{lbtXF~{fhC1J~x!Bgk+`a>d(x(4=R$b_QphWOh z%?I@im8p+UY0j5(cubzW6Lm??VAI(X)lAxkm|dT4=RAhWPCW9V^!^0f?Xi5%n==Oq z_to$U<96fknH(k6*hun9(*_N4Zd3O1B%j-hqa61QKN*uo=hnhF61K-Ey9K!I7A|;8 zDo?k^HP?Ege~{my%esx85#oV6PEWyvggLe&Ir|M0HI|AvI5+~cSJ;2u`s2y!{I+ld zSlqxkI51is{WE_nq&a{@?t?QO_OU`Ds@Xhrq;YjzZOZ^%#(;Y`F_% ztr3Bh4-dC)RKor>j{waak1^Daa(^&|p?YyNUrgtTP64-d;=R0ur5uf@>vRY`kg;A+ zy~n+s>#&ZQhY2b*jO7YD;WJGu7L5$GV=ORqGW<2W&Je|@d@8L;;S-|T)8oP(GiEH((4Fw!d)+t56o;B~C+s=|!QPff$~ zPWC@ot8fxP&$_>^ZK~j;fW&eZQ~_7xqsuVEsz3hoEQiU(-;>oSLJc6!+XCf+=hk;J zFHODTQ^0@pd1yF8s>x>L?el12j4=`&Y3TDW25FC8)Di?iDd5)pQ_gf9bm#vg=?h?9 zO7ERheLMZR6hL9rOnI^{Z{u0vGDPbd4z#KR_*7?3OA>WI(4+i@{aGGj9*;WU zhr05Sa07k3a_3sl&TIA5XG;9{7b`&W*(dERL-U}gdo$&10C=0un*jWRLx3$&By505 zHJLVj5F$+u%0G~Emj|4WAD}XLv3WfMg7&Gi!hvV61OCk0|MJ2NDpNowILMa_F|K;` zjhyU+`N_wj<2Wd(>VE;VS>gL?CU8`roW5Mbz{FB-6rN9FFuo0Q9K1iz`9ljGz5(oC znVkbk8HHgt>M~C$4K`@0@xkD1UBZlaPy~J0od=bubFP+99~C}*=^G*Y@0r6HtcnPH zYGM`^j$W=@;QAOdpqbxoczE7CvnAi?ST+r0D~>2m=W^lwoZB9WfsOS}^8o!k3-S=S zxfWB}tw`vg24-Fw0~8!p@Nk&~Vj1Rh@NeK>R^W{J8i?69jP zx+*zf8}=(g{RKcpkCM%c7EjyZOpXk|{RCUA>$)8Qh(N^aN|$55&-$gKJn7`z8tMRz z#5hSA($u8Pp@^o);bCsMUSa}8S_)`rtx*=z}N(5LYtX^~WTZ>y1f z5SEC6py9VX@1_MXz%cVGsi_ehg2gd`lEgwty?xN1`%o`E~J}MvSFrZpCX{IdCQwB^m9_%#J9C$Gd=CJfLtg z&3K&~@b#v1`Z%8VuH{ZNdRc0Qg^x?=k(Zjb!>GxI9LP(BU--Xf*Ynu?F7n22FWq}* zLSY4aS?I<k4Q$%f35^qjQPG1v;16joi~@p^=tYL3@8?9i)mC z*kX3|0h?7R-D+NoSHl&{o>&M_CjNO5M-jXXQs~kD0Q!}@L={`saew2)CJP|YrcVeD zfMYgmYFQ!7jPT)7--8@^&i4>N>(=L}c3bUof{*(tr~@0Sq)ay;UC6_}O(5i+0B+B6 zl*5IFa$I}&KciIFEB_uoSsKu?arO>k;wE)m|9KZ!0G(M)!g#$6xKd~Kjv<>6)vE^u zTIR%z!V-r##Tbu-Ehd}ZJk7K0QIS4k z$&MI?fWD7ggA7X+J$T6mjHmJ=SN951$I-sw>0i4cNBh#h|G33XKRrk+;L`I>s z(hOPmo{2%8L+r>Q`Gj(JHQxI(PnDMd#q?8)1|B*01csZ|kBsU6<5rcg6T{C&ey+lQj$pnoQSCa64`-|fp&d>1_RZ;?nQXbEB&a)TobDa zN$<|{lE){@w@=ktC->Wk*GVSL^~xjBF~I< zv|?%hc-<|!hHr;h3rcf@jA0y~|6e|o3~?I$yB~cM7gP*5`yFwxH%ng@b+Mo1tP#X> z`BA>dUFOni#IM#%V^SU!sg1gO;!HSBmOh;Ezo-g}O_E=3<`vv6h?8yQ%VwP&UrkX@-dTqJ~L~O(ly^wY)S4pBaz67lavsi`!!QS|suGo;p z+M09`$czTaqMb5KX+=t&ChuMSd{YVYj$pq;L3oTK&<0}Me+x7`iDtf$*Y zoWU;@b&k|%cs&XGq^CfnX%OZ1yR{*kOP**Xcb$`?OHvb_YJ&>HekiL~BIb*07@NAY zjIu%Y{tDK&ceqY_cJj~~vPTAs6svalCl65UaEKKfV6!Saj;8vTn?xK2dnBocQ4)iD zl$t0TlUSDeaGzNI{^nMweTJ)pABTs_`t5&r#SI5fagEBRk?F#k_bWD>0?Mh&fL-5j zeMUroOgmCb@4Q^6Y!-0-{Ee_fIxew}!U6^c#TRK4m)mqaL>Y~=e@*boFxwd&WqPzeZH!QG)Ssnu0M}$cK7+p^W=P4uoS^RKxhh{$Q%1{Dl^; zd2!@)rJ+u1$9eV`eafVEhYipWbkdih^Bw50X(xU)Of^J9P|{!VW;5dRYo^fu;Uwv9 z2sA>-PED;ug?Os11*7w!74E&m2s9V)cIQi~ckTW9gLps}@p!nob-OMy5hLSW0aLTo z6HLx@n#<9x->V-j3tIJo3h|z-vvOu0R=nG+q5?z*8D{Ne?akOl$ zo4!2F3OPF-^jw0J0yOKd3q32lg|l7G+;kRDNq6ria4vKO<}n_t^5)*H5#pMVZy3~Q zERC+5D3Q344%ePIbKk`D<*zBH!IHjr%^yGnSyQDNzx5PBJ|A$&cq>Rg(hI;L(sIbX zqKs&iz>7Ebo6!_zsp*KJ1=qGh5vSR`4_~DG{!TQ$6LEU-h$4+M2I({2E61w=xaosu zsfO{_8vU*BCx9DM)5}^0m&8hrjLRVPQ$Zl7XTa&78{=4Z|I*c3SQ#YDO&EjZ52+Jy z5T<>R2wP79d&*>-Uqx##VG+ICqX)GNppOz>+m4IsIAl^oVkcAYPqJfIiXXiJe$C$M zXkgk{+Iw;eh#CcN?A>Ldc^`4#xKA%*ysq9nnS=hPnaBi6GHe}EjHj%Me~aQhA9cb; zf325mv9YOi2(?H<&Tr6Q#x}s+$)=gjn*}(s~{9vP$p8%ZJ=ecsD^^s zbl$u_jknamCq=+1qYUv1$^jC2AFv9D=%ZpCktk6ry(^FG=12%?UV0$67^%Su-$d#{QCU|YLO4F`I3_5=rCVEC`{u(T>VFZTcJl{ zUaN;u!mwaYyLGm2M=&C60iNdB2=U3z5PX;=60D%~ccJ|@8J2Wn54m(GbGt&W30e=}pWC7O z3tORC3fqs-lDX$fpV#ZiWdR#UOCy{6^Ey6^3n(x5e%HaDweep>>oT`l$h7+9xOF^8 ze&^pi%J*AN1DXon(6G^=C2FpN`O>~2M!x^wLb4mekz8lnZ|OaeEH2534Nr%X)>L8y ziDBn*F-mJ>akB3IEX@GelaaI%)#q38ENdPBBCMN&@I%-@--@60d$Jf6%K2&cdP2BC z32P#`e1s)qHTdswhi4xF`5{ASnOPCgIG_X6W?T_=Lj=p*&V*4A*ojCsGX)M4m*3&i z9(b#Tk(@vGiyc=S49(n?pto_yk2w!vNuqZg^4?tH{^z$&?FrV z3?-A2<#%K?`Cn@C;}2w0?T#dV7@%Q7xV!hAQCrGn(^&1z>{suLKA60PmRv9H6m5=uTpCx%d3=kqBogfJv$}QjZO?4_c%g8&K z&^DlES3XVoLj}Vp`zD|%W0#?08_NgZpP@dG2j%lC5vMoTQ>|k%fpC`gXR8f$er}rw z7w_{BVH_I({Zk?L6AYocZe%?{;!iT=#U1|2JyE*}{j>Y&d`|BKrMQDm%5P5=z!|K} zq5tl|)zpv8h>taXKZJltN0ws^9Xp;8gOu2+ieEl=48qBHb2dD;foMEp_p2HV=Xoa7!IbjXQ%KV|;<^`Q zI?xk7?mDB4d8T8w|6Z&ta~k&hk0xiKB4Pw@$jxl2(=&c%@Ew0I8D}*Ne#CFXXq&!_ zXAxtktrFY?ON$o5OFxkBzOWHLcO?Y(OB@X;CY*6A1Eb>sqqEFIUi;?SkL9JEQtCj-)*AeBEMKl#BtKHPlkK<+S8A$>`W7LeT$zr}+}K8~$04zaQ~- zvUuuHq1WCicq~qv{iXO8eSq^ogO*OZ%wxn)=XqhT_)U!G*owZeI`N9`Klwo0U`2i> zH!SG&mkf*lYwOscRXLqb3}a%5`!D~({;IUYR4D#dPBz%!iT?za08~pBpZDQ^umfVn zoMtI3j!0DHOKNYHK?;*RTFlTs5o=KUyC5v4bZL*pq(>f?tx|sTYJl=bJ@$V?y9P6P zPJn);)BRUxG@@6h@{KwtUy=QvnK8PL<}tfzWwgDix54{A-=H)ubpp(6^dh$N*ogbl zE|JV2#|xNJGalnMLkgYL6EW8%2)13wlgAOmj$wR2HS_fL_>oTs>Knk=%&+_mUJ@PPg{+Z0F^+mp}*qXyv14$`gB!O0dmh$Xfp%>W>JhWI6P6TSo*Tw zPX93~(*k%pzWzh3z5P52r!YYCPn8?;y#ZSDfsQy;UejhqzK*N+RZ(cHz*Vc^GiF+C zG6cBVy>qP#Ja;4$LS6*lpU8vgs+ajG*nXPd32+v%9p6rdbDIyOFp z-rs!DC8U>Tf3&Lc(*ZXDM$7<_Lh^P4ZQgoOSOgz{Hr+jNhw(pKtaksW9(cUJ~40tu=}?$4sE}?dH2YzI66Tf( zJWBCayCzR&q$%UCc(aL3flx@&3 zam&IzF|{}4{@pPH9jqC^ZzGgLXK|_@7v|6hKZ)d8XY`J_iARt$=Hasaayen|nI))P z0n&nIg}q!T>@Zc9(aXfbq9mg-V^NuFA%j82qzOdvU!7^B$?l6l!f$wWcFd+zFs-^1 zF)^VV;-agYia07FNVi%}_h@Y22HvsP_)f~N>Z{YNwhp8A7p@}svr-M#H-fhMO?3DS zNcnTY198Ce&bnfFX6VBgL`_jVP|4<{A)fX^;>81j$_SqcIKK?&!y>~p- z{U0}8R%9J}?_*}~RdMW*l|n|56_J@;;+UDomK}wXsH|j@nUSKBdCV3{sigb$LD%>9 zyC3&o*W=Muobws4@mz0LRY-xT!$E)a{gglJ$n%x6pbVj$Kfw!wgV`Ym6cwaAKNQ!j zHeakC8pTS!1yLaLtGgX3<%u@D7H#hcjj4&~ut~(2%P3_eX+Xe7^x@ReS3LKlg=l|$ z2B7R-fIEyxzm$*F(x3LTKOdNM6~}59$4|kR2PToE=z)x5Sx1WiPF{&YF@e)FSi1Ov z*v(Uik;?RgzS6&W*a{=`;@7*zlTmQxX;rzw?6@|rW{30TRp_Ev<5>hLr%32kg@;!j z$6VuTGz;YL$=wKC87VFgb&N%0cW2K;80oq}Nm#$*GMLQ+_T#%fJUr>Mzcl8vkNwzt z0n|!edR>+TQ1blx=_&B|_knQGT$X2MWqqzw*^Kf@8h1E%De8EwcD;sS@knXLEuy(d zS@v{RKuFL$6>Oa4Wd>ROz~qg0Vs+^6Vim~!bN8M$@Rjxf>{cX5Qml}7D4jB#=U4&K zaUcyvZN@bbeVhDyzbc)#Gh+b?H zcA$RvI8TJ+aL*MkPjVw6A9v=t(J}LBhwRl?A~qJDyT`wPSLI3eBAAF}rPvpvajZRW zzEd<`qA$sn_sA`W~0 z&M^lCYZkz8JZIejeVsiReBONMM>PhPJY%f^)}ypvm|9Z%YOpRt8`*{OU1zOlk81XI5gSF z-`KxSx`gsrM!%mWYOFXu*5I6dW z9_&ws-;$M9jPjNFAqVHx^W}mNq>2l^ylXtM_3!V;R})bYrTr8%1t|bRRi}X7)UDTJ zrX_5wNS!bUK2RA{CLdt28Ur^<8vS<;zQ|J24xe#CL0LA^R)}9hu#Y47+eNY~&sJ4_ z0NowGs;UhyFYmWT6=s)PNb#zhw~^?x<}(F>nEuzaUq8M`&y!S8Gc@^K zt>N{G_xo$GYcr=NukbVQM#k%hz@3%X}wKw$85UEisJdF71_?Y^`lrIa*kj03@! zVcPjpyN-Y2KH&%yu_^Jf_cxHujq1>S$uyM&u^erowk%d()SL@2r9h3YXun&Xe2WU@{3k{2U0p^gEk$3(29qF ztTWW<-+k!GSlQ@ezIhskl8R_$17>2ErX$}?o| ze+MwI;>SvcgnWMXwh?^lQ}!fAl-ESJo76v*`}+X zDqr3zB3*=i5fATXK=wWSm!~&mP9bIV>BvgX=pT~cOQsQVmfUaH`radf7r{AzUJ8TP zBi0#~W(BxY2Lox_BfJKmDQLirPW<_HI_G#u9Vq-SRh0o^swFdS?ZdP;%wnhLM8PKl z^Buo!lV2(|fUuoDQdJk)BbHuo?18^WXxBk5bPf-Fef%8-s zBNX7n;U-NJBd?DThu9;ZPK}%A$|}AuZHaa!T*e6b@b65X&~MGwXzgm`skQfgdRIS? zEp^cm0IE%pBlJR!L&+P6gc+(@*pu;~92BIYl69PSB6VoHq1WJH>XmkXEy^P6n)2Er z{!$Dz*Z-c$M8)-FxsNl)A}ysk_2`*D!Ri+fkIM6INAr4U63soqCs-sf{N zGVjp((4xx%zDy&d>gt>xa?`%^!@;4s+8q?xF{ za{kTJfNFTBrC!LxrNCV7rd6@a;m?lk2CC3cb_(cm0q~C4jN5pDl;hmROP}68VW)&y z5sSVidLvTjJadiZ6SoZfV9sf}=F};U3-NjeqCE655A&Yxf7GiE-)3_2Ja$$SO^>}t zRtGe^;v(7HDS7JRbj^mn=MQdnmuE?bYXKWk)`pH_2&dP_NvWTZ!Q<2wOOrb+0|;4F zD5dG#(LhJ2252aGW1p`7*|I>wc91=y)0PpM;U0)(eDV((u@9yvavnbi4vPz(i(H^2 zE{Ry(-dOlGwJB=bdd+q@aR6XLq-nUC9gyJ<=OL#P@>xj-)x)CyYtEq%z|D zYf5Y_hZKw!g^%vg(Q~JsIS;XhB`s8)t;!9~pF->fP$TlQJDwAM<)x~3=sucHg@yqZ z%o*Z^Vc&CJb7442KqcA_B85S*D|DQk5A5y&y?YMWOg0u^T9!zP#bQO5yDkO#K~|U$ zGK9n*V-|5!@OV2u)p1hRbIOw3xZ|RH*e^e&kni`A2%rz5AobKwYcXvYv)vP@rIf~3 zWXzI9q_p35^1dNy1v*vpZPoQQLS%Ug`Z}b*kHlH<@(E-QaZQ&12K)j01fHBsWU7Va zAv};W(7HK&2Xt$QG^R~prv6MmR}IfiuJv|I0*j1W-=Ww>q+&y&RvEOQu_|i?O2W)z z7DmJ+|DFzl8qp8DVS6#+v)H}u>&TLr9d(w5-vI$RAKe#PIUFW zii4=As39dmR}d==sRFijRuAJ!QQ`*qb5JB0e98YFz7d`3HMy+A6^2G?_R(g@BdG}g zN_5ajPvqS_wlSTOZd+}4d}|#^QE|J{yb&G!+{QjmI52otuQvRM5X3dDovGbS{!HSN zef7(9Rp(~aCC%C69UI)GKcIB>!Ps4naf7)w_Zx>bL1Q(zNymOd%fv&q7)Q;*?=5aT z)B1P!DU8xxQ_=^otR7BRf=pHOeCS3LGFXyOFc*D?c)QAQ?7kS<|DG zl&{d96czR1&yVoU&3YWAqLR;=Cc}<52YodUr5Cj{`C5=-?h)0%-2mBL#lLk{$UCMO(+-Oi(&I$NQl8Sk1o>LY^N$D3Em1Rim;gZN_UXw_=L|}eG*D`R zSoM!xnT3&4XzV-GgW5Hk!?AZ^(9pXbPS38Y*KR?ZLO==D+;dHS6-lm7 z0q)=jb!G04$cHSda)-$9lh=AvcyeEU!>1X$@ydnA)^-F;QvEbz<~d?K2DROBW4>FY z%S0Ab$veMTucsWd5Z`j_=4U+qugRa^THvgUB)S}!a<HjA6f;PpAzKbv*_+GwtcP&}D&_M`T+C2>TkJdz&J@S65$m!4Fq*F2W2hmD23 z>MUXyou?l8`Qy{XdEZdUh`}_a&Z)z{BOh9-Uc~L}tcKtOG6INMuSCz_y4@A@?p9wL zL1iiUV?Q&PupZ*2TBJvPz8Pe+9suLw8S_TMKSC>Xv>dV9`<^U!TV+Zkw}(M&dB zU#jmM7X*rl@=4*p2kcfkDmN?o2(1>daR{%t34{W&-{TQ%3s!WkN5CTFSU*1)p0s)I z3e|MDPFogPb>Fg7-JXpU$&{=jTN;RjaaZ46|M>5ZkH%`945~Ii9lRt%+*p$0h5W^!X^YSZoVO*^I9+6}i`BGV=%PJ^^ zn+7=oGm&oi^ajWQN3|9Qp?v$bJO$;5CK-P?jZgMhDnM;&mc)B{exDh z`ITxuOFKWmo_ltSp&5Qcil%Y6CS%#R7qe$DB?^s{ca+qbUsTR|klh)`k{AGuofwP) znSjH6kPbLdWOUhon-K|=4d_#eyue!@^lemU@pYAT?&NXbCBswOoKg;0fe@teA_yAg z^F{=0hPJJ6wk4H`F=y6e=Tu3#-Lt0GXEDs5LBtC?k$@FUCYNVgZ0VY<(s9VArOhS~ zjNbO1;l0IE512rrEF?%mmEuLxO3!XygLEMLkitwlKm{h9egJ{|f9A|sj%szbK5MDs zNi=PJJ|$-vG&p^T?!xy87LL13!%&?0@S!9JWlZ1If47I@Si(|b`_uI1Zd%%UK%YJ$ z&b6`7fBVyA{$O0)UF~69FF*!z`Jin>0w>Rx=C4T~-_;M> zfHx4{ybwg#=|nK^t`hJ$y~+PWZgtYh6Ep^1kuWhB?Ly2#B3Cdg9U5-X=O6+TWp3$& zrF<3-wC^zOQ4@@0<3(5@q|b9)2lT1j<>%3KV&(1wK-}+#fgDOV(Dl(4b({|e?Jo?0u{VV`D{2muZ z?x9->$ypAaA6td=k`(M&GLgL5K7x4m!oz>UJJP_tmPl&=wsrj=Xxd>^MRI^(mPU!Z z?><)J2l_25sMR8h6hrW!%-Am5wBPEu#e5>PK}3BL`n4duZqneCg0E)lAmA2q(cCuG z?lzbfdSL|{nwq^ZCt?lnzbN!i zsIE?H#d|J#LaI;K#A+6DDlTAzlBNz5(GOYxP&IodSK&%Qd>$ePc0Jd6?U_J8p|Zce z{FQ0ZyT*m`^)07dUCSBcB3v#FW=pvtEg!~!o~a0U)Eb{l$r^og^!P!kWYCgEh!$66 zG(cfc+Uuxi5Dqw2sz--7rktQwu?mJltRy0)6wlzOod9`nl~bRXK`L)lVZw$^$XPD z{@>3xABKyM%`Vp=o#t6~oBC`$9;;ZA#FF6m0d&=j1?(_E-?yy6Oo#oj4WqgX{=QZ* z#CLFhj+65y|KJLU^6i9en;s+62qm%b9Dhfis8&4vs1EW|r${(?D9h9(f41RN)Ya9; zAV#sT@MJ3j75nSLI_&S+0GObT)?rSmL((q?p&azmNc6{O`<`H zUw?;OtN3N$m85Y20|g(V=Z5Y0mI3b#3lNVQoXe(t`RHGDQyG-oJd*vQ>y@m#W%R0% zq#KtU@4xbrDpYNf@G$qCb6wh0JG)omwOH%nx3w34U%dp%p-gc>cm;Rj1a`#FKd{e%cWh18c9-aPC;q|j@1HZY zlY?7NV)LjtPKbP68qR{*Uk{dxsodskfW+)=)kp_GGK=BXmKW)QljHu&4ExeIuw*#F zyCm)LRyOP;vwbFyMzm{2jrV03+^UUSRbZPzlD>k&k&W*8s=L=9g7W`?*~^ym+O~a# zO=ImIB?K?*o}*rQ(E7t?zsukDzIPqLunGRQ0?8NL?&@L0LW`inU2$}a@ZzTZ`Tb)6 zD!L<#^fSsiX}?a)2$B^6M8->AVY&Wyjj_9eX5p(lC|8V!?9`5YOmfLdO{#KEVDDIx73wdlltX7qR6#&z1LX=KL_BOn~ugI}pXAM!)xd6})7M?s0L!|)M zwe8~gGyu&iW8A>w(!@bq0lGyU20f^{6Q9mKcIAPnE*u%1Kraliek#{Zz?~WP1H$Ix-!!ONIIkMmC+l^WO~C$hBS;Cw+ytv+E%{gT0n1Df|DDF;{ftHjQi3zxk!P~qhm zONwH7w2L*j6ssM7`e85r$FmHW6)GjY7q=Ht1%#+efgI6Ggn=n}IxY6s=jP_#Mz^XJ z&`%TMM#5IxOZK8;E(=O4y$kW>8ka_5GpM$n$I6l8+3b1G(R*NBLDm; z+Af{l%{+9h40^y~m$2%%$+fP!F_zU2d{%XLBGu z9S(`F8k86kVgVjUlX05HlNX;Sy$Uu&DWbT}GJAqAU%7-b*^+uRYV)vULir=wZn0vl zG|Bq5S}9@-cYA%m;`(nwQaSUF+BpQw+CR>K<2u*=8)wo>j+MRF{POaP9ln51bzVM& zNW8gg4U)00(_@cjQ`G?BVoTD4$XWFUiqo-0Ui{&0ZN8TyP1w2^Gmrnor@@4fRt{G2 z97$eEBj#A?ahHhM;H4awah`~}KUy^o-H#=mU}W$=smM5<(h&l)QX$~kvTsS-wrMX2 zNo?WOxA^H}{Y$!jb&=6I_NKIRK0|7M7Y8@(ukRnKIqC2X+ZX9GWG1=Rb_R1)&i|rf z{F_D9$Lbg^M-cf1W^qqX-6+_% zQrZN?tIGMXVRrzX5JddFZqrC=bZUI%V()Xzs6PF$-@%iv%}bo*KDW?9;{rLy5|nHh z$>PdJhRsK~x2YOYDYp+WA$-9h-{Hl+G#%fpJoP|Yy$?dRvz5v}-yf_AJ^pf@0hE+d z6w4Hw!^oE8#^{2Ieg`P#Qe2SqTIxQumeZ@O7d^Z2Hdcn2ET->T6^>+G$R5Swrf1*M z4BLUPry^Vp^oFnXN}x;Xr<8X^Np$)|hWW~8K4^ZLerDaWJx`95s72UN&Mh7K@UQ36 z7_4Z%*4>PvAs@ft_V#f_a5hLO&#wYsa89`h0R40MQ%j}}s`V8{ zkV}dDlYr&&!i;`)6i;@b$+6^-t)|eMb`HVIXGxsTg!Xa?rx0($SMeJvaINpMQT{U3 zf4@CP2za2JlDMfQm=kiRjzc=b(CM`|kCr*2RRsd}S()DB?SRXbfllLG9xW%@@NneM z)jZ161q}!L5?`i{P=`A_%W>WCL&}gSc)&N^D#CaF{C1bS;sTIP`hOJ9<({CG)&T81 z^#}!#Kqe>$X^m2wVs}O%lLgj8xj|X=q><={@@yY$@t$=O~asUYA<^wQPCIQOT(bCE?NcSDD)WL7~AH+ z(f>-aJe{!5eaYOr&QCN%VP8PQkeU|58LW$>PG16h(_`0B-dv!dU;g(mt}YzQScs)R zg+_K4J!lh)i3-yr@$Ug4evCwUk0$IrDth0td1RLf(l}Y;i~v7DFwb+(enX>MGW&AC z`Du42@#i+n`rJb5HzJ(@2s;%frG99+UnFCWG zdbiL`@d2QaW}y6atpnETe=9i!-J?I92o?tvU?vP{y~nDXc_o_HBbLOK*y7JN?cXun zAvMV$ceFAyF~G_y$iWsTfE7PWoc3scoYOm0I;5#c&@4^ane!=C7aFAi6y!8maC8BY zT@vDX^X?5VujIXgkOM%zg!lPx8$JeoZEL)|%Wy#kK!ANk>XD_;WdjUL$PtP7{~my@ zfNAdFOb3{^Xiu$!6sQh4&jJe1ZG!$cvmXDjduLt^*J;+cK3IPqw~WE_Bo3E617WZr zzCFt|n#TJd*O(B`aqLU40bhN4^A#k$p3L90f{j?@B`ickDFgWbU>+e5Fz|45uwK*P zRoG3sRIpEAP3o&9c;yCYdwyN-q#i(&Nq`4TG?zi>L@%Jyx8LjuQvUHYeCr-` z#gq%z=ex>HZ#zO&h2ut;^9_GAE*HEMHp%kZ3&_O?0uvC&GU90vslc zbZrpXSVNRmmFrnJhXigP9TJ&;dvJoWGLfF1j(=4 zSgpV7IME{c)oQ*}bIxRS!&&|-OJkOvZp}EMgK$Q@gRqUfnrPT2Yd4M#hOSqv2EDeJ zYqZ*}#U%mI#1Ts7fYiAvJE0r16XLS&CrQu5L7$%oqL`guAF4NzLkF;AbVzU)4%miM z9w7c&EAl?5?9RNzX;%`aoWTk$5)Y&aHw?3{gAG8lH9o?2)Eq=$GYEhD-?NXlnswr3 zET7E>xeLO@BEGIMP*R;*;{@Xl;%r+^Q~~Gq{~ko5C#k%lj((zA%K%;>HeZC~Yedtc z{ebc?2QgQX(y9L*GRAbj+}bWSzIt_>%4Viff$AmkIHFh0FtrrVHGlxf_tHP^R3NSq zD|z}ayzYyLj2bR5GN^5Rfm+_JWX^Sav?qzOu%kN7cg6X@*)G2K8Y+PE;S|*7fM01vZsPFxq`(NGS3`(RWtV@H7@69jrbhr} z1UdE9@G&Bx4MLuXj%0)u6xSI0)|1FKRP`A-^`_Q+LR_!##IxvjIE{uMwu^MYi3R{& ze8B&Z^M5EM?7nxDbf$AS007d`$*Qt_dREH})`f8u02BGPL=jBMUAK{dcNI<* zFil1H0HNY2vMaDbh3V{?Aa-n^)^QLSrcK#F#!zoc{=t)boP^pOo`tfo-`~feYIzWz zE@%eaW9@xJeSg}yq=RyqZNyU@cUjO(viNGsBc9778?)qyQUTP0g-5}{3^VwiUjhnL z6U7IJck=M$;7Bmk5TYa?nUkQ8!Map{(Aj5adqX9OhVPYRJ)7#;K+SjDE#2}o!5TP) zjxdxVhsxD-i}PV;3a;-4ZHbl{=8R2^9p7WWAg3(@$DgYz*S$?xz!i8&JAs+zOsF^1 zHlJ@RroMb%)PyMQ#Yj1pLkr>V>45}L4!FM>`ZQ>*m#lT`v;&8f-mu!00m3nW9MS^2 zyGUrtyT{<)usm+@f{28qA4<}bb@U4|5r4kWWj#!Q;r=ha6(^~gbWar>Ad1llO8r_~ ztS?8D=7g-c!Iln$cKJZ(4!|v1cnq2&H&^n4%Ivvgv2+RI8W91ZT@=l_lV1SuF+YR^ zNsp=?N1S~KHI6_gh|uzt3ihI!oF{4Rb~x_v@^InAL!NkJyXHVsy1snMh@pRDIho{m z5|3ZA>_9hB@^FLq!ej0Q=+3VIZmIgIRC7arf|=txq!V>tVvZw`pzOHtKr@;_JJKtj z976nb$h3HPK5}CrX^8HWDEMzr=?p?K*H7jMGJOauUyrqD1{iTcsKE<+{@QDm6ey7+usoxQ(|l< zU2N36?1`pe3Ey+)gDMXHK<4jl+rW74^x5M#jj0$hDeKzMjE#|SyXj--KtAF3!Ptqu zgD=Y_#et!fxxZ8qL=dmQyG;7(!Gbg%r7p@-NE*cn^2ked+~=eZHR@Z&csLMZmZ8*{ zC!4`Z8KrQmH~RUGl9Rt=M`QnTzy7@Ri~t_#3_u;;+xOn6<#Zn}xA)}O6NTs{9n!(# z8+|NA@~4Y3m-}gKwRO!7|I~hPN5XqTRgCM<75c6t&Bop=bvG`+IZJuL$%qkz(zjhj z#&raoB+5@7L~diI$6%d#oJq4L6%`Y6&m`gqd9iGQb_i&2ZsVHmCrOHi;NY2+52=Dt z%V2OZH6BF>dXOoOefmt|CX^v=t8Dc27SkXD==#QW!p%N_f}pA1i`MS?AAba}(DAKC zVS3*S1zo%AH+8~r`kkuU^yCTiPqqtRCazLs(e@}~XpgUx&b9Zc;A^z%RxG%4QOX)r zbVO9~T8NT0S2vO8=lb{swpecT83{OENoRz|n5^tj%19#XDd-}jl{4jySQ|866l4^} zok2nYhpLSWPlTE4aJRD+%cct=M~0wbQd}C8 zEVC}Qy+8a}stbbE@+ywR=8}8evk!v0>#utul>Fq}sS@dxe@hKR0?6pEo%r)T{o`9E z=M%okv$0;np_d9D|NKHNeEn*gPfxWm+Rr&N=&(?@=oFsd^hWGVXH^=0xwMc zMAev{K^IzF#gHlm8yMZjCfkgg?F!v7!{XUZiX)SxdQ^Xtd7O=~gtO(I{o%VEKxVQ`o zR0dzYopnpmVmHC)uj*EHp6|~+nxHw2&DHES8n=rz?mmUY&Th7`)uf;JSkm0Ipc91e zW!Lln@Qb7U$WDqar4j$5ud2MA`Yobam@%yfUUczgcn!?WGWv>U27|fUpidZ<-9>|I zOa^fbctd+UTeB%ClfyYW!)jV4-CuB!TlP=UYk}<1oew)9*-jUs7nfoc`G}a(`9-ew z@TV7<)Z{y@Yd5mubV+%*73c5Zo3GleaanT<^8)lc)>fNd@7Wuv!=#&ZPjH-0OV@$F zRvVWUEt$vR-Jod*L;e$SI?lQG9eyGRT$!mAJ2b_h-*&MEON&Pt1Y%>zWPVWr#76l_ zW=_n9Sd+#fK30ntdqjhSs9^?{Sq79ku>?oTHw6hj6ZU5sDSQ~|sb--l@h=K?zCU<_ zuxO%&2(jXY3@v$`JWBxmmvrsNIWZwEK3xFrn_M~ENs>AkWw-?@aExHH21gVq*w%b3 z+R})MiTGoQq?n^=csFjMFg7%EWPlpAa8edGnMgPc<3KmJn;y$3SLW`!r-u z_>yBtx-#KGiJRMuGI}x`*_mYGC)M@?8SGqJ?>^X24s4nQ>oYSQK|0`$Y+4%f|D#B>Y;6duA-J$|)u$h`couk1Cy*fUsgF-OcE)#75b$FAtnHK3=Bx{`~bnPhPwI zf|CR1^DZdL14|-=iQpf%aNi=%;6s?3a(Wj(`xlb8y=y;@d5k=Lc;uD3>a;IP0o;%_{ z4^nZ>516K#&mAg&6G8}!DtAfH_$1Pmv>fiw(da{Vs!%;mwW2(|R4eD@Aj{~iP%CYE z555I*)#C5gHS*HUT?0K$BtEYvN#4=Id3A#H4$s+ScJEroAHJifj#KDAf+QoZ4XO+C ztz`U|4lyRTA?Pum81h-l?m*so0jo)rXNtnjE(N}iyQd7 z#`O{B_RmBWnBBs)R)`K+ot~h`d>XI)(gKl>O_E}t-Gi&R_;Ip0$dL zZGVEx&&E8rK0T_L>?SMucN&sL9NQy^bEgt*)=Y0}Ydr#~bngG=Oq)bc-wEcJr*!m9 zJ%il6cY6$ZvKsuaCv*qt@NWL%Q%lr%2JSX6yUbnmc z8}fD2Pxo#=XVUic-Nf&iK|p(=bEKH3M&%Cik*6maX!rSH!8^TiIS)V8X~}El34w*; z?0OHoS4$oX_CTh2zMTEB`V)G}zzoUTq#fP}CjrcUAB^F*-@w5h|5N?RRQe`dZSd9P(PRt%TpE@-U z4uEOR+6--t# z$^){V*Zou5Y&Oq=&me+b8XDcmWFm%VU?nO4um`F*uoV{{#)&x1*UiozYP|YBbwzB4 z@o69W=Ei6v`}?IEqfgPajEn+^rV@|`{lLHmachtP4T8}fK#G!Ko)W|xgDgD{e6zwq z6S`7ihselvNsCB8=OaQVXb4AblDH?Nf+fP6Z_s{fHOH7%ID{&?uju@X>|t7os=`4b z|9f}k3u%no#+f14EGs1i#R5?K(j%m+GL$_xvK6ns$|WXj7Bn&O{%EVPio9sb$yN^u z0A14nE&1u!5NdX~padxtur{GbDo5VHL(z<)0^UEdVyUwkTgi zf`V%j>Gj$k(IYX#dQ^ew_fhO^zJYmpS#wvGALgm-;~(;o;_QDKEEwO=*MQCf!9xi%cCp4lUMfc>m9H{_pAI#!TQw`qdp0Q;#nf8T%+UytmPeagT zZI%Zs?4yz&dzg4*FnVMZ6zQNy?}ate2@-up;^76q6J!8}%F*SAFa!g^Vx_8&zq^mW zlPC*1>kfI`ye#sDj-6c;q))F>Jz@CI0mGm{hG`DFNV;|1IrSNZgf?zwydJZTFY=QIh zAmcin} z5e)$uhmxxh>q5O{2Q48|8h>mo-MZ2bn;vpTu1F~@?cNQcIjlW=X7{5&(Cj3JERHm* zh}j#bwh;7?&qgHw4fj@(gnXUx$}a-FJ|ZVa(2>Qbr_68 zh$iJN4>+Dt%iIPz(svJo{JLz>=~xG=39hY8mj%2{@(iX<{pq7Y(+`uOx(*ez)3jhB-OrYXwOu-UKX|%#oKjSG~aQNuKi`C&LlLx(992n z#SuHD5MfsyyXR{IVXMnGSTvqJQ1PC}Ha>BO*2oW>?gZ)`AcPVN&y%yDd#u$&B8EqB z9hQ2{b%>NcOh)o@LEQrKWtrS#Q6?8Kd-*jdc>fID#Eqgb>zv)hn;B!%&7wJ1@?^47 z@X?D5n?15W`U1n3kMP_>fCWTE7oEb?EY~s%yaECPZ4p5b?rR&j*lP<)MD)%2iqVro zrX^TaI2BhUbXF;1<>#mR8AmYwoBlKcs@6<`?kz;8y>^0g_skw%P+xeaZ2s`Qm_mOc zQm!DhiMp0f$CK498hh2k1t$2Z49vf>s%-6To3A*+qmPNRi(GoL#fjz6xLlY30g!+6?nPN~^sl3J54iKlq4&T@I5&=Po) zUtG>^m}Xpf+xR9~X1-yL?Nw(X``EI}spNXKo#QHYR``>toSes!Ns}LrjEt1yFIkvB zumM%kDlhEri7zGbCt>H$z2*0LN{PXWQTKE71epWn+@oy*`wXdz+JD$Ssna_R7uX)x znbZjkbYy1hAagkSh46!z#A(bP41I#YzM+c6U|?s8x__143a!fhD_^ppka|eySnZiK zC#BC!M>@Uw=rr(($c3Ms!{T_(xXu2dqQA(4?FIERzP3pYo0UjCWA~4ka>* zZD+p}e$-z|FjRVRsD13wrp{RXN9(bBX2z?b*RTJq+9vlA@^H*fN+~748bUQ6=Zgvz zLSJ6Eg56AsB%0NWcurQp%zYcY1KkRe+!%vE3JRcPP$qlpEkj;^!N@ zidBD1`JPLlJ<~h`M^G?0k?E;HaW>D!bo0~eevZK8E80gu@vvkN0UC=)&3B<736@)sAwvz%wGMkf z3WW%>-dD5ZKF51k6hqPJy0p)a-VVAnjTddanW35Fh(Lmsb64;*Rs@t0B=aPT2jgJxO(ki9i_C#4YUVS4m%lrY^np@aEH`|_AVSIoh5MA%OM@-+TI zMU1{R-|k*Y1!)b7#r$*IM=}&yQwM|?+H6J9*m^$yKUdu;O+Sg$yFH3|d!~6(9zB|) z{O|q|wm1H=+vV=+d^{LD=&&Qan!L@jj}MP(9!wezGU zfS1;|p@UqgJYu%Fj7kkid5rQDIm919HhCexU4P79L1Ir1g+hKK0*nTFA&pv3&Ff(! z+B?;RZgp4LvqCmxD}e0O+#k)RBUeRnQ5TiB!+780_hNz3>Pca;nlBRbF9A_QRA$WA z&6t$ZHeNBvA9oW=YtWitD`LE@Ci>p2=CKLmpPxs&afS9sQXFYbj>^|$RhcExH~;j- zmA=igLv+dD!)Mw17T6TUgKw{ST!V%xZv93v$G=!$>qeO$y%%My(YpsSUb?`{P^WLA z2Z6#43L_9X<3N6Zk(a-a+Vy^|%E`9NvmbZ`znxTLtzl5zr;~TR92d7gS-})b5r&*U z;ofsH^)vr|?iMx$P3n&eJGis+ZP$&S;8f*22&e!3f0RlMuj>ivf1m7DagW|Pt2jMS`|*vV{ezFS{1>&!vch{ax+Ka?e5Q=Xzfaxo*$Wexi$qjX3E;Ik0qQ)& zu!I~0;XGU*X7RvAsvg8nILkK~Jo$#gZ0PH+PY9-cU{4i(lH9x9Bvu$w$hMH4#uv@ zv=dc>!fXO*Zh2Wz8OZ~6W51m&`oe1O?C|7-{#D8`{}XY!H}#x&4AHG>?v^f}qd`ty zVsq5<0RS{0#yT+4>Vn*DkNW|RUJup}Cm>XiNFF8swe&`QP%?KBVXl0QCmx7D8iO}{ zadDosk*1M=NK-d(jl8yO$0*0{b7r0{Tkr1VayBn)!zCaq?7CQkbQe7kaU#M=$PX7l zq2nct9$f}jLx1xf+n3%=;EDeXtsaBaXTA=E9Zuz@1$%wQTP9(u%Ps&Z&YPH zoXW9&NBRi~}( z??1o%e}XZ&6rvK%n*1(3f$ysipzojjgpZ9*eguSsNL**`vN=Rb$OV>xx5eHQ(rLQR6R|i{Gp-x^CiILC$`d z)=MreT`5e<$L6WCIJ%|djN*`oj7Ct`UjW7sSpX8N(B+9oT+2opSD@WzfX~*wK}?=I zJ0c>YL{w4HG7D5V8xo}DPS3nGL_7xsS;X(0HT65PR9pM*tHG{JJ8tu}SeQ{Lp(Yh= zmib3WjHjqMoXnsPtQ3+=T?fRYp$9;DzFKx*-l`a?(B2FsHs(gCd;QgsLrDJ^q zIDskOYO@RRCVgYOdSs+zQdwwmkn%Xa*<56ubDexxoV5O3aFUCi!d;#-CBi9J|3XT@ zZ(mK#-bLRdi(Lg)2vs~prakkKdc?R>7&&UaA85(P!_g#a=44@Emw$IBaKZwe1{ni7 zGfy9>%e2)X!3v3z#UAucNsW|m>+AG{RKM?0SH9^$rk8Z?ni3pB(jN)}=gInV~inUyNkXn zv5G3;CYbhBpl1gFpO8~vxjqcA%1a*y5Js^f+gXlEfM>e8Y8Y6_5I>xM9e3H03q_Nl z!54!qCHXC52Za%{`z>t8#Tp`Fs`hVi-as$nX+$i+$Z~nE-ct;gs?A$X5RNggV&W+c zd$QT@F1?ED->~T_0Y(ulZ#PsFI|G)u8{JbqezFC2fkO2dpLRkDcnd0u5Sxhq!`A?> z3B%zl=EG^nKoKE?sL@(pOE+^ycBIsvhA>@@Ggl5DF@)NCyY3G>AAaw)wJUdsA5|jO z4s@T#6QT`lj$~eUdbJ|h6yOJIJzy>Q1tfDCNWE7QI7t5>0Wu(zzppg-pl!AauEo8F z5$!nyS6(7|d{Ex9+WB(MMlD1$kwv!xaa2*EMD{8CV7w4GM|LQA=<;(EL$>orm?wXc zM#kRI>1EUdke zS4WDKV((!OMi{!lYoAdkIGNu{Q8?TIIg(l3Wvi`UZFXT>XRIJ$u~FkoxDMH3_$;vx z3E711dXLRRU3?OC_8P_M+YFFTui^DV?;RpSMC|#w5xmv(KHkhzY@vF_R&lksvVc$XjS&zRM2O`J?i;?FadmIwo`10y@&$%)d!n>&N!mvUxbPK+fSLk; z9`5WElcc;-IC0<-XNIpU6=yl%V-*dR*7XmPe0)hfcvWL2_&&xgmk-Or@djJC_IK$i z5pny_R!(-)b3U1O8w%y#*wicKRk0B`ps&pL&cZE7DW}|s)VyLC^7^hZ*BdZEKYnX) zgo@on3LF2Pw5l5q0YbStQMrk|rV+)8{9O#HHe|LdxqClYFMhH(-4LZ5vY25pJ|F|8 zZwCEsw$2?$PPzN8?Q0}KTDHka=gsfX$i~x%tIeR-50%xoE8lyopnA4^nsS(aO&JM! zy=g6g-t*QyN-TzOG@}vtolg4-qFJKqaXmQMDE}fCWvcH*m)v1mLG{&_x;0UJXvwYj zY1iop@SWfGYSVf-M;4&#RS*4##$>ZcC|0o`i?$jo!4J6 zdG(B9-(xp4Wh&E07kRJqUpgR&AgP$6`QWA2oh)AP`7jvt)ryy2$iyr|*lj9P@Wt;< z?9oojpFu6-p`o!vF@g0bbu=5I=dOwcCEF{W+ymIqR=5<0)m?!|wBq>FmKQhj$}|R? zevDBIW$sXPdI6ZKi$R?sY?G1MmE(NEKku^ts;HP&MG|?O&qfYJIT&@BX$9S6Z&}>& zV7`v}2QwO$&c@NJa9TSW{F2y^*!zpRW?d-5e{iPC4U0Yz(bdFDD$cjMst+bzS_W-j z{_rWe;H=9BM$H^j9qhzXxRlGmi68KFOASjbYY7i_4(=c05ik@BeYI^DmIq+hDjn^E6;{N}iA*Wdl$Shv8JL)iUaAc)L^<64~AZ#WM= zFr*pdH8tCKo8@Ed|NRSW*WrUVnicb?(ksN3+0;c= z|JJqGCDt4aa3=@r7e<$T|9f1G$m1VU@(H~1zis3gN+}gNx~8&0DD&S2$H5iL9#|ea zO4WF9>+;p`MalNh9;f`lz3muoM33y=aN1L5QQrxP|I0bm;ugFe{!7-)4k*y|W* z0n-2i(<8#fA$e#iFk%gW*;@z@=yX6FOpypf5Y!~s+3w>&*vVKPZ^L53c6^jp`I@x# zmITyD6K_8_p^rfV!Tg;zV4S5y6o<(6f(TpoME#@@t1!#;SjUD^!{|Bs2^J7Oz+iCD zBnN;Gn~etonySxGr2}|;%N-_p)ZcKU;I_6aPZqcoNB)LUe~sQ-7bA-cK z%qqg6I>d&0rWu9TL#DztJ%9J?pd;zCrz?=rmh0H_Y?dhufC4MDNhV8 zBP8qk>Z+7%@`jvY-%PjU`HA8%qH~TI(LbPS?}-aJWmc+d{{TKLW=F$v@>GuEr4rz@ zO^~b^5NOH3c`bgskw>UAC0c&j)-nb5pya2w{80uI;$Je{UGDY+uVwzxYF-H7b~A91 zgni@x9AAcbgA62|p<(b%2M*5w@kjlH12@iSGJq|?&(AIXz_jkz7aLW8C$yHM*k0)P1=AD7Gqvd1c>yJ zO__p2$L7nSjm|;eRi*8MLP+oU`vS*LK3v8$Ycn6P4FNvCj{oTX;$?RD%O6;7UQ@A7 zQ(upeq{V8(&>;5_Prhz77w{9tgC(5q+Uu%&oVUQhn{7}MIn36mvvO>KU>P|^)AUdI zQwK6miCA=C3}oUY3aQ7>v@6Vno^Gu_AGVbt5S|SA78;>2bk=zi&L-Y7DUJYM0@TJf`?diIE$G%J`&ychUpJ#cb;qv5*h^K0`rZK%BN{d*uE*a4cE)t3qa z1tw?%+Np<-)zSF)R=Qo`=dM3`ej`eVz@haWsNKHzUD5F&<`CG#z&=Qw`VkEOa4iug;{3)gIYg-o>cLBv6b;8RAtj`g zmyAb2^_;zIEPt#}>_Z?=Ohmhx{Q4!&+uUy;-M9wFc(A-_^1tUieOfe#M3o0+0PI96 z%o`Oq(;fPJ*EPPvW9N=@gqTDYpYH_NFR+$|{ekn)k^egq^cP54Y43SWBnv(GL>l?o z){A#tXn#MBY?yut1||QM6W1Uie>4ZOSM)*fdm_L>6oJ6CjDY<&XD=4>0=4@yd(GG? zK*X&e(Sbx6t_b7l%q*5XEk7gIX6chS)(+JW_FEiG;=87B8%xZLi4|9ze;X zrYHk}zhw%_z10yqbi!P{E(E9zc-BXs!+XbX>7!8e6n05cJ!kHnC`ns*OBZBG`AH>6 z8L=-?9)_)r3n$LDsbJq4^m07zh<_UJ<*dXAJdBIr+G|P%k?JKXDOFR_0UrE!C`tEp zF`f*Y*}#_a0Y{Yq7G2k>GT@slO(N>a_*TFVh%1_2_~$ST@v6Si__@dk0<(Kc9VOar z580F^t8T{jRI!YGW5>#wUMU3?=GwWXS;FD=#;#o&!Tz)-1Vwi zcq;Dr-R%YHCy=+~8b~?KOONaFC#;EF{{%#=>=80M;lKx8V)lnfXy2Ni2G@X7u0Z5B zD(oxH;1wPQC(^I#vc)6(nzVJD*SNSR2(s-zgOJ=bPSYtyfqRS@|>8WKy^T4G|C8^5vVsbJM46WBB!1!-tHM6jy| zri>KMYg23S^Q5eYkeFh-+`mybG)Awhf2P3%He{kUI|Jw)NW)|vAd~$7ov~_hYvk*# z=sHxL1{o3QZTSAHr+xv%ejg*s)4C8R(7qR{g@#DlBLM3B2RV|)?N2rTuRmxI)afkV zegzMu+FkX zB^8(ijynmHU_5DKe=w+oE7F zZEHw%gCxxK*rSq65^pYgQ$T@gubK#rknrfw$DFx*6}V0jMV?7-4`9^IT0iU-WPh`} z2o+x0Te#&zd0ONpL2gYcohj(EK_|$(=L?SMHv*)Q13Shvga7K7*1ge^UIyov+We;U zgk2xU(4HoDI5A|)(42xzU!8`0!s6}^CYhWc^mcBT{Dos4{Eg6lnu^J&Vo9F>lRhS1 zI*w4J437#!Alk&?HhY^TF4+-Wg7@>H#rO1 z>)a>21(UrLmN1|jwHX(kMqg{YhaBcqMMTjVz;aq_mS!2pbM;5~wk9boCHI3*Y{aq| z#0Fw?{XPrVV5$DkIG^5F58Sbzm&$!dHE|W+>KN;fJU%%cAEfI-W^NX#f8ct^=N7P? zG8we&0635Q^6nRgif0D#BI_J0EFLa(KEbi@Vdmv!A9uf1o6*OlB)l`;Vm@$b<`m$H z^cO}I?_Pu|Ju&+}C8EirN#W3Rn`g0VHcCG>?k#&eYiG+2=1I?hsiEAq|HBQ%Cywv< z_RM{8L{REj0<(%@vYqN9I|0uVAD!Cy^3#EXuAo8K!1o+Be!#2O%(tt2WRyDx-0zxI zcPTo5?^57FMqgHJuzr3;1!5WdNvVU4ey1dD%H#YWv7eJ>c?KFm0S80UxshYluB+z(vmEBo&raLfv{dx!6~ zS|RYvqbFAqjurEmZD^Qo3@kFD+!~I^_XxP@spmBqFx#X}%)hv(l`CM);}eO%tmEIQ zx}$gEijJCDz-h9kUrWdd?d8b$9;D0)o%GuN^>t(dcu ze@Eky(sscXkJyHX`4W5P8}9wwqLTh@`dp`TZG;{yXbk4n)wv&Lj_49OI_?Z-c17SG=9jxWA?;3X9DHQ**oWbs94~`&?01|c6xD( z4EvO1hf2mrlE74R@zo39g7GESb|{v!E6K8^vGYo)0IRNRuLbX?c9cy?%DA~nRl8z0 zW1a@+PV3g1wZB46ENG#VrCg1x=`?^!2+1HuFHLT zmaxNYVm9-7!#(9H{~p|Vc%U*v)z2U>3{1J6yp*^W*!Uz9 zV2aa+-*4gxCy&&2XDn4f_&pCtTnva?K+nrOk9nLI{tg%C4X+pOy#|81lqW7u!QHAC z8c*ArU;7X%8AU)#+eo30sE?t8qeH{$SmRk++QoYejK*JvO&UlP!9a;i_|<-&N zd3pJG`9xazx7U}Q%9hgvx-787?szuaND51$h|lAoW5>(qq_1pe?N61h7yZPwzAv6H zuiYUimq%3{3SsD^7I&vB2}wx>saE*>zKSW#@pReV8lcqMlcf<8znA2bC266N%bk%z zlMdfUcOW*lIrATp_P19rkHga9?KQtQo)lohTh4vWV2$~J#WKYCk@j-ID%%FuiRCY_ z{dUpT<#buVeCS3TUc_Zv&f|JQmW_Be%+vSzLRR4Geq3Sb^=4lrr~9elLbX{CH7zZX z;uPfTL4w^vt+Y;+@rl|BGBWbz-J0JB-~q+vlP!&Q&H%#pc2=CQ&>eFr0K9Tioj9#^{uTPc|X^yLI1-VnSD@Jh2=c?~z( zv&!A^0#y(qT7u~7z2sPyu&sB3TZVwE3<{cII)t_M=l;HRSILX*T;&V~!a>*T)>U{o zk~uQP1IBky-J0*yFYk*!{6)rW+C&}%zdtonQL;;7xZR5NOK$M{q1#lnr{J zQlY0XG?YjeUHCT9U~k|fJX@hRr7I!#8nih82jm2bLTZ-1um0%AtuvsEoOC6UIfwz- ziv9-NccBrYVGF^}T@k=83xWKeonL-GK3|QGz+(uJzrMb5S`Ooo>NjVFD_{_P=KikR zQBFZ1G$i345*#cSiN{i4GgYLKFN4Nl2&o?EQ|$_TSAXwu^@p!eDUFj1lQ1nn=H~ul zOW%LRd4P1XM4hVCq@z7JB&4bDD(I*mb0YEx8||z!0RE=_YLF_{ngb69hZ>t!DUQRu zfB$IR(@mhcJp-;%_F3fPFa1Kl@`Z@Ddt_8p?v&4@z`Aqr$$X8ZD0?Ab6Oe239h8uL z!SJzi8Q7a2u|>WeQjOV-h{Ujt4B|^OaBS1&>!hUz+;Mhu0fh(OO0-H7+9`T8wVGTk zOVx5EilVuDv4gRKrOsB{+_oal_^khmeKI$96VA=e)oA%<@1rRUKF>i?yu})0HSHA!$vnb{9`2d)>ZXiX-uUDXMtjbfx7;4eu7?CO0ZOJKKSO0w{6KV%(~W zB4nrfaJh5iOYw}rhB{33JG7td2=-jgZnaepMOr96f1^*C=qSL{pTF~h{T*Bb$QUJw zs}X)lCr1qSnX+b;X$%VeRCE97iRLsp|^El0Lq@|bs0bTKF~T(`J;?oYQTo=er} z$8@(N%MSi0oxVMFp>CUwcG$tVV@!u5NQUr(Y=QfSlZBCZc}Oj}6rtp0AFHxNFa~8A z^lA&*L!C&fjdTGGD7k{ca--%USAj=pmenMd)ntZy{0;MDUgL$KY-*J97-Jw~Yt>;1JrQ_|j<(1S- zpi;mN6vNXn@r-8n!C81q$oxZFTbrA}bLcs7mq)i?^)kX7(ilx8X$CQg=Cca$v9~_T zhkYcUd5mfJQ(Fms_QqqEmtojEuYVYh9Y##c!&ATS`uxv1R53Z?J)90l!y{eLEsEuz zqjzqdqjxY%p|0UKo2{F!8LlLv)AoK@YHVctYGecOdq`_tw;M$LBE_Or!Q0&QzRWP< zf$1m`Oc)~fIqf!o(zs+#p^Yu`>eFh@hEFFN9$$D>$E*Gtj)S zV-tY(zCEZ}*-28eC(tsQm~VCohEKFrT&_Y&1fEEAIZ7d!v2eu9Xs{~)fXpWkd5f>& z^18M2$q%aTjwa*#w(LJ4_IlofA=rrQR;gDfvv#bG&S$gzPWW!w^|1x$hjbx^lZP&( zotIUd?W@1mNudVQjfSLX<~32$b#;C??d6MNCWm!Uz1oM?=A6-xgR-mwW>AA#QH`Z zv`wqdg>6L%N*1-X8oDr}L(iPet`O@Gqg+cTn)cdbDI4ZAqh41lHsH21y>Kj6nED z!)#rUOR@uG1Cewxj`7FP#%`eH`^Lk6P*yUsmY?4O z-g;UDD1*+h3c@?O2K1fc7r96Gm81_l>2yTu@Ujyfi|~<*UE}xV8sz)3P+M5?RF3za zt?fEt^;?}#jKD4K9P(_$5vYT0ndzJ_273&nReG1l#<&qFdy8PRx%aW!1RUP&9AN#t zpC5be7Gz60N9db)Z@+oJA>?;CME5Azy$0-o=_WZExLt4Ed<{717wEnD?&^3-=i3M= zB0qFe-l9ObLu!@a-{KcPH#rl+OvpSx{ED?4?ldKlACb;Pq|6-*L;)xCEB7L(+U`!p zdrXCb#Yn+<3fXqvEaw)8J?V$m2Srts&pp0750bc7to4+N!?5#fcSbF-G%4#rVD7JW~rayTz3 zH)wQNv~^-xXOY-~i-kwPX&^px4jNDWE>(lqI{%GZ%G%dIvH9P)AF|^ zd;N;eCsSh(%u&y4`{QBxBgys2(nr2qeq(-KU={G&zINEQSGXz?3wPQ1w~Z%SAUFSK zAOcvovmOD1AqJMn^a=u>;cgh4NT)iR2P>e#e+%gseLk05QAEyLQ?K@e^lyjTT;VRlj`Cl z&<5in5LCt+I5bJWK3}Q6e5mf=TPIncUw;jB+af?GU>7s7f)ruy_PqdZHh*?DbvqJf zeR^)FexZl2NsZq_-9r+lb#A{fu%0T4Zl66*4?gcb!`LKQGQ%K~AWw4gb;<&+_O)T| zP<%%knkb<|xk;yp$;Vb}-pj6mpDSQI`y%oi4qZ;>c4S|4{qW;J2-4zQtAFr;`!4()3DY zp3l$&l*a-NHTX1N(wb|Ql3?me(_2|FwBSFNYZk{S3kxjLD*bTs@S2%|oIsKLOq z*owmO{4{o%F<%Vs@TPVIe)<=3`!d*uQW?3_0S`4k^v#}&U-KNKZiH+8#LXA=gT^tOL2*HJc+6+>oUT5(^q*W8>fB2r2JGRjt^ z8iC}aob!xt;_ck`phkIrDY7B>ZmH2RY_a+s0>b`@dbf1y$L__V-jH^5--jK1BRu+z z{6;vXK!hH%5XJE7-x znA^3vxsTZ&pF?LP16lo^@14`J9z4CEl*Qe{CwN?6$5f zmIW~EI)ohVAQi7iAgLM;Hg#%}U$UNSA)ldSjgIQR)cZdXQq=GMNk1y)6#CPpjDZnL z=qp|Vt7=+;kxS-=J(oo%1iN{Fv-Gao=yS=RXX2fUFK=2%<7h(sPHsIfF`k&i-Gb-W zzZ{~Ph1w%OJ~dZo-?~{MWa(pm7i%j4sZN76WLS}Il~*cmrZ~E(_&*cS0iMEZ!O~@Oj}oC=b~m%xn{!TiUmiVC!um(1pqfYZ#OecFpfXO1bC1f$8rdLIiK7> zCe1?5_%I#2g{q1XBgtyA*n}Ib_0P+&{^!*74<>Eo|VN z%or_Ldws^=z4z6-lPQe-eYXj}FYUb56(ns5osFW~ZJuqL74{je3R8%YpBEf^1t&?0 zM6p4#F>jhiW%>r>4J<}BRtLXu!as$r)p)eQ8*a^$fd|%eIU8}G0t%cB^O0bGt}>B; zz#{9~eS%!@#w2wlF&wjzZqU1i2R4@RcCA-Pl|I%ydMjX!H^qDjcq=i6)^2X>2M>4cM-(2U5wH^8N<3E zAM4*IjSKIAxz@dytkSxZuh03;J)RUg${dJlhyyEjy35EhT!+1GHi0)A!egRD7T6^C zcEmBTQt`s{C;{P|NU=Y291Qb6&*T4)fOn%JiExeiNJ1Rk11*a7J|~opD50y-Na-8R zk}JDSE(msXmzw9_*{K@X@?{7+?88&5+8-6da4y(`)_}dpWFk%?N)zv#VKAd#BnW^V zelQb&o-@)-5iTcG3V$aRifLFPeWutGqy9M#~~Y7?EVnt{6- zA8M%=Uzd2%{9K0g0DNQ59BK4dtY8$wuIu(6>jWFZ#url2i0{$3US-T}*z{py zSQ-Y@N9h)>a~z&tx|n9u)VG2JkD;5tD`MFotjpHW^?JYgV+*{&MFMgUKqL)CM42lU z)&-4q`1C}b^ncr^yB;803iXj7JkA%s?H)jQ3b3TdSoi3@`wP=^6%d9vwSFOG9vceE z7IusUU+q#;Wd5U6+G#(0_xtAZn;t)Zw4S9h3)s<{@g=YLKBY>yr>RZ`+z_g zjDhfB7T_rN`Nsf~TT#cDlcBTnB8ZKIc$=BR26WWZ>`Ze06uS2=kMKtC=J$^|1DQSC zIrc-FNa3C(L4eVtV+A zK;q=O^%n4Bw=#h-)$;SPqsI9$xrINq_Vsd)SdiRzDJ-rmu^N>p;{1Fx>(4tCs}@tP zZ6}?7aGzpA`&O~x&MnejKOduyUZqVWGPN32dbW=Keb=3E4pRU)k~R-IsRl$xqXu-~)EKCaOPqX-Gn2dzav5C_uXZnR#{35{V0RowrfP$xx%4e<#pKG1)P zdg*n85szQR4%zw=TA}P@7*7zbhBX^;5@hzoUQOT7m%K*Zjxn;|x=GZ>U$}_76T`bjRLq;JTZAo0E|YEe6-cOPM3YM<5R3{smGs z!kJ-!G5HwkP^EMB9>_l+2-Kquw&4=L4$fVfIJWx&>Nj& z2Ngm#QB7F^h)1b{9s3}WS=99uVGh91_B`vo5$lQe=Gm^wIpXsjIFM$RqC+4d!}|wD zgc;|_o=-2HuKF?!2o!>M&TkToeeU=m=01S^;PAMy}d)&epoj{pQCC>i))4Jiw(-D>5PWu zGlgt8Cn`B+esG`lzyRmH=RMf3FEiGk6Fx*-(i=~G?=POiasNPK$B)$!-y zXM%}}8_0jxDHgEMrv6c_cGI=LZbVO^uA2^jk;pB=5%i*N0uf9y6sha-a|5lN-*KnR z(+T~_H{fWE;0Nep^gD@52H7G%ouZFEV<9n3N6X->q;lv0UF67r#AieT4{!XD#4AyV zmM*piY#jmJ6_C|<)u1bcGpomEW?33` zj9`F7@4->P03sO;2~`G41^!c*EzF*%4;XOf%u4aK+6O}BY)Gzf+-6M(OA)Yz&=vMb zF<6aWfo~?zy2;V;Gv-LR)cK9zay-7jf9XHngPEeMFbqNO|>Mhz9 zMiZk1C;T49Di=5Jj}g<@e&EL-(8Zo3>8F)A z1G(B!F_8!0x8YN8a;Sk2HF_UpusFxw^(WOHo&?{LlXMI{i9tRgbNHL@cbwYEwYV;?H}%6{LgRwwyFB`MVq*Asz%^%D_6F|K4-pLHb=p|s zqL=0xRJWzIW!P8Vk*&{;frej?DQlJ1I!p^0iF~;t3jV%z-4@M zX=Fk^=1+eFiw_J zFs%a(W}V_lQebbVU%BdiHR754CbayB{P_I+2Yq=Sr1N_KGY|lStYVyn$O)A){ITW_ zeQdx>^|R+XxNFqhI?$)v5pGVj0c9?z$;kSC!UL8PW@V0ofc*F0G*~i*qygRnfc!X6 z1xk!nA)hCMY~MY7_WL8byvY|X@C2L`vV-SK&a|CAsJClI;A#!wSj3a0OI1nj{tna{?ab>)Wz@J~#k1)|O&wknpu2Z1EE z(@d9~gq%QfZ|Qt@xJTsFbXy_f=o4xQwn22#z2nZ3%5Oo906sbbqWJ6Rth!EDi(Mkq zwgX}+FDFe&Jv*vb89mn*-BA06HL~ew9|=7I2kU#1HA!LJP~x-~!9QoFX-&fPRIG_9Z*)cS`K1i*+qLUuaCGz zdwe&!f)&rFqt!5jgMA*ZO%1Aj=E+E8pSIwRMF-Y&0mDC@J_X+7lMGu--+x9tBV=W<(}ls?Eb@xfUJPw+wR`&O`55RlhU8F^z5w`-R!0+ zUC?15AJ9w(iS27WUkw||=vMSj$rKJ3%#yhu$wkvc%kc3})ed3kA^7IZ1IL|=Ye?J{ z&)C`{1=UtxTd@+Rpe7kLsWri0vH3_e>NZML)3J?E#P7iJb)q1-YJ6sxRo3A04H}6b zcb-F2!9ZKJXJ7*Qwgkm-2s@%g22kWanj9hY84$%66h};*< zLrODO(**kxh)`17{&yfbodHcgA_}2gDkV5oU@(S@L7bmOHl1X69XTQ4Q19RXr=&EJ zhxjqM4aur>xTA#Jtk{L5oM2pV6zjg6SRX`r&{=Gg({sOb{wM_U9)YKMCf|w}tNag{ z<^H!AHT;AhCs)o$&iK1I83eCz!blVl=eDl&XcgGo2cv_o9&$4D_{2~OAh4mY8jXOF z!l$Yy1HBL9pINASf7){P^~|y^|GiM`J+ZI=he?5tqp_D7dLW?3*A#+8J=#MR6UP$T zDdr;LDZGovnF@xwk4QtBV#}Q)LAj*tGWbREUHd0;zr*;jDCVI>(0U?In$vYx>E#7# zv}vl=!C}y(bfqVy4`OD4Ad@+aRXYw;&?T0UB^F_fQC0nK(o&K;UCkG7{O15%@TQ}T zsG$*aQCKJO@DVjd=Y;*i-Eklos;Rfj5w=Cw>&K(2Bg>`$JA6@~2tg>Rvm@&6&fpLw zbV0+u(fV$&nykT^?~&0nCq^2ytGMm~4LI;7f|CY7k7xot5_rQrStd`==F>q}5}jOs zSTRzN!>8X~{;+%;nlOu}|J<1WtxZ5g#vzA#p|T-~MA56+2_J;n%8?ni@WTohiB372 zQ#i1eLJ%{8FT}ieoGmE%#j(UXXK{*i1$Y5kA9b_&4IytbaTEJ^>qh=gdP?F@)u!O34W`PISnsv{ymoW10XyU1=;n_9VRzv<6MGB@szzuZI66&dGXa|o?L{bY} z(=DFwFVI864PiF{u0?2m&xC}BCMs}khWMgkn%LWxOY$deT_mnW_W`mpMp~ysmht z704Jkhyqe@u3#|ac9HyoaO?I*ljJ^Z=upOnHrzgC>@$57W-zrCwV2~FL_LMgr1B~) z&MGPWf9|yenBnd^iyNk>Ia;6lW)Vj`~pwnZya2X_&Eb=K}Hzz=V*{Jz9o*+Ho`T4oP^X8D# z`Y*XKH;hXN@b$}FW#;waj3U(cDjWH?zui{_3!K*T+{mc!c}1XU028~zA!cpw)`TRQ zqYh+e9JyVb^jJ<&dCY6$W_@aE+WwJ>Au1YVbx%d ztw0~GyIF~`Xu5vJVW$61oJ1s{f+&n0`KFCJpgkfb%Sqn1pEiP_9V=5yEl;C+dIrao z`7PECTl6J6G4?yd#n#SGHF@O3qha@}Y6z@&GR*64)&ktoP46#&-jEBT46ULipC zJHvm02S6@b`s0xET-+kLBaJ>M4!6pW(@T{LbHe}P7rlw}fAWOISarv=zBK{< z_m(;Mz}b^E5&YB zTv?1&5OP}GqNa(ur!c?R#@iWo=%|p0(w3Gs*`iV@g*aUgn&~~9iPlzH(NG%NS@Ym)IUD>_J!o_M-BhE(_y^N^(&g#IEZE}1Db1H_US zPUAhC%*0m!O=9#L40H{~5WGHyfqdf_G>ZlkXcT*oIb$b49N(#v4sJRzkX=LUmYYBR zY&@Z8_kHcB3yyn6LgYrhj!BFYOUI#CQ(M_LI%|&AGH^~rqd_4Y~{-opDwpZ80j z)#XiU_HaTUip9#$ zR<3(9^^g|@l|VILP7Q5L3c~N7ASr{6nyEd~+Itm>_}l-IG1b-8BX!M*N9GT5CyVup zw8}pV2JpczH*+`7&8W@&{jCvTsZ0%%AwCvpUu7ctFbtpGkDmz~gO_&L5(|{VLJ9z>TUt zl+LTHKK9KoThqZpV*CxCedUAPd%iK;mf4rQR6t?UW9r?}I zyM0}n$ax#)xZU3JK`xT^W}3r>=B(o>1&hXth6kGivsCK6gr5D9TT;u}35DC?3VCw5 zR^s_?qg)k$EF~uMEM-a|&im;P{^cI1gRx7%LE^&G=zIh+?wwPIz%D$lh+YBu3D^Z97$d%W~sc zfb%|Dym@uDk$YmJ$B@cD>3m`}eZ=)^)8}5IlwJ&0P9#vt6|^zf)W;@9M2tiILwc*R z4E6Uf8S0M;?8BB(o{OE=4@HH3F3=M5aiPX2$r?y_mrrjNzq>P$!tAp9dk~*Wx<3|I z0Ni;mftUZYY=itYVEO`_HSQ|U;&RAV2qlm_>&Nq8)d$&Ld`Ned`%@m3}T^p?XZGaGHg+T~>@M68L$ ze zx_2ju7Dx?gG|_M8$KXpCJFw^8*F+VTzoTHG{vdf=kUfOU)hV%TfpZ%;m?q>=`}J(q z=oGSrZV#1>QXJbK`su}yC@SFr-GLsIig*!H#@$a$#1Y#TY)xQwi(SRK_2Nju z^c>tTb0)v7ImI7z8XJ?LUR`p-$!Stc^D3Pz1}MR(r9m;l6UM0ByA++TUX3zusqId2 z>U_7%5a6+%J7BS3g0hpN5lkoy-8db?)1wIkxaXIhLi{IN)zP@Fs-Y@P+Tm9puiw_< zEoyld^3ar1_-X?YkL?f|A9q}>O<7WG35j$uBe0M| zRPsskq%6-z>8738*~y9rma@vlvOf$((k2U+J8o_DN7GXefU6s8q=h?5D zb)Gb{)yEHAArT<9EQI5(5J%rEvLySzIRQ{-RF=%^n8O}J^tn1XER2{2ioxAtK-de- z+S}U<+~|aSK;HCJ5|Lw?rG|(M5qsuq_AG7GfA%cY8NRHRb7S0fIj41eVN3D2DzetE;Bo# z`l_BDttuinmbtt>>pg7Um0m8KV_2q?VcdhC_HQYEMW0V?B1j;@(TK1bf3sVnG#yuj8(CtI1X}^=t>@Mq>2ZYJj7Y;AfSy4kwtM3zF_9ohivI7p^oWxmdWT@ads3z3%LKEU-_Ch82 zO-c9@;rdGeJm9x2p6FndKTIG$Cz@N~9T}!XxFSDc|8Pt-{-q`K8ZkcIoyLEevE4T$ z!VX7WW;#JeL!0st0IX;t)O)l;HZmzg}i_eic5w_!OvQ5`UH8>i%e*Sc746^mMkK70u6bG*=mK zE{k#GT_pQ-lS()3nZCMgxF?pj1gL%i+8s=of!Z7woFL?Lxaxix$)g7nV=rRKS)9w_?b35Dh_D(%Q0N9z@_b_>L>f z8d*agDMkd-N(7B>HWS~caTQyR6rpjxG%_p(`9@*^r7P<&2V(`i?{m=o(u`KzPv?us z`0wPmXg40)kLhn5AnL6?t!_Sh*{3=Bt3{uQt_lUJCBevn^PD85XE46^Ql}F$i-DBFjAF`J%8vDeaaCxILS?;fE74 z0m@su0zJg&h`c6}nAm$GZHo>e`fFH#8fsq{7x%;IQYzcoiiseSvCI!2+wV6~d@dU8 z7Bq%aSZtH1gMs53?X7Yv#8L_=-JM`Uz9?Pe_CV#sS=^iI&&;Eg?4SQMu%uf&h$>nx zm_*)KkMFN=`>onFl^+QU3JA2_(F)T8FhkUntzHC-_U25#T7tz+55Hw=Ztm@VW|{V# zOSM-RRQh?I5A6l2ullWOpT{#;MPJ$V-OI=2)N*8rnzK}Yo+plG3Twt{wSgzR(;i0< zGS9uugF-b*HE>UA0zU31lmXgiQ{LLNP%^}5qK1=Ls$9K%vw5Xojhl5pE4^vo-6~{5 zQDC7$@+=&RfW#Z~lj7_zy~4yg*F+eN$#-v%fp8k;NGPB2ygOz2rC*Y3?$};h z+yFlM)%Y)NI_H*#B_XE+OZs<1C4R{PpFvHn?XIcT>{|T{)ADdxn!2^=i)3vzrZ_(! z=sKG0M%3eCVPNNk4{?YM+bdrVHAXH$0!Sf2+kXf=Kct6?|Vm?k{GDi%+vw7_Bd8#60m+bgILU?Dnal;T};UMre>`()?Ly^-X}GWO$tdGG(+< zVAex>IkN41IeDdOQv*;B&NA9>;&EOkAgpM|*qF-I#BVA!GiS(Yz#zw^q~_KFg+a{x-CC5g%^2w^iBKf6g~DmHM*$Q-ze3!U)j?WbUTnTrJ8 z<2>z8ax6vW()R2rEk9^hwK~nG; zUfjiGmSB(XNV9WSuh;lG!tUN)qHhe_K(sb%vMV-cQ+u+oN+y`39`Y(Oh6z*1mehKc z-sGxEQK@=~vI?Ji5eY?oTUBVs6@Xbm`Rji0#z|~Pb18wWyUj%{Sf~#H5%6X0(f50Uz^JbbDD?7ja1hT)}GmQ6D z4JQ}Oo@r!$^4i|<+Tl4()y-P4idlC3bG8)3NuS+rCv#Ky=HNN$H}Guy*enkHkvZZ{ zO>Y#k&3D${u9lIT8xTIg+?ist#ZA;#%QlKF@lHvJ%OH8~&#{ zZpyQI`5AI~`c_C@K#5Z@IGlSU(C@sTXX*y1_)lvuJ-2ZFl;R0xUC|Ym?&M$9fLL85ULXH1l)gcV6 zt{|w7wfyf?iALdZlYtCNR1L#Fx88=w>Xv9k1dQztJ1VFJ1r@Rm?{b80|GuQ@zYRPM zU)yxZDJlKF_;tMXw+sH#@J-foWpT!HOgbS1B3YmFz6><-@7yn$tv;!aJj2&n^p@Qv zqb0|ehYg)4OIr30-)(18DQVYM*BC*&m8XXu&yB~# zCe5{w_Lx7i`Ds7S!s>$96;sWC~>Z`7@K+7UMHd`PSF3$=@! zXMSQkO_=0g9B}DZpile zMvy)b&3lK%W*$UYmwW7C&n$t5H(@;aP7l0)t-J?@IWrj3B`6 z&?F6t#m@H*%cWTsms7)F1Vlu6C#P_d51vxK*|(7u&v&4Uk9X@mVd#Ub^(;_qM}wM} zzaznZ8aP=f?;eDWA z6LtRpF7|L>{;Aw%C?}U~2V+#&QXVOts)y3ALk z;brK*r;gt5rPl+S#yonr;z{UX!u2G2gk#}RP}tyU<@n#zi*FYb>Ae_7q?ZgTUXHK% z4b>J#?wobtjZ}yhk0i;9+G2hR&HC4Ex5LdYPxwp*p(J-`vJb`bWpPGOsop5!M|OXd zPPgTEEM64LjX(j;gFVpBl&VM^?#SEhnyQl0bhp)Ha5hvn64h>!uC`O*a@js1|C8pjsAM8C zJJ4C;{uJ{PC|363d|*mq*LU4CiBSDMbtbHAYMS%gVM@i=B96dpel3+&QoU4A!x=SG=-P`LP)12#dxF-4=LrKcgH>KR7_~NE~#~ zW$`{`a3P#a;dpe8vfOK2z9tC{<2Ft4y%Ti_lx&VC^4~I8!?fbmR8bj=e(=rOL~E3s)I&{xFl2t ztH=;0rf6|LiPLGUPp({PR(yDmyAy++IsL?|(JF`cgx_v0_DbULobh%Ql|1JEW3;L%N z8a9K~!}`O+{EgLF978|#2V(v+wInV{%5ty&=G7ARO0aZ{7=v{Z;M(6j6ejbt(rJ1{waRcR zX?G+Tp%)6!f4lJ8If&cQHxgZ*$I-cbx@AKK8I>_^10p(a?DZZoOwLp+=al91cny^- zHRol*g-S9LL4|8b9KTUVm$J*2ax|+!P&$#~!zHd88^v_&=|d^+*WB?%j=0MYf@TXp z(pG8@3as)aHo0*`gX4r`#XACByb3>T_iIE~Vxe^!&gMPaPySYNMZR|R`*?R0P~-Dg z`(-e`$K_!2oq+pm1#%*Na%yW^Rq0~Z2*rxnL5b&9XX4Z7d#*78Ok9v|d&bJ;U(gN=>% z^|Ld)UrxwX@>G;$HkgXhG!05V{@3f|vfx$w_)_gzg^zBv;fj;-BySO(!sJ>QNpJSt zBIi1oLxqsBzMma>R!Pao96B7E#E`HO^HpNM`NJ@1mBgttx_(+HI?Cfa#nN?7!2<0H zG2|O}n^FRO>BD4ea(kvVhP&BQ7UdD{#O?s;C`SvHQid-baPT+eVKe1((?N&got;lX z{itofh?b}2?rzJB^NXg-j6M!0F%%ClD<~)=g+~8WC{)n?>fxWI3uLB&g6jwIS6^QZ z+#AIEkvZ7#N5*lLQttFQ9--xFb*%6te=2UuQus)(-|ve< zI!QF%ExH{l)NH=pkc=pAPm80^vFekrl%-(%2@mEzcIIseWyY$;F+9b(#z~@pL&CzA zbSe#PT5p6125qnRCpf=N+7WWw{X{@~N1P3PlBh%ysLk5<3cl)ohZckG9ROuG0QC!) z`m(yWWG>EMLPMaU4B;NJgcpHD{*;DRP@j@=3_67~%4awxBPBO3f+7F( z;R7+v6$r>T5udtk(MuzcsV0*^(+TZ1y}jTx9*+WQ8M`=WEXZUck(Eg-w)r1dxW8Wt;Bu^)KH}wxyr^Kuhz`OWV_-M~~dtw##HKQxQVk<3LF~ zKgvJHd0XRfwwx`${YgIMwMBi_ZkdH^@0Dg;L{yDYr@}6YJlF!^KVy26;p^bAk4%O5 z{{Ujbh`@)+A7w#iZ2w^_C_d~J&I=I`t%Ta-{{SQs%g1vJs8ts_YtZ(eSr3JfSrW*p zBW6q=M-^vaF{POQ&q_dHmDuzs-JpN7u`WOY2+;M55x?K6ZUUFQl2V+#0pC%CMq)xj zRAH~V+8yNI$xxpq{-neLu^HEJJZfubMq>!cmg!qTk)TwD0LwruDA{}--_9p?T5rxh!rTcv_mN_5}%DgF+#G_ ze2bOpe+|JXhfYJI_vl#f!l*{+`STk?d$~^dN3EoRcR;BzP=|6d-IFl+F9Y5bJmo|A zxtL#;^G}W=x$sXk3x8Gdve$5qn(SP4{rfA%qL36WW$xTKmH;@xSRRXv=>5Hx;P|aoXUi>bSoL>owS=O+&{^hf~@7LT=91OjwOut&>Jc z|7%Iqt1a&Gop)<;oj)cv>-?&~M*M8XhlnR`udVmT3oHTI82E1yTfI-`6kEi41HVfX zEqj{lCl7BME~mNJ6u@;UE>NmI2_=?<1WyMU^tgt+~^$wgJ#4SP*_s;mi)b`qr-^e;2qWqE$ zpW>Z^`=Muke%|%~$J!SRt;R9?o4Zw?Cmy}x-c(`muu0RVqlf!>`C$ubf#SeY;TyKk z&Yew%#bW^o8=J~j=Z%RC11xjee8t;TW$Wc}bQ4hPd-6qIPL5px^W@bTfY*l+9My=W z3Z0_MUxrSAxa^J+wjJxQdv*#4xg92GsAz*0kl{ z_1t(xWqEbgXTF1GgWq;ER?{4hx9M!#=ea?tJs?Fqwzvz?7jn93=P#>y$zR)ATD~w7 zD|piiNXdDwwmN5e7av~S+$6W09Z--8ev5Zis8-J6R*C4~kr{f9PGLF(aoJhU{Po=G zdv7_Cl8jC&I4FrBOx?KhExl&inTXq(94fO+u7%9}GWZDf)1y>f0slP%VRxllo8?5G zKr~pKwxCumsP&Gmg#H&%2B+nS4eX~t8D?^FF;z7p4+af7 zOgcuh&x*>)STqU>sV!%TUM+VC0MH>FlqUUCr*`(^d&mk~d(;T`tXQKVszIme=7wNtI{e$+umgL>FcggBwphf_ba!-0OPy2!YfX&I`@4rTO zS@cy6N2_EmsruuX^?#7gq-AA^3$HkUA`rw@3e$>ofw9?D9OO1z|R^wUmnM;lG(M0w2RwafH?=^JoWfxp_3iWS( z5=Lg5%UT}oDnq4t552lWlQd47)@MP>yfUlE47Kbo1GkNCf&8zphy&xKMXwVSa=|$= zQ3Mn{VHk6W&b97m#^&~?ut!1GU!Vi7?d{}X=p(`m9g$1v^=x*|55doVO4G4 z*CI$aDBayDNOucJH%LiHNOvP4-Kd0g3eq7VT}mSo(nxpryS8zE@BemxO}u#h2Fnan8pwNy!DrP2W4+?;y{t8Mk_ z);}2}6;E`{L?}kXPmd^u9MyQ8*-h2jzPI_=s4;VUbF~_e-LVU2(g<2g58F}Ldi`Nw zt4{!di?Z>S%c4I7jVLm{0oE`aN|db+;!T)vY2{t;6*#-|?bd54rIH?UB-dwR(3KuA)H;Jb%l;`G33KdddORJz~5Uvb$b{W0Z!@(iSAtE=T$qhutjs0%B8(SCR zP47dtOZSjTGyday-hR4{xg?UAI&0;G6g!f(Byr2RG?CT$hj+3+J$ZYN*jkt+=I$gx z{lQ0*+poYWnM3)6T3hJnm4d#_uRs`$3glvEz9^&?qaFyTUHigvu`;HAbm(EH&DS*!OxxbPKHFjiY#IkAWy2b`g~S| zbK;xhCFKwB;C=wRhU2vliTtcI^2v#?S7-e#fXM4Xnu%y+e`YF;%cdgkx3s~s^an@mDQnH!=z`BbzYv?7OcK@%#JBCJHHaCQO?8OYlvU;W0uCMH8)v%*RE?wBh5$MwWIS)Sb3{y;{YZq24_0_`_50CXIR4t-wzta7Kev@X_ArG~eo zh=hok2y)8)Nh9xKk-eGE?@Q0u>^)AR-15Xax|a$%QQDQ)r9~`$IX6_)` z4@tbQC0R+&A}i_MPZPY6G}_2IJ@^O+ge-|G7h#+xT*)jiuLkQ)ZQZX~;`X0F$m<7Y zE)xxWxy_yc{)i(HaP1w*k*Nu_2Ywiw?)%T*g8s)_bjL7E-S@oq8G{_+;*W)i0Mh+P z48-WkRYw#<;3QI;#H2-NFND#!9z`mo+pYADB`8EO;me2T%Q)h)zMV4h)L+li644dn zvb*HN$}?LJ!XJz)&R*FByOYhb34eACOKA+48OO2iN8^>3e=W~HFO&FeA8x%1H2F%A zyc6$5{yF87^g~RUEjTiE3)aDZPG3buW!fvqqXF}UIGzi&C>}s+)|NVZdaSUZs{UuJ zm>L`$oK?B9tYsm($8$cHGb& z$*i(*PVq@Mj(D~O~o$N$$D^LSZ;V$XpUq>7Pl1`uG|Ai z#c1LdPwwYSg1Y7S1``HV)%;tQkjuCkny-gt6#k4Czgd0kwRF>x;{yY;$-d?)gbg(eF^R! z={O>pQu6EGv;ntdOfcM<*FJtKu|hoEQH1I;^lmkRWtFAR%Mgy9P_&tA(N`9NL8)Cz3b~S3{LYycYx*rPU4g1 zqrprnk(ev7WL6z&yu?C>;3_N&Gf+Tq8egYAos^n|JAOmNtSDO48cy^3^kF9h&fv6S)F#$D*1Ic4`$(a-Hj2^R=xENRBYU$Sbax3Y7-tDw1xgHAC!v6S zQ3N(PX7h7GP&M{jUupM^@rE=(PkjA(e7_oez?YQVq8JmX^e}Y|F zyZU^7S^9lmXWje;4sQUJg77cNf*K(oJ2D$Fx*oTwx z54sDia2a&fHLq_{t}lAHY1B2XFb4O=eB(g=Wl$A&bb1=^|3MT|?j$m6=LT=rGnkWI`u?Ainy%BZX7qEGm6+7vbwZsPA>Cme1i$~p2-24+we$lg)ik z%h(4pgCx7N(^z;kqJgy61Ln8!Nr$qnx2na?1O{tBWM;ONtTT zozwhoZx!C)GB84jW?;7Tw`u+%cn|&;vM*QP_?ex{?DYlQc&!2v$w?(ekkN$P=p?e& zRFEU0-bcO9^2qQAOcWYAj2dN(7{@;9o4l6vtNlp{kLs%9ue{EZfJ+;n`>WP-Mh9Gc z+}v;TL&~78D*O1nEpRDE61PybrqQ|K%CMpNgv5I0W#1876Q!^3ZKd0gU4!#MAgcti zq<~M8K937U{=Z!*%)?e8XFO4l=QP~j`QnJH#oN}V_MU<8vS%6h`;Uc{&z9duI{>xL z4h4fzR#%4 z?Hm@A*% zrn7d6Oo-%@<+P!?1A==%#Y>!4R9&nhZGlE*Z%Tp;0$DWjs2LQN6S0skcG z5nJ(v%LM*uWhB2RxLv9$uAJcUlkP)vg_ZLPDo&53Cmz50LRSMa+y(^fTS{?4Q<&4}MpRTx6l&y_ z^A|^Rt#)=RJK;VCjI>bTr^GpV~Isn3#?$I%YP$^>tSY{|@w zyrXI*B+>RIyh_Jr?phffG|1E13sq0wp{{;bNKHpaRHILXNLtzhHv`JWl9o(IohB^0 z{Y!gKWUZ$+rs}e3uc6Wsf)rY?QN5RP za<-PkKJY_CkngnmiP&X3ByjWn}t*{T#J0g%U93$bpliNDmsz zwc;WnL}7d;>J{lMk%Dv!1H)giR#tWw(m+!+8$QT*(F8f8c__f%+nBM^0Y8kvTd{psgnV>+x*8btm@k-zHc5v6MP*mI_I3 zNI~3Dd8Z+OTwdO)KynBcJM%dH@^g^&LIlzLD>gZ~@Jh>D{T-DeHwmAgVrrb6PCHT{$_G4r>8Nhe zi2bKnyg?my)Xbkv_P?uKYllM1Y#~>Zq#|BW&`IOVSb@|*&EpW}d80j5Ab(CySD30Y zdP5$AfYb%Bqj<+vrZ+L=kaI!G=@7%#A!pV`+GoYCh z7cYN$YzGMbIoB(Faz~$6@3xOzO9^%DZ{(SOOK@ybQsh8H}n*ExWt zSIrIEMO*laB&Hky3WI?ka#iNTpRBO)ac#W8-4Jsw8y|d;kuYk^pjxesbZ~OSD@@Vp zpsE^ALr7&V^H(TyKT>&A_WvqncAJxvo(tweG>6+BMzTo825VbDnZabAygo37qNwxX z(Q)1Wkp=fEk4ZdZWm^02`ub$j2qeAbvLFx5115})JtS@rx?#5U{p0qjEZ_{x-lSZT z*%4`d16No3XxvPzUn?$~p?(M|0VQNJ7$b744Xos-V}vgYiJ!b$c%!0#1Vq#({$FI_ z`2>@n-YAzE%UvJu{?vmzq2W~_6bv`{0IK_s%(57RVj%Vy!34lsA7}G5dr-wlv zhfQm3|A`g4ESjpiplgtRn6trsu=C4y#*E?I4pr7mnHr>Qn?&HdmR`=PGn@d&HHH0fFH)8Ngd<^T*_4J=SjAz2Owb+Vw**tbPx$SL?$Luhet)FL~u~1 z#3Re;!*d;2%sdexYoYQ(Utd0aBEnF_Gv#|7SxtC~({oYbPje7tx3hox^gWLv3aPt& z>^-#DeN-o0=(d+WXMn-o_K`zA?=19sQxS`a@a4KRoB;+q9lJPKIZW5F=GCC)!OgVzRlX0ANlvjJ13o-(@(Wwe zEoP!+8Bc1k9^^UTvI)E9!(3YH$0|stp?R!PO9sS>K^3?nk3Jm>o`BA>{^^>R=BL|J zkU6K-k57x{M1TQM3ZxCjoIFrPds|K|cMo(i=~Wl0OdGT06r2ONMTC> zCWBX%Li=A}8}aafAQ&T<#gbcwCDfFf<+Gi%Pp1`gc&6iOzue8`2^aUuJ%f@G0kE0k z%MWhL>ykCp?h5ZVepVvK5QG1@B$jAXaWto0#SLQyuBX2x6mGu%NPicQ<^AR3u*1l% zrlvmrFvpVm_rGuj4wj0sey78T6b)#bq$z(jS#a^`BMJis(xq)wG7y)C>~6!^zX&wq zKbStsFA0Je4IK)tKP6uVwa;j!xham_LsC9)wmK6;tLwWG@AV@P3wvw3?#;1)w!pEy zp-hqTwMRaC&1Wm0_gWHg=#*qZN_qQLWqbr`Jq@#v-D`FjIfMacFcF{;{h$+zT3Fby z)@F(loU>-gtMc}I8RG)D2(AJbL20X=zrXdtvAi^8ckwDLuq&kip=InSL|RgEJ$&N8 z6L{$=02O659%7~d>~9V;ex{eM9Rc8c;jOK$xXjwmfYT`}XiZN9-adWJXLC%Dz&(xM zMV^w1Drz+PFF}cIzp_gziWVI)G)lfZt|11Sg%l-@2Z0OTj`!v}JYtDQQaI{w&={r7b{l3Ylf`=b%@ z^kzwfauWAqUWk-very!Hm!0!(H&9_jYYgOwu9xc7DWSXvoa&}Z#$=g6$^83M=+ue&AY{Ersc5Ka148LjWA- zPIm>tMm_xX-rn%^G&SU+Ss1wWAz@%l-tQy$yIk?clP*jz6k#Yb^R+=1H)-J32Y4|v z=4PJ#>TO`(X6SoiPGZvTAGH4Zfmra{30}Kd%S2}pSa{S}(5h$+^9TngN5)IZK5Zf$ zI)@eH`g!jRpE@kQ$wH4%bdMr@oa?qXH(G8aBIN#o>bdVn;G!uNk#CXVA#K-uqPa1g z6$CZPxbbF!3kXVKh(psd7dt{X>;&f)$*T?WYs=Ed9?0g zQkn@Yrj3j-pAY^CMJuZ0jv3yEa=&S4kcv$k`kZL!faFD`UFf+`sx~exn)s8q!2s_L zml+`;LF(6mfq%jb?&+rUr3laY{daTVPnjjUqW)R31ha*<3hVu)Szz_-2)Q3(;%=YL z*r$LV8A2u}j2C-Mh-6P$jPDO&p)U1Ky`3PT0Y-R?T4l_jWqGXmv-S5>61Yr-|0{JNl*@d5piw9PyA6H|`hDc+4D#aEl z^a7!Z(`uCZr<5OPJ*|AT*v_;K*8YESE&OzPVM3!rWDs@;4LcP}iBpJAHlAlbXXYGi zM{|JmIj;0#-H=e@LLz>X%Q^J6i$-f6-Oz(MQ7F)}?c+6hH z9KaS|{P)@0XS1ee2BN z9YlG4Xw|4&{WH`cSI-P~?&c^G0ZlsmoU#(dqU0a>InLQ0xqs*gJfrSrN|g?kU$>c!X1;VF1P z^yYiD;17cQI2LHX5D)8N?}|`(f&8Hf<1m6fkh^jJY<*<;P~Q;K3V#`)>T6XUNFy-g zmjhlobopPrt7~gA#MfyA#*q9|Q(yNux-dM0vQpmt3!a_%g!admj(yc|?l3XzT>>si;Lcrr2HGC^_|Fi6ILg39aCY6UEdk6Ys!oyr1%8HV!wNi( zM~YgeO}`uo=>C15+lw_$;Ly8sAcpM>oU8x8o4C$0`I^F8R9icBcS+d$ z{ME*MYb(^=8gqO-{jz-Hq6OIWhLkj}7y(mu=uDb^amsmTNWI%=R!rLT3nz9xGQ%*n z`4*&u-{E60@@HPTI$Om0MMG&+JnV3D^X&7BzN;XWG>&5K{Mj$FCJ?6#%-Z{hMD9up zHlFxi*Q<>FxpiapL#9@RMEu22LH@uD9O$b_HwdT%O*hfTfPH3%&QI`CVu{h3cv#+P>H#UZ>k}Ai~LJ z3i~)`3_%4&QWCSyDE$uppO4E_oGoZqRmY}W3XnZ(bhZ+TrSNptk+T~_{2LJK^I(R^ z+7YVl=M7cW)XXVhM>okQaXQL zSKPl%20QnTN$AOU)QN@6rlBT}qg-Ij>Zwn5eFLTw^aH68+e{*ZTCP|S{C`nTHu{0w zphk)2#Lualn;S0f$a_0~-w|Cydywgb`q4+jLs%BQ+QigU{Hf1wQ~_5c8?h3C+xaj3x44PPf8&{6yrU^9YBGth_oSB~8HX zx3lQ$XP%$IfP(*JR)L>1bh|5wnD@qV<#0R}0uZ1E{n085<&E*81n9=m(gyU+|K1O3 zaLH)9X4zX68R2_Qo?_R}2_wLjEf0niKzH)tLJ)>L7|DjPb9n`WIIB>HXYeL2jHUU-d=2gglm&I< zAS%hu!L)Y|4JqG;g{@hrKxjwE5pW8&fZ}SXiJGn3G<{sPT=$FqZjJfKQ>;V`%lVe(+}zw=aOjww)&?iUEkOy# zf8hZ(@@SR>0?Dl-{J+y}3QqT!lj%t8HY!#kS^dSY_bw(}?S_C}#D4UM7WA{lfmYzn zRpOOc=zd2tBezWB%8B+C1&WVZU^;yWjT=Z%7A}(UhiQnKD^QIs&-|+>P)W)!*&L=G43s<(at!cgU%J3fPo0p*Hud#$6Ke0!j2>Sj$ zIFbw1Z{-RhX_?iVhm^8rw@VRh$2Pmeg!c?HT(-W;0aqAb`>LsG*ca#fi=N1+7SCjc z`JwWOMj?6KIM3^NJu6A;GOJ)LNJpDP{V~rRx91yh(XWslezJDJ8AgU?W26assLCYW z>ppEG59Q$CxD@gaNfq{K%((bTz#NeYmb(u?=+)Q~DOFI`=w^qujjBEaW`vYKB-sXW zBN?2I8K|v0c*WLcx@p$L;~`=OkOe8|>!+RW-$Nv}M0bDvv^0N48(T#C04mWz)u39U z$^LW z5p?u634;5fSxr!`t^-}gJ6>h-1csK0$!)3DwiVc4~3-7uOTM)aHVg$JBEx6 zly8sap#}5EEWt@l=R(YE+P>(sW)3GqB#NvLJD9SejaBP5m=iX=L!Z z+%?pe3J(m{9zp zBYa&rnY)*6jWrE4?SPdLd^A{J@!cAHd0FbE3;+z19$g+`{xkFuV-8Q-cA^qW>>Y@}1wG&_SbmjTl40RRV|1m~xA9s?uB%VsN( zuL0sxe!ZcUojjZC|JT-oDLtH?$Cd;FR<)>vJc{>&0;8b(J+_pBgTwHJA}K>S77=7s zr4)m?&Ae~+G?iVf<#v;a;BFZ|WioVS{-@WeeBD*!0H{B5fzi9tYhQ9|;NA^2$4$&= zLKzH&$7|$=$K%)=Vl8Ng*1(H?h{@B?xRL3p^<0h&hH1Fhms=JvM1+o8IaAoceiDs$ z_ElG{vESlB+xVmX+b30b$A8oZDhXh#0rT&_gK;(u;7&PN z$^Uu*_6e|xx>HozY=m)_c@Ch2>3uh8q;^^&9-COu-LS#O2T45AMPNBNTsGBpnmubC zJ${RYiTS}x%Lf=$O#|&7EtqqVd0_S3e`>Zu8Mr^!L1GZF=B`QU{4V`}?)MePYuf|W zC#z4Rc}4WPgA%dgGhb=(x{X~0&Eg{_1D?QuC%Ax;lJfX+6jr6$?k9h`<7k7E1%Mb* z-aUS~Dc3iU#6$l_&(?n969%vj9gz=GP{+^%`+GDx!CBT!t4G5+sCXF$g#P&ZyND5$Gx0nEI zg{}y$5=DSRFCj@WB>LWL?_Rd4; z>-KDe8j++X$fhE(wE~Gr++PL;29~XpqI0NJTdJ@)E+opvfYCRnm~B^wz^cA)Qoa+6 zixLm*X9uN#x+Y8@J>+DzI%xnmO~ypsQ%YsD$`5YLX^Y{RO0?knng@r-CK! zwPCsj=3yXB1-&A|P9Kp#F(k)9M2XCUJxEm1avKj{#iVe54gQk@PwA45??zYRzrgQz z+XMkvG3(ptf3voDTK!q$LD&%}hNdqEv2M}!QcPExN09FIyd8<>SmtlHBtW8d3usz_ z<}ZPQceSF2G$EAKQ8z8z2qSCjH?c4H zHiOm6>CxX5ER}-EE%kA1c@XO^Ci}YW4KQJ|%5nm@A#@qIJb4KKY|p18V>$Qt2EoWN z8la*}g4D}^nxO&3)pt^AYVvva<)}t|O@G!4{20U|_pE|xkhn8}lIr+j2-b&xPeJ}- zFk0X%GX78jC~6y-1Upf>;h>p7O3%ym8!C6jG+VqqgwiG7a+)8zEie>=u~)l{F}wS8 zN@>HS*%?A!{WoXx<;`3=557m(GH4Vho^oat5W)*fEKXB$hITv3)MQ?jOHAnG%;Tt0W zXb+;cB!(at$0drd`Xp{TzW3VKAix(qxkk)Nlf$y~PdzlDadx&TsGw|C`B#U72n0-71(4-*`eLM%4TrfYB$MGJpH2qaQehQ79udh@5^%!Gjm=beHNi z_?HhS{20F@i2ku1nKzL@CR*v@=vX=Uz7oNh?dd0LbIF%~R}6G%N)KRsD8Q3Mr{$G8 z}wsZ%~`LE=Na)&hr$eyES1Cq}Y0~4OB^ITZ=m9*9w zKyc&%%6$AK^7kK$>(v&S^866?)W}e$d+;O8{7@N-$Y2SBUuhw=0D7q0Q*Yh9H`}zs zdx^Lh28<8iD8?4kv?egpv?jgj>QU$uM@bxhQYLTKTEBk~t(9#PlgMxws?N$GZM$q~ zKCf_*t(Nzy&1GrLtBqbR?Bxm`LzJOGs>&^7Jw_oB(o1CDl+|=?DIjyA)E-VifIiIU@U0lXAR$BR~ge&$c!6g3LVbC*c z94|jFuAIz!F@>dC_0_^r;&olFSYAqEeQIgvh}FTNJV(p22f4R+pewyGk1nBxhwf&w zpR#r0g}8OfjjZjmXpwFu;2_(KSnT_o8ELtI$J=%91C(VQrb4qGLveBTkg>>XADcHKMO@)nvKYn<5S@ zc)BQ(=UK#-XSvU4%Fq{MHtRJIxQcUt^YCF_LVDb6q+n)S5Q33;FYNFAddLAd4NfnO z2RgM4)gw=hJh&d)mpN&rq~yIHkhQjUowc!*-|m$CSV<=5Zxn3C9Z;2$q8R?c-2kj? z?(}A&%_lPk>?U1C-1numvLp@8GvT&yuY)ED%qxc^q-5<(K)rbgVM16Li;EzGi35Uq z1LI#`LZjOon!z!z=d7D7qk3)DTi?y;WG;0>{gz;^c+q!1T8Oi-=S7ij_dAQO%~@bL zS)s~o_L{rgBlG-Hf2PK^>O$7p+gwhmtw}D!r&gjKZ7zfSPHl5f-PB6jT~5+WVak2q z&yj&=>qR^5B<<&4rI@4Z4b7)JKWTjSUS_VXoqF!KA-EV~9C}%g7iRey zY0Z}e1_h;Ki-J@pK8BC%A^nJh?);A3+Or%%>hpU*H`L-@V z7@;P^SLYojH{;UpU60GsvK7%D zgufNxdx$8Td}~lQ;D1#s9~TQ}TI8gS=H=l*vvJ_9J7HD+xzXYmOyyLftUOYZ0Uf-o zw<4G}lHU&0IgXmjB?Alpvp*CD@ml8=lM!V>)pdu@3{ODZu3` zKT~VF3VdXe44XaWhBAc8KdI)W9c8P64LDS!&8h2IJ4bi(d3#vA&@S&tHRoFD##1i{ z=WteNW+g)pUH+|!6%O(X1k5LRCWL*vIBWwWRc8Yih3{!NYojZt9fcb!h(+cVU5Sa9 z*RtO;#9^6v4;)cbCp~M=PuS+aElz82{`^R=F-z5CNA;->&0xke%3T$jz~Ta*0L+0@ z(hp5Tpg_q3S-EHM8Z@j38pzYImf=;#4(_qAF?D(@svG{@c!zSJl_9#TDX(tbT$;2`>Y-+DPDc5=6=h01B|xlnKV2s)4k=8d2V!=j+#PxWCx&ux&Lq z8-crHskZL|D2*qYn?uk^is_zw1XN4L;?KF;i=GD3@;@I2xZonA+X(13@c@HNR$k*7 z#zGTgFHd($ocy*w+UTr>jQq`aWp#V|g_6mj$z9OIvqLZgbA1v@9#P1>a(+9vII?51 zq;hsY9AKkhdj_UqF&MQp;j-weW2}S`lc5q?*%uW>N2%NYRbXSfA>!>^^wHg42b>6} z{hZ(hz>ds1!>|rF3Nj7N@!>}PvY!}>EzdM=53WnKE5v0`f&qLU%7vDyguLN(7#}2`WrruNzQ?uvRe zL%-2k4wMju7H&PVgZTTHI3v^Vs}dT)rUu1-L-aMyX)zd;gYCsbGAC}rb*p4Q`1c87 zBipqG-wPatI`RNt(S&BNvwmPE>^z6@!fn36Y3(7X6m9aXq2 zqQs|Ld`+cDpjC{w$n??NZN2jqT7BJYJ6k{UA83nEftlBU%&Q*v5_lqodV^uPoHjq$ zJ$7m)S0FAKRR8+MK>5HUFA$;y43cdD5#Oyhln@(B4(7HdS0ua`_+UIn%})R09Hf_s zZAB@$+J{KX27~5pFO2wng)P2HvyWO`0YKf0{G#_?joSUg@616q^;1nWLkg>fLHuSX%Uao$99Q8B}i3$ z0wGVpZ!b>ixe2NaRSuCar|QMF0q(n*r!s<3*;-aVS?mOE%^Z#_H!A<$@kxeHy)*96L^XF?D8?$Fi;N=xeHuyH$45^7Wdm;Q_^(PtoB_{C z(^czh+D{=7pgIr&j6(Kr?)n8j0YQ<3@o6&fRr>F=CFoDs{(P5}aV-kO4bJxEV4g@{ zu3Ul{C}a;Ojrc4KR8XIlBoCLxGb zGv+)?=1R`Q_7lE2R=a?TpGwg9sPEgQZ}hv$=+khY0)nw^B&%0;RkO~nIf*gC#VM#l_;9B~W992%6mh($VLYnZ;Z5r?5 zczgJ`4t)>F9UL4WrV#Le&#o*JKoPp7l3s2u8|VtJutdkfq4J1Dml`04lTNmxE|0B7 zffpci5ihPZBE|0g?0oAL-wlrit&LYUE!_N{#jK5{S!xo0I@={w3$)0R&hm;`8_d$& z76BOz226`Z(yLUu#{;M-oUbjyW8Bhot#Rzjp?qGmIGLE`VMNT3D-14iy%u8%K9h#L zcX_Q_z+7$n176vRSid}*5s_TYw=sEUSzWrlam-)P6wM6n%)t_uSlG*8bHVd<$_@hj zxNm&U=geTL&OY`Gfzc_orO7N z-eu}A&@54PPM#WBcFQ2;w1?x-2%1DW^KmMO;~c=Hk|+i#ilf-1yy>E)$Epzb_A!ZE zwK{k2QLr3VV$eF~Wyph5J$-D%L-X}Eu~I5uL3Y@##sI0?@i~ss9zFx{!Nm?fM1(c%bm%)lmhnpy%IJ z0zz?|Wd5__iHdCt#RaXxqvio^lC0q?ynl_ru;0 z67HqJ8dJKffx1%$Da_Jkj7L~jM&9~ET8uU0m9j|DG%J~D(VFP3O4R6Gg7^borp1Jc z6x7AUm2u1|XUkw>0k76efxVw8IRCqIWH{2&N!xTVIo`4x2cq6xBY3P0G+?U_*On_B@on*>JQzhsLkxw2;1 zexN)A!9=nVskSaalQa5JkM{yd56l3w;^`p`dJVRGFCoMpm5^I@<~OIYLmnI(xu2}g zkQ%9k8+~yeq`Jg;f^JSTXNV*nJ#=z#Dz9>%T7Ig_hTT1ncxz;JndIfMHWl?1KCfL` z6W}iorz|r209I4;qeI^ae`-oNegzdGv4m*k6JtTA=m6wIOZP}3hV2K)H>p5-IH$ZJ z5`bt?#qNDHYBeOfT*n}OG7J%HTJcM(RCw1NiExd#JILw%iw9tTG|4>3%34W$2He)c z^qwL|G3v6eOfRc1aL@$lK^dT_2UvU7>a*y~R=r2II&=|rWvBJV%>}HrYBMTd zeq@)lozhW1RJ(Et>ZD8NNyc_F9_-zHljk6mmCgqd7IV1NDB$|mld)fjtpEP(F{Uuc zTPI1nT5RA2LRQ6FbO_S3Xhm>-RgE+O?e|)8zSzW zOCaOYlLNa~-sIe(UJzQhv}aE|y(qi{nz4Y|c|n@2r1LAAhNopYdZ)4{Ot3`@HJP7A z{^v9dW=0-1g*u)T(c8h-sojp-v(3Qb5{bMi)F8}?TxRGbF*lL2AK5(UVO$564-IFT zQV8WYeb*=1b&o`*;u00hhWzgLdSLRjCt~T<+Qb1l)t22VNU9Y0N&HRLqvSIHmL9(F(UhV;CEKaVr%dSfLP!k)^d-6-)K z--?>#2B59FuYm|(7Wh;!`rTd>+@ex&h=YkZeRC~`Zbf=#juRP`Y}N0mJ@3x^Ut>;= z1g@^G6*rs9y`7<2uDw0pC18G6RIqBJ?qq6p ziizd%ep}$AG_7G=H(u>lp{b^bmV%=p^>%xI3W0{TBJcpo0Z+H71loi_iU3252e~wa zCFaV+kd9WE%6J@f;kgL2g;ey>+w(Fq%KP4&Xt9Xyr+?mURJc6epn^1lE))!WB>`I2 zfEV%|mx@tu3HvD~h&e{y(@O7#yC83<)A*aie zXPq66JjHp~q*77wQwrj$4&h-oG;7)IW1TVQ>$U=pWhs(f6Y=WEnar?;L|P**^b-9@ z?Mj#r5FfN*j`lMnz%L;#!IR=3lHmj=13%|{oG??9GU5+7M_pP2 z(v)uOGcLDXeW)Cr<8j^yE!bQPCHo%41O%-bTj(+0c3wZx14?M~Fa9u|Z#=$kO;lT{ z32{;Z8RJ8MfWWq|$i8~ON35?hh=ALNl}#tq3-d;?kUq}Ag@(W79d$u)VIH5YK!uR- z^cJiQkNY>rxeDsHuo&pUJ)pc`Bl6U@NUld^!wN}WqifV4!W$H(WMAk$yX3MC!&gyrkjbP8dKfHZHxPr}gxSNk!O zA4-t0BgTNt)@ZHuc`Y2ixL7JFB^A3oC$K9pI;BLQL|)`PIyx3L6I~a5l2wYd8NeQx z+Rq4h`~oV4ldZ|gEeS^_&(E4{N0EO)12{8@VwR6m{m(dwhYXU(;7(R*SGKSIC6uEE-4H-0vi zXYxicCzofx;*bAOg1Q1`=2z!|TC3GMYZK<%7|e)hLiijNURpjkP4`j%5_ z=wpL%2RsX7?6X-w>q31$r=LF1ok4nZw^$?Cg9<>U{yeeC^*?l2kBN z0KE%T9r7r(fF#)>eV%Xpr5mUt2=o3^F1?yITj_J?{yIy+MDCVvKi}f{N!*#tZ@Z$$ z8Se~ISz+h|eZmXI^mJ=0f&GLk*F)b5h@kYKpbFP#2>gO=rimKQbx~}NSn6i8J6>X% zY1ri!498O=KM zkX#CAhv;VkqE#76dv8d*@q(yKnm%lO+g?CkH^ex2&7L+fXRz_NojzP@WJ!r##scup zD?lwhnZ=5TA30@8D-UKL5<`ORt+RXWuv||*y!Uv|V|(oGhrfoAP0tiCx%MRhmjC*7 z_y|`14AAsFd_+KC^yFC*mLL&57MLGVu~ z75s>$Hu7`1z)QZipcSNrJnOlp2BmRnPM-K0tVS+0(89Ylok{Qq*+K|d>o#Aw>7!d( zgHSCp-*XDJDOn^W4}-Jk!(D)5+K2A?#@nZvhJ%8pM^C=rkJm5$s<&`0xe8v$f3gYL(^cs1`l!-kh?M2k zy>9&Wddd9Z0QyFt4ir2YSG(l0*hj{|sQakjFba%*KWwto_5Igcw=(;+G&puvOjWh` zhvWIr%j*X13!g(xfR4~yC%+l}WTms5{!*RsHUV%zmFE}IeR-*kmF_dv6NOKBU&z~0 z|6f%Fe+)HKTa!*|$YRHkZ)^Y=TkMznWi>8E@|eUT)r!LI`9-8T2+dV#-@N+zKs%`d zC}>WeN318ulpU|@#=xKhbzpwMv_J5NkX)|_83JI!bI_AId?bN*favQxN8qXF7(a3( zAv;LH$9Lh_i?ZNz8Ln|qcjNV!aTI)QT`;1a)9l(8`PV2R7!$)WDb}Iwke?uGeLGqu z z5xo{X`pR_(IDI~|RG>fmN4#gHRy_CM-%aZJ16EKQ{WB`usjfI$(5|iC414hRvoLM< z7vo!I8prZC+n6f;ph`<(v)MZI-oIyC0WS-Bt0R>LGj$Qxf8Ua4pbzgN3irqCRrb+> ztwPdprz``ZpHe$E+Z#XYY~6P_L?!A6oOJ^cRb3W*y4Ce|jTzO1;lKZAXVm!*)!b)G zG)34hqPiJ|6mG;u)OG3Fv@UGhvDgk+*s<}?0q*VHWJ=R}7go8vw3=QB_pJEbvqx5T z7#$*H4GsIG<>GNh+Cw*cz@Th^CekkKFqFY5tx;92j!l&J61^Ase|4RAJk@Rd|I3zj z?2}~csBC3r??cwnot2R-G9r6Z_fawqQMQnx>_iz6A(cdl+a_cyJM?>h#C`vMkKgy( ze@XgueXes|@9}y)-wBSsA-p2)$4+t<2kLPAvy*!vZlHh^=R+ETJP16}CpG#xt+?nG(gew^{aNxag6~a1Q&nctDSW%e{o;@ue{grBLZ#LYJv#-HO>N zT1k2TNWi2F_;zbA+>sT?AOBz%V7rRDC~y*2_~_aGm-zQ(Tj#!ydV`M6X2l*aN>dVh8&KZ7fO+MAwE`}4_O)qP% zAlc*u(uV-QM{$Pl#QfbyQJv0ztr5zis!93HvdzV*?PYA8|DwN*Y(o4ot<@i&CMldM zadqWWYc3VsTvK0tZqYQ#N-{2}-A?ZDCT1}c>q)Rk=$1QFas^qEgx#ELlBM_f{C-*e zjF#)`Fc#iqCUh(FLl==>GKau-f;IUo%60#b*7A%}4&M0!q8z=+O&7fnL49u#wR+Okam4WuAel)sq~-)4@ew%TLbT z_-D7PLY|-J2g_^X30pyOO9Ej=#54Na1mpnFL(vrBU1)iz2C6(mk=eZ^Ny9@tN%giW zk+VoqP?IV-(P=n>VfGlGSUqWFfuml{xo;__&N~=a8)aTuzFYg*2~SqAv5;Z#G`gHw+?$*qgK=mM+m-*riU z&Nk?`PzQuuI#75Yy;+uiW;KpB>)=m0NC+(-MUsU+`|*GIzi(3p1_rzTALfg9jE>b# zdiI+GQK=R3b0ogSVq$!Y4RhLuaV6b$%TzHbZASL?-&s{#l4mlf#wKVj)Q>Qo8Tuyp z|8_k@NU0p=eNLP>@ivN*aU$dLuue&MMT_FcKMe|=*sCeaoR#qa($a!aA*93R8eoz1>u>(JZ~SU1S)+2m6RQpNFKdD$RHSHe}rw0_=$?f0xr+1*pNwH>B* zB^&qocMo&F!FH88RPc;dPM$N4`;Ed+3{w!{TK((Eem4%?;~pB z^ucwMdc~{H_2$8%Wi~lvJ+~diEx+|VAR+ltv@z$KUy>YMVL7;D81SsDG$PFi>H$s< zaxvnI!uM%LMOMkn4q(1X*4V6u@mu~xPcYzT{qoct<2Cs%0frAzk!dP;O~&Ne+}d<0 zbstthG9qNoX39KhmXg5wsRdGN!?!>8w*k+4mvJ&+H%(D;1#$T(Y>W^e6}Q9J{`_!m zYZ2OJ+G=XRp||DoCZk4kiPSDd>QCC+#nlDH9$MGsoqT&MSHPR3hx`-6y z5ho?n>5J#}d&|HYHyaQNdO?0f=(={Okt-E3NLpz6>|dzyF>mHQhmu5>mE23(+O&{4 zJ#)hiR#e%5t#ba97mZx<3@8-WY;Q@geesQwk`j=`YDY8hS26=#Kt)BR`JZ#Y_$cPeIgVl>`!ECL0=De!xK ziX9l8G$?!VckbK;Pb7A<=|;=&@UY1#1~mFnofN1|&D!iVpfQ;bnx25POusS8$It;j zpLzy66#6?jLo~x;?|@KfnY3q2b1xK6!>4E!X6fRBdxrUDKXM%FrK$NaBXV4JW~lC^ z9JG6Xe6@{phVE73g~AK%CZnITd%pxO)?tFTR%#w1;_<)`91iC_{g%To6f7bu!y9rE zY*KE5@&PL!IkJ#y9Ta#(5DhyxbEgf=z~E^3sRBxN(o56z4u#L5yU~HC=k?}c9B@a3 zvy#}eWBDVhtoa@(PRlgq(J2h_;rWF8Idez;8r`J4n+`+S^s`E4R}Lr6q;fBkuPSZt z`7@wG--eVdpCV#%z!_9BJ17|##Oq0Fe4R04VPSdrGr)T3P+w#`a}<>ts#fWK_;x1v z2LR{rgt5I7r83R$1G~+2cEJsbZISPHxA3IkQ^Fy*(BYt;cNS<uH5u?d?ZjxU!uJFC6tSJoWgS!t*y;SJ0#e7jx9(sT_8xmcu=g>bOOw z%-WkF;!Z>ahS|!I#Q=JJmiQ@O$7Pg=4n=bNenDh|$fato#>U1iFU`iaRDV^9K4+1O zl2H6Z{LQV5Wv_|JX?u3o=)Kf%jATkLEE_`MbnPQnu~4?)$qy)TdTb(PO7vT29OW*O zpfUpkKmYbSxz?t>{5V;jJGwUZXw|irN{2AhLz(OoOG$#JKT>aUm_a4)E^JJfGGyv= zMuFGDfXpVCCstgb=J8A^LLfrPtk$pW%OQ#zEv>B`;Q5+>p7aY%^xQ~eWI(*y1l3(3 z^R-mV+$YV1jqv{0jjBA1v_}SPk)psA2FtAGX0_aj&m(!`*clhfD(N=3gKU8|oSP)& zIP5r-jK@>%o*TQr5db2X6r4NtfswmjTaQ zkZ7A>j2knq13OO#>WSBlCG9+ip^QpV!Bt;*UP8GJzy)_XCLTE7zy)8e4Wnf2?tfe+}ljHrRQUFOS%exd{r$uIxsf zo`XKFM*Hc;#_zo)S%T(O=L7Fpw{bR!_QEGuPARHH%f>+=%lpy_ee{QVvRihse|vW_ zD?P~$JVzbMOV`Fx+v>R1@!o!IxI?eY*2b9%dL9K9rt3q2CEidxD{4UGMPPS+CJ>=1 z!0Ul}H*vCg>%6KBGh!jYc&IB!%Z~CcWA964F9}@2Gh+vt1nU2u7k?0atc@$kzL6wH zLca!@lhDSvS)svtws|&wIP%HWs26((L*Mw(jH7FByDTZe&D$Oj)cNaey}$Cc-BNe6 z>1Go*8{vPROB+0>BE$Q-_AB``>yB&`M$U0a%<$>iVy`2hL^|I)V!`pHF~#n9;$5IC zyqIO%+F^vBXYI(iJe>d%)!Md%_Q6s?P`t|a10UTYyU+gu6yf5-)(}z zmKBgu#-@_Z-MU5#;f9<}&w{(kO#fVpy5PlA4 z%Vt6=h0&$d}8*FG9*58BS3=$7Z=K`NUa^0*hb=^F3zAD&6EtW?3L_L*C%Q-?5 z=5&}P_A}8NCgm^hoFs3{`IurJ9fTN;Wl;q*r<-Kvc|4)7j z0Zf<7IRjx~G)WRpS>sN#>3(RGsMjHVwLh}CG{t`ZD-Y@?Tc=55g==*I3JOhaSy+Pzv|vkrD_L{(;?e=XoZEn_C$Q{6e;v_sPnyA7ZTyN|zBM zZ_JWxuuAQROeFTix%AL4|CIWl0!x-N3hitRjEt*%BPI3n+HQ+thCw?P=2=2#)rB(# zg>GYp_+j`%JlOc6`|_}(+*_GJ5`>{eAOnf`uqq}H?X(~LnVO6O06 zmPr(#PK6Gni~Z^FMfqTQ14=u24gp*ttj(jeCQgmhn`PAd5s)~Oc=9{gb~Jx}&z)qK zaACV3>9)?pT~*!vRs4_sqO$%eqVJMKRNcKF2ZOgGm8z%lcd5umb7#2^o;A9Ty!8QP z6y5%qFDM}q&8w8N9z6I4lu*mA9K52|FemKYo(od<3jf|GiNag@^Q}f)b2o;}0-_vP zskudD|BZlAQFWiD7EHwVCw@VCLPSu18G7j~f5=MK9#sqpgTvjhj3QrjcZw{RM9L8M z4@BZv@1a-*5#gh1@rIlS3u)xkdS||&uTLm-3)G^l`{g5z)TNsAO4qI=5?qNk$$#7& z+2Dgx51+<|SRFFD`2VJxMST*Ky=1R*J+f=(-_@zstu**$azHwz2<+n*F+aN+2k-H~ zQ=wFyXUT0Nct2rX_27lEQLq}HZ>_cdlTfSR3rf31{u{dnZ$2*-Sf*kYnr0b)2&k~a zW68w}8VBjce{YPa?38cJ61DBuj=ky+tc$0PvG3JP(C^B4X&{0aYKw!hw_XLR~u zMjc5~!0I8ehY>D5H3K3rRHONTce*iwRQwgo{eL<QY9inmBs6ve&BoaL{L}XtU|Mz( z`2eQU5_u`;7Dy?y->a^cMg&>kz@UfV+_gZ>SXnRyfehl`eT%4n5S$qjgKylNYV%o+ zjD#>@xXpN2FW!x=j(hiTIE;6P#Q#ftdb)s1@(#B;(E~dWhcK|QT?rzbRoXtEDQB9= zxs;hy{3Dy;gmBe$?QOp1EW&tT!(HSK0*Q{l=^O&|2jt0<*XI|SO_#mqzKS8P&!`(W z+9BY(-bMxFWu3*Ly44>kmH}7@91Btc39hV)V51iI98=re7>^r#fXg{GstcTkq$Clm z-ExK#NK*Tm)dO@^{Gy@;iiRkc5fdIg4ko5N_e#0sFO7@aO*g2v94>(~>$&3SB*sH9 zq1$tLOdUEe=j&yYzpg{hIlD&QYj`oj%t%H|UJ?(edMJi79{y$X35JvSLk~rq z88f;0X1$nn!3Z)hdMhidogvfZ$e=95UKW@SaJUC8v`WVYfzwlWyrga|b-=q@H=qX7 z?z3#WyM$VYS$<(&+ zSNszZ!MeSim-L6EmmgGX8&T3!ne2*N)4VdlTa`gu-wWJod?$=Y5@1ynCjdf{grvD1 z9=lliSM{n&uZ+f`eTc>m&w4wGU*@Cx$5= zZfCOwTZPOo;WLObb)diCo%cQv9N9D|fa3j1UhD@te6I?&3y1 zPrGDy>~gV0QO(7`Tj|GEDpfk4x`Z3B@d!)?55tOHM<$t2UGb|mV14zPYT?GCP-t}` ztf{(z#0iSO!V;ry)0HfUS6HTAm*|YfZgo0;Nb_eO46d6pmWac=zupno%Fv*ye}pr> z%g6491(lyQxU-7og?q*E%*M4l_*$hAF15PQ-ywC>bf578)^nVGQROhYX+5LOq+<0+g+e<5bxtl!YK3b0ng zXa3$<4DBao;ovBS0`-UyxWTv)YTD3bh=&rrCBp2W4IU-2)F(}R7p^^AX8X6^5w*_4 z`ilJD_&o&03XzO0-{F1g`8U3Yw?BCPY}w##!`cd`UiT1Owu}9Bq6tlXHF0I+xg^kf zw8_J7MA$p$O954{rYcg zMkx7n3TxH#bgr&7NfRSE7@}hVFq^mU%fN*iP5qVR&lPKv%%Tb3BS@)M!Y-gY4o6>e|3Xq(|Li@H&RSIxkq9_3 zOZ{uN3{SSNHU?qQwMT42N6M_jnPF=G^Sf^BM`kE6<94JM>WIl{>p_O%Ocq)`q2fmAlHdbN*N2 zUxTK2mb=n37m1Zujm}Oo-#_b;971SRI*-0exO9wKJvO1tb6b>HX3{Slm8uw8&yiOM zbC%MzK4Cr1!_DL<^ifQPE0$9u;7u7{FL^7q>ZE?Uv>{!o50r~$XBo%XBk!|-j>M{> zSxi*s8>GK0*4}h-OJQd~Y)OZc0$Ke$bCcK`_ssZO?abwEr6uc3dOrbZ>1Dg$LMfn& z>mb$Il0ereP;erMFGW+^GkP&gF*nI_8PZ;lFt#e&Mtl^nb-33-WwUW0oHx*dC^jX=8m($OrSHv6h zVh-tte`ieVG8uo^E?sq2)J5dSBh1ed|FgW#d_%oJt3uCVvL-F z!|OrYikmr1C? zhhlcZ?Qnd`3R}~;TkWXKvr#T1`L8_fBZGrIVm#_b&7Q!BM|;&0RX^SYuka!K+~zm* z(vV6_THVW!;fF1;)Ni7LPEp%wvlF+vg2QR6o^q5zpDut;4aO(s7=V>#Q|D_X$6^DY;5OP}bs&Td0QaU5sR%gi~XMswLkl1)}l&CzEy zV%Z;)C)Caszg$6|p4fWD7=BoXo}es1zqo9!F>X=epqoK{AxDKY_e>23dID7=|2G}y zmvt<==0uJ%UJ(gXCE7g`wcr70t~te;8v_1dhxbi4_oZ)6cJc0w9MrMlr9@5C)ASLx z(dkFLJ8xcAk}=uhxZW%S10#zxF>lb?6I*>U=-14wo$In$W#!1f3EeM7o#!sQh5wYY_aK8yvK{ f|Mzd;!}s1SV#OHXhy}G literal 0 HcmV?d00001 diff --git a/Drone Navigation Detection using Reinforcement Learning techniques/Images/env graph.png b/Drone Navigation Detection using Reinforcement Learning techniques/Images/env graph.png new file mode 100644 index 0000000000000000000000000000000000000000..523361e5a291627fe0e3ec286d807479f4c9c1eb GIT binary patch literal 39951 zcmXtfby!s2_cb*P-AKpKN_P#N5|T^=g!=F=bm%-*=wD>*GkZRp+<;Di-(4WM)+J^Ssx7zLmCYYeH{lI^~r$2QZ(ux zIz(Sh5v>+Mzk@o!a#YY(KtpRt#lN!#ppJ39)J-60Xk>5x{h=>8FhSAK^2(koD;Pp8 z4+?-*6a!R)uLBj49aNPplX;WM6r?JEo>&V#JyOH{w*X44$9O}9ay*vEGZqc<9R{qj zOG~Ba-yTExza2{``mobwd_z{GjvO4i=PVXnZ;s~WFvmrZDB^&kub%d7a)P2s6yskj zHYlM!AnA&=iTn3eDB%Fnzc21+-!lAnrYMCp>JaDHmCNtnd22Je`~S}Cufx3_@4m~s z0#Wgqr_D7vj#LzdJ_|V6NY7x`)X>#UYs<7_ySYU2uMeeWxy>~`PatFeSw7=%@TX<6 z4dN&na?@;BWBO82NoiDcr?1xHTbbu_=gG|Lu;(R;F>Ibo@Xg$xD(2?-mYNkW3fLqh zjNei`Wzo~q+cbT2SndotIUZsf$(Mwby{a)qhb*!k)%#-o-QIRGX?4rFJNu=RTY_fC zk)EEO!EMCH3#~G&WD#|l8n=Jwf4ILbf87=8vpe+^^8LfcaJrJqOf4_5++BTJKO>@0 zhTC>1<-<}(kY=4_N14SpKMHA&a7C-ziv#^;C%vZzpOT_uVsc#f*JG$G(~{}LHD+op z%H8K%$>`{+Vvbtf=g&;OXYm(BM@MIyCH^dudwtmT7#gsaz}ejWBUiMlZ4g36Mz*og z25BE7q!SySC{^>N!4g`UX!qT7k&?v97bjT>w>Gm?gSqJZZXQS}4Ds&`Cgc@1d^s5hgcnnGV$#Q7qB+;qD{Db8-O z-S=dKzsqUVYrI(D84-`d1~GF~wuJY`pZSso_(btUj!Hc~JCp1X*W38`__SP6SB)$_ zi!z_TKPaR;Y-GNMJ>L7bFK~{3dCAS|#Qm!J^Ro8>CHJdg@#Wysk3+SWm>*rX5CzW= z-qiz%RC~Aamv635{+{#^%ME{B4&_FTTrkXmV9rZ9jkX?^_$H&K;`aT`u-91g) z`C$d%0R1O?=3EA!w9>Wn#4H+!KA7YDO(J+Ev>b9-z++tBZLWA%@FsE2`PZjp_{k6M z$r>~9fa3wG-=z_Mo+KdE4O)6LDy z3+se}EX%;>11~g~E$*Lt-Snojs@eVh@xk=ylTq$Mz*fOCzh{P@i%~=C2)g`oCBJH; z){`1Uq$lj~lbQw$tq-I}c3fJ9$b!+-M z+|l^F?cR@pPm>mWMtJpW%_W~&v^TdCtzN{^c~5*)IT>OK+YW?-orENUuj<=r(n(7h zXl@kC@iv_zj|=~K+DxS+(4_29G}siAUaUOr3s=b6Y5<4fGzh7{L; zMz7@4&Cy>6>8cX47s-2(S%mYw^*TI#tt8UZf(@_p4Ib{U-z6vaG)1hhn@`+D24Pk= z4?z+kjk&qHw<FZGx6QSbGpWn0?hd25B%Egb`R6<^bQ4KqS!!pXI0VK~<03R@!<3 z>G5y7J=2#2%5YQSTnCP;n}M(*b^iQ!=X|z7RXIdk@$O!pYDv@}RHmACZ7uW$|B_$~ zO*|d+PUl<|SAV_bh<;sgZf=4kSVE^?mip=%u|+qt5^MqUpr;$^M%MV_-1dd)8MA78 z9Zn1K5=+*OTrZ&2&b1SP9bvCwkB}|I?{i}CQTI!vShu$~Q~oJ`JPlOFJJf&CH>=rg zPXCm!-`!;FX)XFr%2}`Ew?c9R5Q)8H1P8trWt3x|8teIDa(+^IoT~ zF>Udo7PVCS=666p7kAub&x?K1Uw6?*>Lh+z`3GF%lZS;CaHaY8gnB$Z#y=uv(fF<+d^e`I3;K-^m%&TO*vZBz3n&z8_ zS*1Sv5NbhhU7-*Qb+7XIPtkfSd&s0e?S)n8&X(4yv1LPz0xsGqDBP5ieYmn6ax4nj z6cDnw?*QR3@OPYL^bHG~i3FwIl_ENt{zARz zczuY|J$0Q~CYcsq>W^GX;n2=?x&g`5C#UP}+;@8uMC@|C?u4(m&U^fF_vS;a6i!td z3>|Ogc}guo*9o|lf=PY_d-J;c@s$?j2*tW$uG}~ay zpbE0`*zuwU#PxAuF%ZjM6|X1qcaD!ed-=tQb~y;y5olh9W{gtT>R!8z$I8UDv}OYYM4Aopgs(nTzb& zp$7e4F6Q%sr^fZgmS0bUY^^B_Q&5~{?=(R~seLVUE!SIXffK9)%YxOxvY?^Ii1quy zR)JEVRcax-_)-*Pv@;x1T{u#_PeD|*%Yf&>h*@Y_xZ2SsE-4?yyfa;CJA<&D4L0s>ZOx3l1h#0 zEN|c#U{_W2{i}<4PX=Do=JC5;lJLL<6kyIbxcvT7b|%zczR9Xu{$ggmpy$GOZ`v1r zijdBI_0*c;Di<5dcg(kX2@?a0-``&PQv=@UGsc_^LF_3e0|_OvK56IedZrb^ilCkO zg3okwFJMGv3N0?b=?kQMC+|qccn-6C7Z1ZvRhA<5Zg(n*-q1|qBRx=%|0WC?=k;Qk z*fR9mK28r;vmM(Chp1yZjw#gm7XuPhh;J@@$nYZ-1!}5DO2qZ2JP#l6aX)!3&}1uV ztEZP_`Npl;b9u=+9$B`9e=Gj%7m-r*j-R@;QuU5-tVsVUKq;`yuSk89eGx1jtE<~` zX!=VznaC1<>Ps;^8ECw?se9sOZzk%ut}tVzwa)(AbPEM({IT&9e`ppCRjq48@v!Df zS|f5fT$prEK9}g^iD}Dl97(O1uVku>Vu(Vyf<(^cC+PUAr_)wC)sp+UR(@;a6H~Z= zoGMgnXj|l}26O3W#W9-nO64I8E@Bd$_MhF0Rc*?FE=KCy)GmC3BRuE3zkmI~b^*0P zwx(SbwTZUu?V1BSVIEt5$XZoKskK>DIZF2Gb7mUh^eD76DK8XrVP3kH2-OC>^4XNbGg8ft-K5k)n z(z--TgzXczDC{$dK7(GZ;P%`r*5E5Nz_6#F-h9x|Bm%9kqIljN*rh8oj({O$gQqS9 zSG=`UEqY+_&pWK6kC$DKJIIxUNJr8Zy#*$>#E@o>MbpdVEp$kzA%SU ztKW{(lw|;yLJ5B`orF>Nrb(ILMO?GEkpDg1k~q|Uygxx?2ofF?w}pL)u@wjD2`G(y zdvK(+*2$9gWG2Cs`y%x=LS*22m2v$#Vg{#cKnN^6gK!gbxnV=9glWIbg@5YP=u+J6NYgv|S>i*P3u~D=)9QxvU4EwB)ap4d52L>P}W6)yLzs|cxE!#hjJ+i=bvl(s={yWEcg#u;kxQ{tPmXy z{$SHf+$BO*rQZjub3N-RjuXQ?=X3oRM`FypD-6`a4oMz~f3{GY!s4B)9w3v`0qIO` zMiy3A4{}vhew3WK<~Zpi_S<__1}_)K?fsx?T_qZjkMGiR zwBP+L+O+e-C)njI_82Za4LY`RAhi4PhG^}7M09B>6vE4Ae&mF#DzhJk{uk} z2MvsuR7kc^+XKuIf`*Ej@MUTYwK1AY#vyS$@i>sFh|Dn^^&w_x-1@4pn&i65I$Xj$Rn1MB@D58DCMh z&T6rOuJ+)#Xtn^^h&iI}!;fwD3muFP%K%|hDv!<&J2ii@1IKSpD(jxcIRaYHr#|c1 zDruvMN<(c|MCHvSrc0jKQ^3Cb)C(FCdvcW2J#Q6|RWD-*UZc=Gl^?|`7IUN6wSnK6 zj)+>)TBK6r_q#GfDH`yO#AtRZy4s#d7_ml8@GWnTuDKnl7jJIixzHY2n#|Y*yg}XF z9czW&>kuY8WsHs(7!GfaO{E1*j<&=W(yJ>?6?=p8`6rncQuNAJqz0BR>LaZ2Cflx;4>1A~)YM1R9jQLgYDth;6 z!fixQEG;*jSAqi!IC`=w3;Kj+$ub3Q@HFz0MQlab_SM(45EOq(y^S-KbAiD)k|r>P zg^swFA~w3kR7;AHuQkT-Q)&OF1<2Ah(C92YgA#JY*Gj!#;`c!oOqZ|wv4 zy?KpOT)UU2Ma_1Skj6xPLcv2962yDr>W-yphN(nwZI~t46U~{JpJ@_%E6N|Y>nj2< zmIX1DiV9h~?iEf6#zZpK(#85?7820YEr~AZ7&DP?`dX}m z!X0VGo=%dE$<_|hm}7#ek7!Mhq;OV&yC=>OsL2dh!wR5<(@7Au4oJsb@$7Zp;2jbd zD(o+7n1RiVV_oF~d%msX!RwAf&9(q5-u>5o^O2WWm-AANaGj%JDNG~_*kf4wh{*IB z{g8EuI3E*k4HHL|I~*^i6*|1rio!sR#V^CUR{ULejbfy$=IO^P^!gZE zsgP(hTEMrak^pp?aAD|bz05+>6XRG6(k**R0qAkMGf1fi$~HXi^};Kv^f{V`y}7H) z%AKx!A5T3$mg*XPnlm$Iqr55Wx7kB6 z6!+KlGFj=gp%LO+U`6wn!6I%~^4}f@?J)L?yP@~Iy-j@s!FEouH6Ek6aHkX)<_ST^ zAR5&i9@k^;^-Z}~3Rc`-VFWEE{i%CW<~3sm$oslNqpFbF+$!X1o6pob z)K-pFD6_{X#e~0NS&}ng8mqIQSqA7Q>_;oajJF2MZJ#7=)`~AdmGS~X)I1?gW@&FyCHGGXez$srtjFAVeNS|}(2#iLOl zQcf};xhAPDsT9%IzGHOtbwsWBcNQ&0-jNKcG>PR}q>q*OM7zpEC=TQHZgIv5;)BO9 z#xR}%W~mC@XCSJU>u{OyV%5JGW8}H5`AEt^(q1Y0`8F-)hyh2i}#mfA9UQf_MKv6wBoYq#J zsbD38AO(n8>N@t}?+02)P`P;)kax@KQiCw-`zbR^j+9lyF_@O{?V{tai zXX{?t`e5Jo3T2;)+62W@e#_ z6>-@WAV~?_Z?_-bQlpTP*NayoY|9bbO7a5f5fQ|DbocQ{0hACFDd?k{#wv zW%m=hsh2l!euGg97=xdNU>K*^S6Yx4Qh~X-n)SNBEpg&6ctU~ouj8q=f|9%5k-NjX zBxDciYRQqmTqZ=*}9I%K1>bG58xkI7>(6;#&q!ofQZ}>^z3;>WSuI4&Al4-T;15A!3U7&j9P6m$TJBvJT!{QX)#3C zz;f-a4@aA#NZWzIpVU*?H1E>Zl-slgnaC2=1g+_u_ZJ6&DNikQeB?#C6VXZtOQNi_ zp>^ZIkz2SqG7ASsyH?9wSotbSJ}?MTVPS>v(co(SDnLFie50Rqi4*!{{4V;yTN^P( zRrqeh@xuQ>*l1YW*N2DFMYjTn!20)ipzY}T0W2k z#;DNu6rG>BwMRI5d98hgp+_)nsTRMJML}UbLiuz{oQbXlO@AjMzfPSqnqYg<47^zJu^1r2A`%Ln za!70FhO8m(q;!$9j5)04%}=1XD<=aZu>=_WNu10|3O&)w9}gIY!hyhLUZvHyru0G+ zd$_fuE+eW);Mt#UNmg6Gp(+Tku6(h>TP@O20K&sjWU*w9Acji$r3;{?pm;hy34bdN zW8j*xXXQMyYQBvIL9VN*{3$VnlM^iia||n*L&)MxIg$zpC}#I#M(BQ4z*=Qgh_|RB z!IbFqWqideQ=>rpagO|UusiZds?Cx=vm}9{kb%OKgcq@u?C|=mx+xSGk>p6KErr?x zn1ZtF8OI1FagJG!I!m0Xk>p?|38L<5Fm->)%-b4pRc_73gc?7cL?m#Nh59x2#^8Gk%S-`Y`;g?%JZyr zD2_23-g#N511a_qECb|6LEtC}esF5MV`CvJ^wi5z{Z})z)$4wEEPZo$1O!e~Tb->{ zqL)qK@$6;>sta`9?``Kqz4ZUr`6<|0;X_uGvbh zCq`?@Ojk+efDS<7GLK48BqiP5%K~-|M;fqonMQnbaRhn}qszO`$Lox%bG;$G#c!NW zj#`r$0V0zaW88&+1!4M;HUVD%4Hw??1*&)t@agdWG5BM>@;kahKt9zZ$tCXPu_?1~ zY<;(wdKfqk>Y;lj8MF|LJ|?{+UB<2~++I=|@LfYQUKnh){g5OQhUx&-wj-f+q}0TH zk}OxW+Cu95A{Gi1#U#Dbss6y3NC%>QrbrwB5xD&o0OJ-l0^eDtNk$}IYoAXUeyHmK zP?6~x2hV5gOgWeJwSslRsltO*#|VrM%t=E1JwgNPga*f9!+=^A6CnA_XxQ}#zRGC( z8jTX&Eh;GSe3l4dC6ioWE&K()Z>7Uf8Qtm2H!w&M%Nr#?cnBY+kkDfXR4YSHmy z2yvakudmiq>u`LuaGQVG65vw!II#|5reFYwB`y*+IpJJOQ@iQctlcCmK=*@T=JfBS zt>FYz{3Izcv>qRn!#oRg{iD1{C1 zG!xXJ$E_q)dJ&t=UNs%mA+Jp+^E@qm^+wN2!I-&J`BMzisZI@&AdT^dasg7tj@Po< z7q{1`=ft`qSRRRwfsOusctuZl4P2v0KPHX<#E99@=wn`ziiX?~*tG7VT#-Jpy=8V|KOdN-_7FXsq~jig#% zl)qBkmj@fq00bjKK3?O`vjbD&?$;Q)u}ZE|PGiGWLAd;wC$#3ACk3dA*y}p-Ey zU~y4q5Xr^bcVMwSS?@F?2 zVayibF9w$MiBY(%5=rSb#i*;gCfGniZXdy2@3Cmr$|*d1Z|WYQ8w^h^NJX!O9+6&h@k5iUD#S!k^JdV+403c5=< z>)}%&dmLLFA~5SLe)x_KZdB@!PgG>O71u+K2it8|G^5WULHyJ{E>BdfI_-WqqN|Q-gCGzq;#}hf8kYNg?PB@BS^$lz z&lY-=fLAAPsn zCYMXTL3Tk)sPoD`||;hh@H3Y)n{n4slLbt;;pl8WIaN|Z04*_h+D=y)wP`P zBF6D|J3nG;Eg0@v@YR>VmCjWKcQp{qx67(cOJ%!C8ILrC zh2PuCTwv-4wOTws3>Y}BX~upfwMstXt+i(|AT}+u&)Q~dHgDC1Hm}H2+KARL_st(! z_5-W?+IS{m*{Voj&-B>Y`e0szxOyl+!c*xEX!f7JWsQ*Jq;?Hc+w*ALhJaOM#F`q@ zGxiB{1n}RtX#{bUZb=;WBCa2w6O0;72gi2Zog|8>m{_ta>PP<5$*9L-9_u)LQrxG> z&9B}J#QJPj`l;!A0u29umjk6Jiy>H2B+On+%v>}P!#IkUegrl0Se8Q6x#+7PrC&^e zcOWmu!lw7itTwsK;0X{K`eFQmBC`a>rm%s4`2QYph=4)LFsK zwbX*q5AqWDN)tE$ip66T!_hu7R~ds%4W|9z8V9QX)Ak6G2p_Fk^`E55-l$iMb=MQ) zoDHUNZhy$6Kf(a1;zjAKT~e>1D}7^rfj6?k`-8_^d@SX+N}78uO6N0)Uo{++#Uj&v z%+o|(l^5c}NNcq6TY)MxX&@Tc^*G18PAthW#`|MEQBYGkH=!^}}(86}sdpg^g##j)Vg zQ*1$%VsTa0p*JiDOt>ktC0^7-FL|^cOmO&Vw|o(GC9S=fTY^!p)#gR9}xm z>ffUhQUv^KG!rm_B`S|v@kNO5r9va&M`yx5mSjNwGs^cl)S|T7T8II0IFHjOp91f0 z$~$b<>eAxLzbD$Id zSs^9gnBePR2cO&^m|viTPmc+S3F$FSs?Rf{l}^@E<^C|53fgYGtB@W!wFa?7U6S{YSH6XJN+;>~v~5@S*FPfV7Fi$|y-d`j^%jd&tP0YK_y zUS}zD{)1U}jy8w3IBxp=Q-dj2tZ{pWV{PhEpu%??W6LIoWCU3%l&v4v{>lFoY0`pc z&vn)7vFH>BsPOR!#V*#{W^+(I>XbyxhNw?Z`?(3J1>~`b=(+Z0>asMm_;&o9Hc>m) zjKOm>XeYCufXg{b`C>Pm2KsZ0cN<~Vt3I6rKxyC9!&d};Ilzi@vmLd|Q;7!KTFz5(xdw)fj)_9yk($~voIsR?iMbE3l z#;-H5Gx6-lOZ|_*^vdFlg3{hue?Oewf>Y*j-~1bPD1P({<8k)yl!1zk(Uut`H;wny zasB;qKdxu1efVUv`kzO)-O1JF&F(Cy$c{P2GcaMkUr%;jU(*F>i-$ubVwDy)(vkpEpqrDFw zSLx)^)o8@JsZ6YNK5a$e}~LvfY^QEEamyLbi>iF7Dr(7xa@y=!n;f>WglvQvbuUU7F~-AAw~IhB|y_l zJ>EKgMgdD_5cieX3*?u>bxWE+n}7+r#DCXdpizji33S&WyuQv$lvpX1v2k001r8!# zG^|tpr&)|&q^4Do0m~W>8v5j5{wHVbe--&AKcB5(t(;wKh9-Bep=TprVq)V5b2qwGqDD}h=xb;Aeq+Q)9`6Yc8|AZCnHLO99}0`k zGJXDXJ2g$8bUkM9=837_o4&ML$Y$C|uI2ykp1h}?dT3#{nESgiWM1xBl82|Mk<0R% zsOHY5gd_%(0LO!X-7yk*fOKV-BVckdUtZU*P*rJbQemZ$@qy7x`phn9Y}{Q#8l6^| zPR_^~$}LAVCSg6JC;D5Qs6a`~;K(L`jwi)H^Qyq2OEkyyUk8XjMa7LPBp0Jp8)WqK z)#AkDF~2|S^?hcb|3I$F%Pd)Zgz9PfN(GDvycGgP+hHf2m^+M;1T=jc9wcO;;%C;; z5~((Wt8bJND?fQiNDm%mnj^q?Nsjp{N<^-+L{X(}=M$~Z90~Q_OwFr0JR4{%!9G9b zvzM8&_t@W23%C}5)UgeHPZ=u}^bk`kWHW{39P~P9(PR3j^YcicWntJ?&kt=72lYKM zcl#;W>vENmSFt!Z3J(vi4V$aO^N*&@x;GaOT3?pUHC2=DOm2wj`B2)2bYvHuUD*(_ zo!@4mg5;<1;WylY6eAd~-%7i(mr#H5o>oORh|&go9u`SuvjFp+thJDCL$#@Yn|}4+ zjlw1r`pO)gmV|F=lR{5QBO<>s4l-Pde3Jv{A05C~u-V2?5?~YawIJ^8?PU*(h$LfV zEZhiC2(`H1r1hCuywtdlO)gU$&}eiW>S}bns z_88q@q4m>#u0FITUozy+g4qg&^%wL(K1Ny{ZOjkJI%|@Q0e;12dQmup12`WZBdC6u zqDnS3mL2WjyQ997DFdBKnTM-&eH5%g@D*{s!>G?CP}0iu^SvlG(8C|VC_w3`+Ju~K zzP0@IT?+SbV!GN;PKT|MQs2gAu5X!F`o|1WSFwcn`1gHr#LwN#t3e(v>JN7SHqGhk z_DOAB^R_aL-!7^E@glK;4^ItVG;R%p91(?j#P@nihVBdXucm7( z%F%y$z6pCC2wzgc4!dn}TWVIAVSN$Lma(0DxFFG~ZWK4CQ9^nqWt9X9UWfQ-b>7=LT)a{q6BUh2 zMMy^5_!D|svGBqdD2dhkCP#!50V03ym;LFdWc^-=h&LwjNIrOt# zI*0-pZfXBJZthI}4{L*-6C)!Q<99LZ2lHRm2r1`>)meLzqBZsrj5Q$QH@z=X z@NoxE#>aP5nzuFbyzVp~Ol9I1c0^2}W3wik7o(aa|J3dfO_c1PxY2>U(%7WThcXW2 zRC~~x@YYAY#f7L+mvmHaQ;|-d_;VESVq{Gv?8nELupf8Jjw55_gTv89s&p*ehKFvy zRiC}Ab@2!h6<;(r_(8|n=JMMoN5Z=LPS!s&iAGWpU{Gq7OC4EJ)@Hw3-1bGG&ukz) zjadnJo`sU%4Ht#|d?zVf@f{{8=MsK$e)7g%grG7qY;rJu2=(q)<^r}$;>x_&2ZaL9 zoKTu<|2JRaQSf23J5^aaYJi$zonj7)`r=`H3+0nda$J0WbG>ha%cSW z8d>SL^Kxv2bfTG0yB>I$LdKOIZd}vB^Vjyye)D0YFH9QkK7a#Gb_EN1ZuaLOPF#wH zhVK_9VU_S}gjz1i{Y@|jvg?;cCzGr(qEMQ3uF_rQ9M`b$y1~8 z^58?ablKN$-EKL#DiZ^yt66;aBsT`KRFZsN*E00?!&y=PIijm2@9IiIGVCIWUdm53#hj1D+s7V2U#h0_ zza2p)N)k_diGT%&Ver$_V?OTPdtT-(x+AUzEr?1mbBI)AJn6}dzYuCvnH0o}K)k1ktoS2P7!6e4&uVReK zE?w{Dp%_bzY2s9MOauxYvvHq4S)c1U#XR1s5_A}n{zswvF?E-U&oN7Q+aR2H%si}Y z>;fkZg9lem^a^wToe)j(Ey93pC6XV9F_j!dW_;~b!YQ^|b;J#Are8HO>5;^PJgIiQ zlNu~N$azfvKZ^Q-ASA=>-FtD>n*Z_GHFVq*thpeEuho)p#c2i;_P8-7tz7aSF9ejX z4GI{wCT@a{6RKZ-9lRSjw;%3){C;GOY5&;Sv6+F!$!mz`r_l0$_rX5KJ#PGa#X-}& z>$=m?ToHVJS>e)=70SapL;Q}RqBYO#j}i)7He&HU{C=Co#lAIGlr<+@@w`Vd=3OQg zx20mE!+EgH->WO=Xn3BrFc5(+a2oQO z^UuK?4~=eeE!v%C!t$F3`A^mO=`&%`5*Ad9WFU4(X6CEEhv`FKWLViD?=Nm7o<;;FB9f$8^mnVyDHwT+@MvAqTxz9IF0AZmV1w=w77eV0MJa6t`_xyOAA)<=U5+3B_NY`z?zP2@H=!I=m0r7(&uO}x z%aZ1=qUgb0a?iKXa7w~-JU$eOJ#fAI`a)oOAlG#=Gd>>Yd!fuX(`mOk0#dTdmSBom zceAg@B#I=Rg2s*ha4j&~egV|lz?+J#*IvT0q{?uWD6CdU^e!M2Naj)?9RV@5OUoV`CiBx2VXeX-nn-6Y^!jWp1T=yxDLItk_>yu z2jA}}`q;MY>VFMY3fSvNE%$r`o$R0T=LO*?6O?4UdKP0d#QksOvH=hlvaETjo@wM% zsa2obo{*@heIy>av31?>xnqYo-=ufRD^!L;v@4Ap8kLn*pC2x?l{=r#C;yGH8_oUT zbMZ5*K^TDdB*TnOe8!=iMdj_69!&$77irtxVJnI}Vz#xZ@;V2oxmLdFh`p{-UK#kF zBU~Zk1g)YF>({k2EPK!YT7g!)P5YBh0T0#3Qg*Y8eX=J{J}q&%W5jBf876{a;@N`{7&fPU8c~{c7D9zQ~e!aUHfdGX@~M@seo-PC z4HLa-6`#4HQO6JU`E%&h4`m(pLj}YYZP2}5wUt61ldvceg?{4&kzK?r2 z}3-m2B`j^Jl@#Op851Z&q8Sb!wdP=@y=h~PQ4#OuKcGojFpQQ#u zC-aWtaTtQOhF6t*HqV^r8bb1t=WBOn$&@~7o9VzRutR*#3w;SQJzP=cRKVce)1r#VHv-d(W+fdB zd_T?Kbrx?KeAh3x|Goy8{CepqB=MR?iMNb)be9lbd2H#d!)PRLTCkERk~a-XGc&7+kMxA{?NUoT|B#Mc(2qstyB0( zw0CLQ3@6j}H5Olj4FF1uB7*~*mVoMt8PT4a609Y!3_4IkAxjnmQ=G`Cjmpp2?m1$oyrnvv8A3j@t zWt!Ec^JC*#7GI3s$I`))j(pmsNo63~&v%?f*i@xd6gED1R8Kj+F8ndn$mC&t`Q_C+ zR5B829bst@6x6TR1y!2=RYln}yAFx1HvUEe@T=r;iHIgh^Cp@p>F7#js-v-MZNErZS@uZQ-@BL* zGKL}xvJH*&xJ|e_-DBnzeq0&K9{OkBk&|n0y6!bU_vUDNt9>F(uY_?2c!}2I_Pb`5 z{ap&?$yy@62H$$98Kz9e`&FDDC`T?EubQqOwoL6s(IPh|ALFmhFOeqrRo6<%sNzxw znTMflX`|hQLq&NQZ-yYNntJ7=eYp{`?j@GJozO1MkL8PPKDp-4tR{USr#AzfY{RVv zTN|BoBNCB~ak^xvq6$!c1r^g89(;yo9?y&o@a(zQs1$)bSGI*IrNW*Fo}8O`wj5#C z_Wu6CT_{*#21NATQ-Cq`5hE!?fY9(F)seSj^_M0NNLj(^bn1JTdJ!shY%|5VuHLMT z)a|T9bGap4vH@srZD2q+vE_eDTDgaUwChexEwg%->y)bIy(c!&%#u;Go!|e+l=KA0 z=VswG$^Wa~u?;L-*$m3gCjI@tdfsSRvby!pl&}9|R$?DdupZ?rdV6~}hAmqbKt+l< z@qK~2^mQfwxSmczLV9r`6@f6`)~qqa`X-zv)W(Ky&utw@d}vhSb<`ay8G4s(E`k`! zMR&TaEjYOoPW@5Wm6V0@AX{t_X4By}C`q7;C`44uE9;yZ|CUxbe%f&PmCE=8&H3CPg7y zidlSu;?1e2TZr$~IR<}4m1gs0Lo{S>8;kCw4*Yi(FU<-j;IE4;h1`zBo%x{gb;gkc z0YB-HKh4GvC^NSm$~x?Wa=>b!d_-j^Ta%Fgp?N{|nW=gEo99n>jF~@h8)dEyB)+yT zkoFfV?D@5sNyGGy{XUN=KHXw>JEZ@9;wO%KAC!Q_B*mo=JBuUbs}V`OpH(j@%)a}J znC+}?z{W6O^mVyRd{2(ZF((RKvx3J@@tr5n#M&B6eNiPK;hmG+J^jib$tPP(5c{Qk znsynNzf}B|Y3Pr)8jLRfUl+o3GBd5Em=(~B^nGbTIMWujM7TY}WcHeZr%O#Neq1!VZ zxh1_%FLKHtZYC@A7YB>1N=eIdldG0(r>(IkEBF52!yiK4bj@INUAH5*PU1m4^R1oQ zmcfU(IRc?c`QnEvn{3IsMQ{pf*z2BHf_T;g^LkF%4g4O{`iWnTzZ}hNuG(L z_;@BN5@@^Hv|XmE-Ep!-Pe#Vp-^e*--rUxyoUF%}=zr1*a1MHmn%q4MDp&qKX(~d+ zV`%)3Hv9ZV@cQnGrNuFY=re}xqO8iF^7{t|cayeJrs((5X3MOX3o|e9DEV0a(Nz19 z2O;I}k}}AHLCI890rqE(jMB50oqB)#gAH@VTtTF(q#5QbB6zd-6B8%DvxRS9H;&!_*+xbKNu&DO4^2puyvxHsmgaE&XfJ- zyRyHljIsuk>GnLWUw$!6udf$?xDWmx$r&aQ2bn#l3zVY8)jv;R#$i#Ch~~B60ZF&c zlQjoVlkljm=;7gIK6_d9TwOiBjf0c|JfQhLgFY5bsy?hP@C`Hl8iB$@^#DU`nlnEG zQ>giuC1VRe8Wx+mWlfO>$33~cmdvpE1AmQqAmjU6X6RwN+JHeP{JPwsMk+%_jp&@Y zrEN>L?f2=$X%jP&M|LMUncdMA_$3n9lMgb*@bToU(K&{ zob|W9Q+t-nP!&=-+s?#Om7bjnqs_s&B1sf{sd$k%t4E;^6wdA6?@GK}NqO!9`LiiT zXA;UU+PNY|K}U|&T;`jR_e0?ihonrud00E=*-!V zVrVR;b6=j^=`Y1sjF&5HZEI8iAv~kcL(PQu7VC@rdmOw-)e0+C78aq8;|eTkj5bWn z%=1uLg36hGu~|)sQ1kQ0&W1J0cD?DGXFB2%ikmeP0UAEV`)UjYAth^{_6NIHWq~N< z>OMNs(8`f2Zu!7p!SBBH_SCJu`}cd8F2|e`49*bP)ROBlJ< ztGub!joBU%QSxg+SI&He5)6A=YPdx{^u0=E+kIH{u~rjqgrPX2 zwK7RsXHt-U1=hy`jI3(X(5%J2ocx*9Vtb4D-?D40xq*`gF7?ZH6vnYQkxG=02q)QS z`q$rB&FYBpww`LT%KA{$F2lY0bNYH-f+! z;=;v)!{1XSP0%t6RRQkrcO9|6VO!ln73k(GoVtZ|bE5v`IJ9v4%fy`L6{+djIfevc zm5cGUoS#@;JNvoSwswjoVdU%PC$<_isj)D)W_2622P*K*e~Bdr@L`R z*;!fltel5o{@cqx_q*mbej2(}RQU7Y$F?7tsyX|Ya72>QUfVz^nIB=DVzD?n7{fV7 zM#Y#AVJlKb$=hM#K`!H<6)ykr?euex2eXwiU{|66U6`L@(u@!yEIyf!@SMumx9-KO z)H6|0XYsH!vs?VFGYSCx?yRi7!l#XSD7^aq&bq|=N$G~d{Sw~yQ^DK`(hWXcgo>(x zqpQqDd&5kQo*KH2pZ3fr=&Z0NItHnoUNVL+^gQIzEjqAzpU2=hUYn66!2|gk;P}6*(!E3VC-tMKOAMaJHwE}~4>GIhnck2NwMyeP;avS(dQH3E zp1zqq0Da4fIN{VZRc-NJFH+f|5_sC&lP+T9O=Wf3Y{_10zZc~k;3a9#XFd={Dji{y z5^}ijlr;7^_|?+xp}>u-K+zo&3RBFOWt;D~QF_Bq)D~?&-wo?CS3DrDdi8D!-yw1! zWT}(u?}Ffb({LtWSlT^*10%Xz?=sETKLi&duZneuICGtsIZ~K;D563gR>!t3Z@HcA z^Ac!U(xK)l|3lll-(?F!y(pQ@6g#{(L~tCPfhhXj1>QrpQ!>5;yq)0LGuQNcGKt^1 zeaRJt9sZ=!sLIX}jl#;SaDi?PPJiQ9&c$DBaYKn7r~XRtEXFv$Fx?Vn+d8s5)HJLV zjqb85gB4iKs7lVlxzu>J&)pE99?w^@t1CypFEE!72?+d|4%=t7`G8AnhDa3~70eQk+_SEpiIjW)P&jk0Gt;1BGKBJth(l#49Q7FoyPYRE~$e*8wfwFZ(DWJi^}U5z(z^G?zCUr4@Tgzg5SLsBB&HXj=Tw zU~*v4BvE#jQ%@D#9SU=3e1jRhU2DJMQe>ptS%EC#Le;(Bc$kYQwYK{dA8NCELVb?- z6z~c3&_q*E3uJkdr28UXY`Q6LfRV#Wir!awsH+i!jtU)$uB$MG%Bp{&puN_*oq3Im z8HEH!%ghe->{{OW&t^UokAoE{ZQ1g%kHKW7+AE)wv=iP6zv7J7d%35k(lK@R3r+Uy z1AjrDg7Yb+wu>&=nU5NU*N&OZR#!L5Q`r8NVl@LHY#=r1ZL@CPShN7JqH<^B`JxjBEZ>FB5Iujlz!l8W zLdNA5%NOkxuF>e$kuLa|Sfuc1M4W>=0`xtEkma$+-Bx{Zb&CB+ z&5BQA+b*|>`!hPnPzidGG2*D4v3xKo-r4JJ>!2gBNeNHAA-&G)Y+ z6lKL6&)(TK)@(=rU2?N$WGtD17sCGJtQjI67&Yjmf4;zwdUp7MS32Q4e(1eD8g+!ZXhX z=2|tDMw~@J;98|!FDHmOQlSz+K%zy%wQOve2^mipNQe@-*x1@lf$Rz25r;M_?I)K- zGAkNeR`n#kR+6tg6jD=9zR37kJ>?o^G7UPlrCQ`K7SER;GDov?rJ{@ z9(3lnT<+76ilbkHQ2XWbj-``+mh%wIR#d^rr%<;@3yBKwn{qf4{;SVdMv)e@kCVZF z?$kk2*UOEF4P{l@VqNWo?aBJLRM%)^gG?9tvP+sO2+#9yA@Ws7)N~XS6neN5*@cAk zGV7+lR&cRu|Gl&}OWVYbjYHp~ku6+M@YH7%EIS?SY$4uqKR@QF5t{X#0h;GIauIh5 z6o;d2tM&Lf$s~5|R4Cn+q~U5B0LwJCPUHP+%_tTr4u!Me;oOf+vOZfUL)8{rLs`5? z7kv0Lt<K@0^hLDj#IwKjwL4>fUWxgp0a{EDp`nMaT5mv@qc@6Qqu)T*pL0rBz7;CK3E`z5hS#n zc%*bc9I)J(=aJh7G5aJHJvTV9$K9b#rD;J0nF3$7h= z;HRpQ()6?z^tL^`fs8 zr+1Ipo;X1N#FsaR)xq=7cBoLzeQV}2g(OL&Vv`iIRo}l?^;rFQ90^q;W-2=9k|exV z-UEPRfkm7XeB{@eE8Fbvd5+td1>xL4mym8!M1lZzlok7CyP>9zOvdsA0S1WXo`Q`F zeNep2ojp~sNqe9{I>c6rc;HRm`3=aUEUV6Ig|b)$dFdt<;p)bQ7z0)I+OP=ok)!@T z#U(Z{LlYd1g1y@buY{Lc#F;Ox@c2@R9QZ`}*x+Kw4Z%{&ds?n_13_GB*d+DX$M+)I z>F3ZWEPLv$9hmHK+Gyp=$dl7E^v+)Xf;Him{1t4>nDoixLg*d?JlEpX$G`$( z#Y?6b$d_e?JCym9^P3RZ-Fg=o-edP@+^c&E!kuz{p_Y~wPLZ)!w=Vfi`W4}x{vzKT zbm&={4bD#LN=o5%9|M*~;j<~Mv5l6^O{V+g(6+vt>rT`D_Ilq1A;jv0Y^T*mU){=V z1P{b9n{dpd0S!Vde8ISKqpJ3Cfpz4p8u$Kki?j9-XcL8O4Q5Lh;m@f?VD@S&yTx!Y z2lB7I>$cjDpmvFmr1MwJ3EFd{E$yeBKHLSrC_R>@otYT-)#o+O*q?%<=E`6OzjZ{N z?O51?aO>KSZxbdtehXB~BNc#i2fh-1S911CbAmsQ??%5kLQT&t?uu7$&HU!Kao%p{ zO3R$fhx1ZmsIzdkeO#tODPms&PtI7o1JJ*wn>>+r5ZQ;GLR$y}{#Vd1bsK%RF7+g_ z3H?3QS&QC^9ocRYmWJEX0tR?@ML1ee?@d56_1)4DTS^rr zh>}Qu)`FG8NZA_CE*KZ^7Sv3SJ(q_-l6Z$Ws!S*U?ezt*D$c~tWHnNe!wbZ`1?t5`^YS~ zw&;IWGW^1|dMDs(!JsunzIFzSaQ3_9d&<*SKHQzQ{V`Cfv1U27WDdyBFaxCTJvq`Q zaQX$@qm>OB|6jbiT23T$NBCe?e6xpPnzC0hwFpEAZSElRh!By{5){BilKbx$43K@_$ z@E}^jo5lEJk26p3Dnh2Lq~G}CllsK1bBobEd3slcutOnEQ0RGn^y%E% z;BPsKFLt53BOE1p7f)fm%Z{U;IEQHCVFjuYEoX<1V-SNzfBcE!+xcPy$`L}Yju8pI zwGNm3Foq@G*Eq6S-PWl(16yNzIXDAAGD@Lzy#y{~OYK=%i4OP(^H%53FJ zjccyZ`EyEC?ISH*YikdXguzCPK`)Ts^3I-U`uWq$qEjCI(igIv+ZGM2@HCB+L`c-D^E#a|{R(Mh zbCRg5xwzkUVeINGQ9I$=MkB+x9Y&v%?ETdvs}2Ljgj<2Q7~o>7w}F^i3VGv&(U+Ol zU9;=UDz-lS_}s*xN#@&0t`WU*#(r?-@v=*gw(MeA!?&RjZ2r59IHZkI7Qu%ve}F%j zv;@8}Xi93~j5^6+lGrY=@`aPUPq~!lExs|)P~-V++z9mLdCVNYmj)FVyX&{wsmoWG za>$5fZ)jvDYhtq;`a+U)ARyVwVBmJ|)bhKA2zIHBkGTgp~WGQu84z8s_ zFXXnrS-viVCs;arE_sPL5fT@4}ha5&2?rSjY-F|zT zcS*I2Qhpb#95pJT)!5^+2jq9qNl=dNw>vw!LxeHiJBoa-o1d>(`n#5EfiGL>jE=M)To9f^PCTeS?ZTDkga7R35>fI^6Mg~S;lFPnVx>7#>?SE=oOkvM zzD^EgXnha7Ab-i8KLE}_4fTU#)OUh2L29>f@`>cc4VvUdJ};>SgMuS*+GBXo8 zzd16$z2&0EijgGl!)896*>E=BoA1y4Uo zor94F-;SJ~o)?a!L;%RoHg~~iRoHMB@_}T@Z?%e>NE9b#^8ohWV=Z|7xwv-a|pvRPZacza3hldNe#HVk~s=I%f=gJt?tCl(~psY9~$zw$9XtSv%%%Euq zJj>&eWMN3*{0mSM6iJAl(xQ8YSPMNHv78Fpf6irEJ1~yi?3OEylf0wV5g`s(ya&v| z53jUfqJ#!$HunsD&&bTa8fgj9FEwPm`MER!pp5#5Cz`#&9AQbJ8Y|#Ho(clE66n{o zAaY;}N0FnRs>%x{6H;tw-qYgb<~YJtien87Y`Il|UEYWIm4oAVJVeKC@N^earCM2m zlIhr~H3(k|pZ|mukMgg4h45z!=Yi zM6jiL3TN>RIeA}4K59qA7dr{r@&=Er*dM^cZOws%d$3O%@?e8ISDzaTI}YT9%mJ`3 zw#EN$`x3mO0f9Ok33!DPQOtYIk(z2cba4X2@?0Og-WDgBN4@v|tpWg``F}L1ejd4c zHp@G7Aq_fEyYny)ZP$Fl(6hGu!@eqkfuYV5N9E(6j>twE{i^y7*0pEH^A*oT)Kt`G z7bzz&T^@fO=@Q_bh&`D@C+)u^MIm+(*+FG+!(aSCCgRwmvh`F(NHaB~6SMF6oDow;i@)DLFEt3KVp z)N!67JUdWV#fOpKup?v^UUR!1AKuP#@6U%kGhZ;VZRUQzyCXvv>Q&?Nh36K%!{R4T zG89R78gCksT-8zVm>RNg@<1IrJTfxVv{4`)HS6On?zaAhw zE6ko)_UU$MSQjZasVURK?Mg?!ItzA!n3>WT<=x-d=U^&CM6<5bQzNiF?a36?UaVdl zdK}ZR~28oF^R~rbZPso_<7&Km42c3cvW9MlUreN>(GKwX-<0vRZa z#p}R@n&f=@zYLwyo08C-OeAfExB8Lc8KA@)E^e$*6(OQ*oSZB7zm1_tfknA~6`MW$ z5;SSAV21kGE)C>wKW7}fAmaQ~(}MB`=}adN!wSPQ27kb`MVc;Puf0#PP&R;hyc4s< z29nPvE2mz(2J-1AZ%^gEfOq&*Oicq-q6@NtpEDmzjdTMnn|_VmydZ|=nU2D&JRQYn zs%tDPa}`9yP=~O_PZ8oP8Htz<$)_S%7;Bv+df1OjN7LzTZX3#}T5?fGJ)W!2vCcIl z84S@j1UOU(ykWgII>7oo%8*?l0jb<&los>F+dA$sl2MLX*_Tn=s%y z9Pa&;n2cpFAhT9>7m8tJj~}`Z^Cr50Kr4i~CrC@88aO=7MYHGBz8&D6H2b@W<2@NF z3{uM%>ZYN$J>)es$P3!X-VcY_3qao=Fo8+_&>I^ZDTI(qGdkm}@UbUb(!e^DPpcn> zbbR~}I%$Eg-!8L`HM_(Re?fj=lglWF%l7>>cNeIsz;7Q-EvhB0girYzba0-Ml5*$$ z(0Ji~F9wp<9;cZnf)W2$!gu)H|1boa!XxS20x_lbB4lZUWy`2blu1QU(7bRPbcc@X zU#~a%x@G6&t0pk*QTv8=rSX=V4G&5m!pX9NxiXL+CbcsiwsNQ9G|l zQ{i4v$`k6VGOcr`^O|22lMJ^}Kx%S19uw`ORD3$G_iuPUL|0Ya`J(R_986ul(B5?= zkAQefDQd!~#w9y;Bg|z9WtdJ(J3}=245-G;W>qSGsHujds4J{)4Rv8*;%C3Uv)={j zYAG`-@NLQgNiDKreobI*|9Fzk=cG=_CO$ax{1g^tElShw&fbrNzHCW$P3;huU-(az z%PXtw`&a%YbrD^q*kCJvje*#fx+W&OMMy*A&eq%?;-S!0X zxm{X3%#Q1d>dJD|;0Y222`w=cSP=`2?l@uWlvh{6kE%6mtrf68kA!W#wzjbO@ydLi+e0jabL2&9*=AVo>tA zQKqbV*Zr45y7NeeN|2eUv2su8#dl8(5;yFx$9HO|cP>cRvFu&5+Q3s#ZO44efs!k~ z)Khx|n(8j#v@g0gAHIsM`VR4>6XwjUZQYH4N5x@433UJI8evwZl&!+82Lg@}OGZQBJ$+b4o)6lt=< z6ba$sZ;I8(6$Egt+tCR~wu0ZaIc?LQV+M_{e)o*9iT_gSnC-u?#ceuTXxzUsNlA2` zrozt=93-o}6|6PtmF_W2HbWgvmk};hDQDT4$T|eIrro3cjZY0>#mukwR!T0FLeJhY z&{nXDeBi?{n@05`#e~Yv;618b+t!TYy{QU4i3{81`6yZkX*)N6exu_ za3qQvU)EN)iH=IL+U?i)+8AAsMy?QuJ!`z{6fs7C4^|ztICi3NB>kR;3>f752iyO4 zzv|rt(GI|byHE8l1{u@Nc81J<>dJ~Y7NtoVALYr^AYh!d`dPT$Mn2W^W*YW;CBP5_ zK_OL$N|;+#jMs!ceP#kk3C82I}>dOKU_w4AgpH=BK};Vu6} z4hmi#6YJF%zBfadJm0`92~MP{^Tnk>GY7ca|A_2MdQanzu_5{0WG-KG388%hiJH;U zw?*p3N$!eUANEEI_vDw|rOaYD&t?Xz|4B=IZ?DarhRMsDN*{2*NGkfrfN;Lf!9@*!>y)oe z871Wa-s!WyN&Kw$}0xqoX=OjCDo_Is=azDCSpdG z_yqR9CXq2apLrjk1IO_`*gb4uyskSq>qPQk#GCXumS|O95ouKy$hqLkg+iuapy{NI z5zmG*q55T}M)sh*1nptQf5j$I%%Ov1ePk$1z2`DhdE@qdsr|L8ZP??EYq3=n+{PdO zM?t7LhpJPb#sQ{*2dN4pLnHP^i*?y4r23TqvW+$j4A=Nh#qgfHsAyIT7tV?{lLfQ=ze-{8CE1qK zl06$Ae`n?o*}p#<-Su$7be5K2%dK*Cs&}Z)+8RM?$(+}_3K%AOS^U;7ow{>Eyx`d6rDY&?3b@K($cNy^tGrvn{Gibiy-ft}i>YsREAXc%m@uUc=4Xdv}+BwU7d?zSFkO!%rUFzPJ!1v;JXU%sG>cj{w0wFQx; zQ3#`VrG0;ynYmyX^_nPY=c=-vwcXP`lL12Uru+i0QP)(p~}rCIRZqvxJJ9l_#%; zMKNTze4#&=xB1Ue12TZ;Z+N@wjvNm%Uw^utWMOs#d&#CBlG)FxhDci6`I&M6FU?>S z#y=&>@EaVzW&tVrSR9VPuX%d16OE4{mxQngY*{bIC;V z-QQ+jjYLC#6u_xYSkYc(gioIVVA5y_J@vEI5==q#p<7bAK~ZAu!06kEtceqy1$RoH zbISdQi9oC8)na_wbca6GdQyjR;q0yH%}gv|iMW>wWz#A<;^>D*d&xY};HGtL8@{iv z=050n=B9%G2nT0N03~*%@!rxREHpJhB%b%Z&^9~ond4M}ZMw7a2fW$JPDoLKt_|FKhF-rsLyQAK`JF} zX=s>UH~%S*SL&6Ai1uE`83n8ul;X%-v#;I-dh?4$vyXZo&8WZN5@PHdu}e5xcU$Kz zx|yIeo)U`{Q&Xp1ceP}9RZJ3)-7qQx@d(Qcz5Of@0yQ$?(&7U{)OZ^(i#}wnBx8d} zY{~Y6GI>6r<69rRU(MZpI$GyZ%wF-eTo);0O7-UO(YYc8CYoOFs zhB|Z+GnJLd5a=$|;F9w|fhRyUW@&rw?s)Y!G2q7w%!ha=t9<1%UpL;H zarc|kA6;Y$x8Vso*iu1eT0RCpDgi(V*)mujwm0T%T7UT72L&4DdmxA60kd}%#K}B6 z-&KYJHxOg3x zI&1*Eu?^GDx}ZQIoKDqLBPEVk)20PtxauiMe+#2LGvby`fXelDg6HHm1)f-`N)jEMD`qs8j`dUZ( zPW=poVQDMe^0!?K*S>z5ZqJ+U-w4r)S*q78n`l;8*H zp_4xwf9bYWp76r+n#n{cs5_>)R+<)#q+4sBq{gqxg@yRO1^Iv z?^3(68BD<`WVGIGY^t1cM|I)6Bj@0cm3SibeXrTvYCc!$xPbzH$byGz-K-s_UN==c zeNs2S^Yi+HjZ}&Y z&w7T~b^)O+(@RIV-Heo*l0u3UAdNzbK)^*7h-kK~&W<}-htyJviSdgSV+LUl<9yA(c0W3Zq};3pd%X$l+Fr0mZ9+$2^OZI<+DBoy%c7SlXI&tI6xS<0()KD@I+P=uN zqtOsy024^Te~yR2K}%&Wv1wHOeU3Bhyp0mweH!u?ZxpffEA0DoSQO)yZl1dE?ljI< zto|quzXu~mo^+v1hzM6n^?kYq@ijg-7bP8+wS&iTkDa<0%n06>`-nI~0x2(T6hfhp=y&`mh%l<0% zVE6*>&8ABz3X}*+edIINeh5n4aRJ8ysoTDse+t4ee<>X124nT6H)bb9432<&QOxGx z3sOoYRj~E(H{}ZJz-789{(>(5qP|D!DI6jt?8b|oF9+ms@<&gbGcQgWO`XAA3xjkIF(v%agIMIp+u!9P@%A)_%5u!mf86S~mGN<1GWTYHP&~sWtVW5I>Mk ziBE@rVUdlyb@`1+__xI(?cC2(mef(G9Nkj#K}| z9)q8&<;~CJ@oy-fYM>N#$r5>v4N6Q zrIRGEVe499A#3_90{(}p9d&Qjhg!Czi|bnoN(n~|a)6X12oH53oe^{5btV+NXV-6J zNk=hAh8WlbXc)`77u`Cz_6l^?m)79W{olKY=I|_CxLB^~LqR#K!HDm_HPa>lnycNF zl5(Vna4dYmd8Ga1*{H83%&5MWtSd?-lTup7Y}6sXAT;pC2}hf`_JXEcYQE&*%la|) z6Y;s=X3q{$qa-Gix4GXu#V*hRWsY#BB!N!#;XjO>NU-UX9VSl#b=Y$3bH>af)`Ubv zR#9Y`+M=^IhwPaajLe5c|aIbmj!3z)P#-M3}cNe=G0)Xp@joCh^zyBdqQWYqoVBG7BfY8uEF%w9*9bcgnG#xaXP z6?Jye(%O|9)!GL{uI<}!0;GuEx%YF`%lkW!1gkz*Z0r^-KG3&t zE#m7a^Oh9r7Cn0^4$!TA4dKt5-!1fH6nrqXw3Ppc+giyl>I)_hKam_X+hv6+#SpL_ zju21#zTDfbMdX^uVHjJ8-rz%*qN&ES7dO?3y`|a1afCYJl)INU^fRXfc!)Do6UTl| z^pAIbGA%D#%>A{iWq!o9UZ3+j=#y+i&KCk{upI!OD%1JLTSEu+wB5?b!06v-caZ`u zDt6Kb!>P5BGmIxlOfFCEDa&xmIJ4j{@Q*%mXy`4BR?Z*TI-V5Y>P^1rvEBL9yYZjt zf?~-I(O(yazj${j%2FkCE=v58A8&TNDSr{G6l1$#*ISNh*ai*DLFB(xrNWUH9mvv3 z#w%{!r<&m*`FJpa)qOw2Z)k2BtJvMC>TIp=6{Z>9OcU}MX--eL)Zgl7AjV|YK}4Qo zlTUr%%Qa%ZfQhv2p;YVJ`mASiXuIy4yIaVx%4=QUaIP2}+I~ah_hX9x+SecY9vlQprkRC}0uu?}Vtw%u z;h!%-xMtf2lft%;I`W68ON=}~2yRJ#B;!rdzLolgq%Vy@uUAdZ{ZqQQ4CQfW%2uLO znwI*gM?>LeTfuP8l`x`issQ~i$}bc#lex9=DA&A`SGkqARpX z%C^fIuQk|vSb?xoBJ@X8RIW35dbawRJUQk`KbfaWqxu>CDdN}-yV7D(D;DWxbao%9aR5GzR*T4vGb#i z{4(jk?j*Z`m@e{5=9&Km8`UQm>XA+z)W>@;)6GFQHO}r^jPD6G!yKUnt|&P4nwb?u z%sI!+3pQ9wqg!;xG^}0Xt<>!Sba1se`roez#$SA5zBNYP0~=L7!uZPX!iK=zO0Y>c zR7Pj>Oay2qzklkyZ~-3KqAxclfg*TaxY^dUt8Fc9r~>VV| zPe!(|M6Ai6Rx0wSS7%Ah_TXzK>$kA~o-A5{_13@V{Le_wj+~rECi9)pzp#`omNg4J z6HcIe*1yl?jI-T3z#)?f%7bHn7lk!kt2UK)c>fx}>`HMj=JtdvaLtk)+p;J`Wm96c z2_Lne*C4%}^?k9w8|Ycvb~Kg1ojp&Zde34SX@5O(zEc5&;F8oVVBbdrCIIeHpKI&Ufok-SxebLapi}12$ruxLpf>jC^dj?;wi*Tb7~^+zdIAhB2N0<4*;G;VMHOrSkJ4|>I_sk#jmJ@jYnJw2;M zgpDE$(;;d7?(o`edrl3ZBtYAv0=@Zc1gB3Y<>fIH8^3&ZmgAZd(l7^%BB&;Fz!s@f zh5k;VLNWZ;P`QPy_?^9K#*s4ZDZjr<`>$Ld7{YE)PI5pgzF`bT$+7)y!QXsv8tedp zQfGnZ20LIE9tuQMxN*hVxs)*N=2e)vj#z{K$jZ6%%Lwr}MF?=2-MKTww_pE_52_en z`PQ8E8rL{|jb5FryNI{ls;YoWCI6xmhu(yee*V5*5APY(ap1wq-2;mr}!${S^ zUcnahcw<7|yW6%N-9O%ebShlgM?fPRnh^qqinQs8r9ve^U98%^;2UdbWV)Mm#liDh zyQl=CEOoBzgueot5IE~CUK{!8Xtn9XztmzE#~?{7`N&Hd&QROX<*dHp5` zd6O?*W!k#iiK3u*+|uF@q238e?qfG`K40G~`7>w336(%OJ&d&_4%)eohO{(iTDnj& zOKmTK%2^#c9EUqQQ@z(+z`X%7wMv%>2`V9ncyH|n^NCJG($p8d=2lrd^$^z{{#2Fu&3-$A{NJ(+-Q`mF^czuWkzO>`Pm50V6U|Pzb(vS~%1H3N2h6H05(4t) zu8Xrb8%SPKaR;wORbwk*#a*jsWR~U_+Qe43L2#D-C?D_oWTW5Xz};<5ttVR9&)h^1 zHXC?dMOmO3pNHZz;fF2(HDf@0_sMhkm(HWZeOn+V#;i}jf*K-iGHOc(>Rg(Gmu$`h zKlxOgtowAI(z@KIKU5b7i#nYC!~>ocr{G+{Jt38 z7CDJpJY+cKf6d1v=#CCOIW5S~pGZ49TiZVEYpa~`kPfMLAd`BeiwABU0GqEH*8|9# zL-U~!e~mhNHe{)Vy^px}`sOdov-2Q@Rzcdze&Pdpb7vb^#b*U`{?o5UkX#p6u|@hi zbax|qR&Q>_ zmRQ(^;bP;s@xnpFDyuu!xXd05p!g{41%>Ty>EGi8D`nOlu}Bj>h5Y6Y3m(rHp|^rb zwk>`*G?ZD%vc}%im=w$>Pfd*CS08ddANF`;>vku_o%tQkR)a*x*zLDCnm3l`$F>B4 z>!PH)VAeh`8L>m7biH8tnPG+1h2Sv!wVPi{iLz7ZfGyeYbQf1zaqVThr+trggN`rl z(`c%uI&F0P3o(E1p|i|)glok#d&b$f@M|bk@)hoR?l_=}!!WEpFDpt;KDr!JeTiys z;tU8veC6stjwf7ySl-V#PjXqkHYpM>jNQKJEEjQ&O_E*vojj9$50w2FlPnal`rPc%^v5cokP#wPBL(%B^0u zm#^$ol-nyC4CWF8(&keM@t9aSBg}my@2ar*X+PLcU1AjQ0SnsoqI#`t2?fXS@%8Zd=zvP z2^Fw6-X=WG=kycLaOao|@pb)k82%5HVOdW_GkXLkSpNOBWtQiBm4WeG3_7OnSP8z%5hRXz^FZ%CR&YQ2iDj9#MqWO09>73;WoQ9ryXkFMRv5 zMMJRVzObXed#7gt=~m|eiVhL^hfQ^`z8?&`hV{*Q*A9F<(%EOcwe03mOJJFc8Lk>EI}E=85y+f zzcyy@YJL>jHmW#VXSC07l539;v3C7D>AlIc!NdRY7IN>CZ)KNA!DF5Qo&sbiD4CM{ zGWlk1zFwfftn6C!N!I#bo~l)So}%Y#Wp|du9J8D{m-yt7J>{vdk$tvT=<74^ck*^voJCe_l*3581RjbZznsC>U2}F zCyot0k*1;NKmTbfL5Ftt2TfaD|KKxz1)1tuuZ=0r=#!3a5$x>5i~5bCvlg@1 zf5^3u(af6itP4@aOp^SM^nGT!6Ay=I2|JoUz2@H@Q~epJnq@t{^m7)%>_P@>-rjhr z_990Ae=j%#Q^M;XJwPqE(9Rwf*|Ed&?@dSLU#;HlOo+!-{vCUQxkQrenC=-LTlRt- zx4dAg?u&{Vy8~0~R=zW%dUKCdzdPM(*gp3<^2rg7e-MXFm?lYp zPCpR}O=^&w&W+mVUcU)$6bC18g+gapGd};t5XbV-f33_ib`L!d=h#mycM!3?2uy>b z|05eMS)uiR?_xyzW4?ZrqF45R$~w=0rtUQkvq6a@f(l_7ZjhlDfq-QN%wUM3pg53< zAW=+&A{GoW0ull?5iz255ER06R8T||X{d}a$`Aqyl#7f2Wlv?;QoZk~*M7PAo-gN| zoV??Ce*gD*iHYuMp<>0}yXqs%UvHkUL@4A z&0~#`jCS}W?{4EQjYiHCbqHwk8vxOo@Y9j3D^P+g(?}x7; z(nR``3V>;c0RCzRwW_u^Rx}NXVtBd4S9S zZ0I&0g-(3YZ$gj{uk3HHSXoD79%?V`0#L6Wn8^ z{r@0#T&`ghddi7&kRe1x;E8~Yqj0bqt(;DO(Fmm`sNyo2 z>^LCf-OqWr`%o5J<3DKj=<%c=vout26o+9*@5vtJkMujte2G$YMQkKUjg@^=&N98yRIX z3+#C2Z%!97HC0(IpRH0KH^=vKbj`~iS8>&~ zU23i@iDvIYnS2R3_^CaozrE?ofuX#U*wmvnVLOM-gF{-iRy+T+PhmHWZd5cM3zzeX zwBTF2^{un?V}Wuv)(<6hUFa+f$b$x}j96Y8eo4+w8Lj8i-tg$JHnH6VL@E{DI~RV? zF@NE`;r)<2)8=S($ur6M+Zhy9<7h*s-_D9^OP?x`xh5lUT-YdK zf3`F@z9_nX?xmqjIE{u!ThhX*pxS7Q8_lsqN6a2NlX`s)?&h{>OfQM`-J_X<#rn_T z*-d7vNnMlrIv*a`)%h8)BS(yp>+8>-mbNcMK;7)EyqB#tZ>0N{;IM;atBn{N=}#l7 z_xZjY>Lw*YyKtDhjQK6Iw*+@Vfx+KPg*6`>r?fw4R*dd<_6SLy+m7+A^&`xX{j+~h ziP37-40~u&*dL(h#C*h**7e6jcP~8wkmd_E1Mr`$$|j7{XuyGT_Sxn^3^9deCK)9S zA)M4;BG}|x5PAOZ<&DO@XzY}Buqyvzg?DLR>w<>z>Y6LjxOYJq2Y4FWOV#r8mT*(8 zgE?Tkj=P8Wv(arDXx*8@dCdL;xMmjE!niJ%+J7W9EXH>Kya~BpO}5IOJfo`v*px;Wst1JA@cW8 zIUk)}@?7t%9Qo12rlY9${f9&nalW3TqQm4_(O;F^GM!n#C?ftpJs zXB7TvFvWjetIn>8{PgfPhqFHX0h=*wJ=%JQ{>9n4XY#B%>zfT%ji|PaNDu<)-HbO1@=nsT8-@Zlbe#Y?kt*r3SX->^WU0kfKZ{M-KsWru6A1)@OC8K~# zf%Z5>%aX0u76m~!o9nI94BOCnbG(J;IIh`B>95MHYmVKtFa0pb1JPRNq2+y`4P1%ihplY+wlnY!`y&Hy zI0I9}&XBjDQ#8Q)@-5B1NA(k9;vV=5AAM^Sw>y7>6aBP%y346^ zg`9e`JE@*e4Z5AIezK5>TD{~RD+y6M#zp-k(iHeM2YC3|>*Qy>@-sTYze4n~$gmcf z^dWIncfVCFGNlJ^n)ZcMitnl@z8g%!V-QW}US?cdNT@BNa)Qcxb?rfo2GPDla;Y%f zZ^Fs+=m%7;o)|`TAEdfCwist)Jk3dqLzu!bknF`P^Nrmr3Y96gZX}BiYA#$|t0|hm zIlotxn2dH=7Hy@XEo4ZJW``|R>oaotye|=8U~fuFmvUTk&fud}!8X&<0qdW#2|vxXRiq2upAdzg zrBO*Uvo2-qx>a+ggtMKI>#AnQ{mN}IdK`+9Vrlao2j75RCf?Tc9<2us0Lvw zL*r)eWPMaVs+PM&ee?}kci>!gv0uJdnlbe;iKVyJhSQrcnKo=V`r1A zc}tvifKpEni1i&p^&>r_1sq-51RZSgpdo#c>V8{ajUEQZ=sMuUk5Gup+eTymTx1xf z{*^fv@Eq6mmA=Qldt@K({xFto7=7;D3nP9l z|MIPm$zC2-?%O};elV|>`Sv~;>sxtNEG$h;0g`GBQi9zs*{k_eZBVPm+ZQSict9E; z%{N~R4ZgJMo6TN;H%HpV%I@#>5_xBBqT$vqqj?^d`@Z|=j?LVN64jhbc9qO~Oc5lq zF>SI%NL?J@Av5eT2Fu+U$>;|OB(gY6$8=-@z#(GL<5kzc7cl+*F8IbGLF&n_o}a)Z z7xmb*BVcQy82i`cWZtvxqlHKJ5*U7`#VKQ8+}KO+D9)Ln~a4C>fZzt#cDbXf@TB=H4b9bwyyW=EDAHqKovwt8Dm6e&Z?1IU^N#B?Lw^-uk`f<`2#&>3a62j-qYpYQN3)+b6qQg@ zi#q305L9;Fw4AzISzC*P2WiUImxFHu6KI6{^~t0S8yvfVsi+RPa5wV&^RDUoY~Jl+ zBcs@$-d=34ZqkuWuQMpnc4y(MUbThYV#~ArmK{D2m)80>e^bt_tx&(CJ}N=il^5L9 z+l8z3xkA=>(iiLGCkM;Rcz+hcrZ<6KTT5{}oW`98{G{m$W1TK7*4nbHtgNx@;KK2* zjqxbks?&+6qR7qT`e~C|Ol6!;jh{kd$7?Ej<1F`@8l)Tspa$ST`cW zHJ@VLrStls2l0%rpE)P%`A1v5ur%i7{O!m=u#C*-&!2atGx&_{mvcGPa_tlp;XRRi zsPR@v0F_^0Q_?)xb4uR}d_w0MT;|wZSy%Uzw#D7UDCp+G*08(E(MS>AMM74(IhGf{ zzHWt<+DED9h>WJkFAp6KUtJ*g8p<5wsrZ9FZbrZ<{Dhk5xy^&}T~-!MJAV{{MoZVCI@EBF2H1n z7(r@;Gh#PI*x35?ccM3w%wH{e8@GI@7T4yxl7#l`bRoMeS5U{29ug=CeYL2U`d$p& zjn}|BcWTy`Ub0 z5nrk0>+)@SW2MJ};kNG=lBU7dE8?zDc^~k2O22>nj*rQOA>8{gf8$!S%IsxpImxOS zt67qp5r+16EjHSuLfz1+UuJBV*Qn)rypI%2jKe2`0l+2@!OdU_2e#@Towh4U#^bUw zY+{B4lXgFS(ihb|!-?kibY?)ZWm}wPdiuiP$U=6!$U?bj1Gr|(hxdksf{p?K=dOl= zwL%`;%IUF1VH+0uH>l3rSy-<7FjvC@W6*iwC>9)&N5Q{I^M*#yBBGoVm|p|k-YVvT z6^kvit`Lldwz6D3ktjvZw?-Hcya=@A5(z|aKZwD1os{;6`PYFr-_^m=4URlA-1R`% zS#pNP#agfX!jGhHuaI66CifXwxK~A&112jrPt7){2;%q{V4L7zXV`rYg)rX;&WBt^ zMn^pdh-bDP1Tb{L%Wy{;-zC)kq61b@&f8I66H`AQAIG+(vXv~4UV%SA%y#BRFSYy6 z?+jVmT0^hhX!m~t+w!G?UO`Cn@i4b$M}V(CgTC~%4^bE{HA>nn%V+t}#H!hc0A$~0 zBI%rupRc{dFBt_y^3d7IkJ6(rbkQ9k9x`Xo_fSLnFi&f zFgy}`IyF)S3Ug3Yo$;OICbWKoK8{cE$Yqaugpf#{NnO)G>&^_!cx!kd!WoK`hjF6% zkdVD57lwf^uTypdyVl*k{h4|@Uv<%~HDN}XqyvH2fV2lMoH?A>re#uJ^O^I)jI+|q z@fvI8y7!a)9q`)Ea7Y@li;muvB)5IXMlG|;Qkyt~&k9DXl+3_5F*k*dPg&P_*XDh6 z9Ct+(1y*Oc3H@|@*R^KZp;Hd=d-f6&A9$pWMwJ#qF1Hz!TPgs*pO?mgg4JkAKD8Ua zXPfI5Ri3H0U0YKqwqhuloQ4^8Ax+?K{9!^tY%|wm_bE43$97GaD;9wQ&GK(9L`Ca< z%l)E6*@087s$cJ?EAp-hu!t2fAtvvBysaL1p^l-zkfN<`euU~fB$o4(WMJUtR*8ZV zv6=bslxg_po>&+I3wbPC4&njX8U9Es13j=??r3jkZ__#Xp!xLJsQNRa`gZyD8f-lM z;~n=-Vev=nJ{TT&`E@nK(jv>3_{09fEP^X9@ND+XPea3s>Rm5|KwGC?(0;h}TC-c? zY7A!F<}`511VmZcaruLnsxx|{AZD$>Na^79#&BBsK-hd$AGMUV<5#c!=1l`)x=8Xq zN-To*qy^FB$mw|0IuLYXljtSp(CMA{adIZ6c-VgLeA=jtTtlT8C8OTZf^CL(ws%YxPyaZiJrCHPhO02Gamfj0z6S!4rB$c~MDH`2}|-5FcG56);v z&0xi(64Kfjb54l@C-qMAQ?~Mnuo$LR-b8C5=5E_39$?=|RJm#Ak~1R#3ud7Al5eS$ zu3~_=GI25~p)^ZwK#9;A58i~nq?}W#Jyqj2$;d6Kjntg(?50j z!QbnMQ&Z-VGd{fUfno<3>UH5&nC*kD(4A4w=$^NKrCC;Ho(?ncAJp#lZ(JZZQ8aG0 zmDq6c)l;FKKGYvwQ~IU`o@7$ij_hX+b2}m)2$fc;X(WSZB{#Is`u;6-h50N&9H=3rRqqcN4({?^=xo^C+Y|Q%&$D< zCejJvlQhx!D^7tO0Vms!-tacZ8jSlqu%;sbvXvBx+QV$LX6r+e>LKL1EentI+zs5^ zBy?_^W%;?ysM0@C2v#yR!h^VsXo4*5!d0hzT{QFrep{P3=c+3{jKqW_5DW+eP}zYB zcpM%R935T>Rz{+jAW9X29I@tHadP=CJ;;%TOpbh?o~55{F3nCr-gV;qIN#jE%%Sl? z!|t%9oPihHI!tlYyNc4V$|WB@cT6J z=K;vlSJoZmNV&{#*~*t+st6>BbjCrNq5T`c3WN3|H~l1hZm}LoSX#yN=;6 z3Z|`aTseht@$mP(dEAEb1y_~LR(|)-zo37bp2rJ259^|1(v$o^CHF<6=bmvphgOYg}e+753q?5q?qpDx#UzK3$UYQGj z@nRs|?vs|iafw5@R|}ua*p%UGe)lo4m?4^up8f7_v<&#A`qe^$84Q^@&MiaiV!~FC zbP<)0gnxD@xtzBm3q{l8QKnv&wT^g>=_w|Zany0NOO=vD&X5Qzzpk2POQn`5qu?ed zqWZCG2EXK)p4g!|$qYyH^_!%vNO!5vvrx|_hyI;6>gt>phA}=bI&sX+bMuImMZ#_H zX%U|fc{7;E8=kB}o{~tbysxfUk&P5557@D`3zO}Nq`;Bm5GQ?D*yEuXy49fP25+{Y zS-47symae+lRF)LLG1Vv#1rv?m=LM!6Hs=}CDNP#hM#^Yj8248=>of%hZuGrs+^3) z9q1=E^E}R+y`cmya`NENpp_wNA;OmtsP$aR#<||s&_;?Sho?z7E zQoSrWf`V0E*u+F(Mxq`= z6*c=jK?#x%5m|>u)w!V>F`8wXgH>6Q2Zl=r6QF8ImlM|`@0EPrAYyd9dDyc^8v&pV z=w5K>_m5`K^vj$v%ENqxsTdRfDTI^~326O@^?3SHmsX;ZjIG62mCd1)wFVtedzCNoDZ_c_S(KS)soCh2N9RhG}b{uye?AGU-IG6!9EuWWL5NMD~!-tUy~iWpd6iYlzxbiri; zdOhFsl{H8zv6_xSbeIc*?t8Y&RY1x{c&bYnvGjR?>Wwus|FVzq)~uNkIJlXYoJ+rX zA`n<4IDLWP#1Sr^c!-y`7Cp-Xnx!&qm-EwzGFq2M-(*71%{FUZkaoe`>ACOgnCw4q zIo7|JM0PDaz@zDC*4C)fe+u2!@mj!!rb}&x%-1G_Zgxe2H=m;jvo^Caqf~!qA-fJN ze?E%C*BK)Scb(5|(?qrjM~9_7Hbjnl$YXRfJ>+~mGeIj+Ts+PMq60mn;E_a01|j zof`1%izdQGLN8vUCUsPcEmhS1=Hf9aN^GHKqKSSQJKq+iccH&(Vn`KK>Q5Ij(CxHv z?4FJ2*=x!TzF#SbdqvPG{98ycV#p+ri+LNvvT1NJ3haU6jyUHBu-0|VvIskn72inx z%BvNE0|B0{AYJ(Ya!xbqUluO>XLrCP%&gQuRzp%w8U#LNFfn>n^!KWCSPKux z<1ope13>L3e1Q*LCD2{!B-|{OEh}LgL|GNfOT=>k!Np;W{1`EaH8YZ_8ZukcyZ0iw zJZ^@TyAPjSHqs3B!0~v@KVqmwMU9fV(Oj3v@du2LGIM;)h?|HWVykU7MnQ`=o--0f zAHZc<{D8ejSaS)#S^po1Se~w1xkJ0h06qRm zSCzv(5!nLosI~Zd`#-}|lLVqPqh{!oBC3A+`5imA-&h3dcx!IE`ojL$S^&T;@7yh& zJA+Niy{fnV!S$SwXsG*ORCR%gccy#w6AruC%sqGqdcT&QNBVNB7&`*5oezMboA=Bopcs@xI*;o}$bmpMyOf{3on;GSk!iT2>6jNCs zE@wH6j7c?#(X;;1-USv?l`eti45@%x?CrY}@JvKi>>EG2YV{*00avwhO!1H=mB8CC zl5V^1Ig5Uq@`4OfL86HA>Yy9^VCv%Q6cd|ydo$ayhtDMK$DtCVnT`FWSNv^k8J8SV zqeuO5=NwY_j4~V-98#)*S4q?O1hv@0YbYl^(8%}!YVl}V`qCXazS(p$+ zpNVDDd164wd&mbu=f#qS3Li=!A3_q#kJSCrJ^MR=Ll!SIbk8A=Cb@@Uci<7SB}CAG z1bLm3kFc`r0}fvcs@ZQ|t83R4kqU0)((q3XQLFzz0XR6LiQl%;NN$$nK;Q6QOSC8b zz{%g~1G#|P>qZeta$Jx=tu5>&5@9>@#UPGQw`*J&vhC_&mWl2;TH`dLmi?ho7`B+s z^yOzo%P?OjkRA5AzABN!tVWOJg&z)CJvn#;9jMl8bEcE)TT7RhTM|HWAGKv|rf%}; zHMiS!?_F>51jkr52C7+R<(vQu-LprAXLYBDP;>3UW7*b(QGfrvdXS#zC zM1A;jN_VioDvymCw8|WEcsB1c-|5H~c)49_NDAq;ogI%_YZ3gj27n87n2HS4Oc7#u z=VYHhrDfXibXH?x=kOEjrE~e~*fUhITE;5%1$4|rN4r17A|T&oeilb{LrBjKsx+t{ zX5SIw`7ot#JKJGO&0s;?HZlz`CrM61qm-%+Q)S%%_P=MhJrc;JTVW*6^urFG#kvHC zL|Y!Nbmwb$MkBB-M>0=@R93I&WVWqEgkz`Ia3=yp1Y$+KTODKQmOdk|Qu0eWs*AIG zb3)1@K)cF(Nh1MYt7NJRNQGW|U0}?Zm81v%n*5US0MAE?CA;n^<&MrPX;${jkEyA# zsi}dl)RtVH%-?#^Wqhh8Zud{_J=uOOsJgnh3{W7{N7lWb#y0FJKAT1QwH|v-iYlv# z3Z^0^vY70wtY$?~4^&P*h76JF<6eCHq(i@>Y#b{UsfPJ^)+T$E?M2r(N8VrX$d{xK*9XbxTX>nU;>Tt}i6L3G4^$*@Gm9f1sMG-* z$0IUqLrR^r#UTFsc?ZMM#5a8(JK#G4<)^esw%FL zN?w9wKbp}orp#ml^NlV8yR)@Ux{&2S6nzj7V&>t561~8spIQO#%6w;PFH^*cFX+lG z*Ow@{pIGK9O3?DAww4nSN+t(Vn1uBVzTofVBlnRnQM^8=2)K`v6R*P zgs8(50RVOj^(WHWwsKI)##oa64UzIEs|u16VpmZam|muYG(zGm{?>iauI4a5SX!VG z0+9;a@^v9$sJ~&Byeb<-l37}fU?Z6aRMM54a-H@G`4mZnxR2n=(D^tekpNU5l0d9tfPeX+Og-3 z$n13u9W#f#(yM+6b9`z)Q?c}(G+mST*xt|K5#$M%!FXv;-t`=G-X?uj&UkK!$JATh z*Aa+IeW7h`*v0GDQWn|5GO8VCpM2Op{-_^J`AD>bPS|Fok$F9wIBKOR z-dU;LkKXloh<*flC5^nw572nEH7Y7o4-VXKM!8;}5*NP=Px3kJ&X{QN)a5S7_phil zo@zRxm?CFQdeDd8&e3f^5oy1menplZQkY%pQ+O#2&;P61W_xwMtyuT8dlQW6-)l6D z4ZZJQ=(T6xbUMX-wCL@UbKQ|d>#}Pn!$O3Or6M3mmh`$Sf&e0?vhvl8OS34V_P6@> zudn4Va4BVrG%j{)VXm{*8HK7jB2#=#E0{=#@4zguJ=^eExPMNwuBA;wEjE4xlzg`3 zct7?=PDdxq_l(Va$@JprGUw~)G+!09RX6^Td`~*A;;N|j=yt(ajjpq zFP(Q@qs@o(?T@#V7snfNr++ClJA>$V3b`~M%M7P-h3b?)%7WF)*V=Fxy18GU(w7Td zt|ez-Z`1=kGfpBcI0DKqL!9_1&kCj4=uEf{14kWiDCbbkX4~i!(l(GO^-u^nGbn$d z?2On8HNQ%gDOg_*Z?!A=<~D5`JwH`x$_Ow&&zzg!4;_qKy%Z)(RP%TvNP1d#XFkP< zdmt_65-@ej=;HDu$OV1vpCd+L;GfJT?i=n1@i|f{f3I4mFTZ~W=mebnJ;hiG4i-q~ z(Kq)mwvKil8hWib_(d;t^-QPL=SYTH?9fp1Wc+6nYRP145iRF9Q`N^~>TF2UoXTgs zfRnzKu*DTySNGQ8;`joUlA3CV8nO*;OY9?;1_@5ooU`#@q+}20h=K{3s-I~+K528M zcR}nPB5Vd@88QK~!EopIck)Lfj$4jE5M7E~O53NJ5<6IUxS|~Ng&l)j2qe%KM^T&gms_XIH9cGVJtBigKa5!+u0W$u z7AV9EV+y<664Ar^eL#qYeTKMs?xNiY{!;n9+|vK9^;PnbXhn1q{XC%DP;0z)t4^kz zp8wp=11t&1)rIn?vNa(~5Fdoz+bFTZSb|zJ)&4=|LBZa(_0Ybtn+Kz%TfzXPq&X;h z7OCGO82M2)N_5|CfIb>%9p>04L4tR}g_G^cy{e^W_5zd!Q?mv*Oi6@zph4NMasHpu z)2*Ml*qW1&kq2^Sb};_=vH$YToBiL1Diy#Q2q&Z|*Q@SFl#P4zSm%g1Rfn-iNp%v^ zPq2)YjM32eJG%3kip;iUn-{!E8!j{w58fZ{iG(`haB*DwOrRm-r0AkTx6V)#S~oGD z{2G7lp8C7#lgor^H98xsWIx3<4LHJzB4%`!s8?22mW!w41;z`@RvDLrcR(h*e?9c!Kwgl?BJo=MiRBO zEe^~$UB_(@0YmVW>Vk(l|H+Q%Z@l<<=beaJn6pieqN%U7A&VE~YDrH13)DVre%+)& z+J3S`9AMLE@_kl$3Fw~>H^|#BU4c@0^nXVszUmIca=gJO_r6~ky?MFAU(JxOYjS~u zT0)2IrRmb)E|GWlyexdwE_Sqc^u}(k?z>A*1n!ul-8kX)qe6Rc-qNb~o?z*~GVEvw zi2%=ragaa*P-5y&(V+jSH2JX`D&1@(@!D%G6MX|Sss6XpT)i36OG(RQl)%dm`}2oE zZo|FrQ+m&4YON5-)a>@n5Tx70Czx9Ef%<LM@mZs$*Nvd zewxR;Bc!Sj|L9LapU*+L_4&%8_4)o!g{@_88iU*hh$Mbqq6aC8W;dAV)?pUhm+M9D zb}?;?IyerNS=)#886$$&NxT<3(c?(d-lSrd#7GimVn|EdiyI!KO((H!-At15bI0yJ zD(9CeiV~U)D(t_0(Pc!C+=il}Xm4VHRd)vnkg|h>wzu^;H6_XW5;sJP9=glMKvwZG z&3t(asZoVGuYd#;5kmtK{Pd^~|F-|1_b|zixb`W1LEvSbD_|<#z0MUX&I8Y;eG_NO zYIdhf%Y0e++Kf-R>HoQe1|$%gpX!>(998(`KW`)PCHl7(wP|9=++`}%7(MOn{r4N( zM}TU`ZTsuuUZyfo0(qs!<&u|^e0DgBziY4}UZ?ZpLmSF^z&|%F{$^k3)d#lI({k$U z&S%70Lv;#VmigUKi?@*a>9bx!QOPiD1|L$!ATf{!f~RI)o_ycs?{D$*O>q58t2emz zZN$TaPj-3%@yiQ6WInBjX^!*QjgvS&`W&oozpaN1$N=*u0!({j|tS zyWb!Ik2`PxWT~Xw^@SQkyBjC7L9r`U2$TJS1T)HWkMv>ha&0jG&D^o*Qm#0T%#{>_ zgSV4>3G854T~*~}eGi4J+i7~!b_CHkgKq)jFG*PXCD}LmOu~pSgX6(U>OJptbE9iv z_6ap#l>xCLNCFReg$3PxHOVpkGZt?{*%F$*M=j&Vu2W$UeT}Zw_+cgZTjKk}AG$xy zWNL$NgB%y?2!mC!t>uSpkd8|ZSeoV8X_~D%??Bu-GeM_wo;l;Y2|MGbbNH@no>Yt` zUF+N{j4p7_k6GKoo92zA0?34rixHem!hgn2U$Lu95VPcU0+tFti`l-2r*U>IyW|z7 z%~w(Ze!HjkKtZ4swUnNW2u{91c0z{pc8FrAYB(Igq@qv(vl{^dgQtHBJSQS7Eay%- z579I4?G_FnECddu*=ck(eE+6gXf;$Mw%-&d*6D#}19{tpN2P!r z6|}JQq1gQ2ZL|I{P(Mqr!6}WDbD2e$+h?Qu?|Zp^N*32B^U3{k5q0*t-I-=u=#5EY zf|S3T4K(VN>gZ+}2I97!AcY;){Y7Te>@2qr=ETIbLPpNWXF1@15iGsn?63dU72S&~R z8-_l~HS8~j>gP}zhOSDeY*h0*$mkp_gnXyHsbMO$gOHH6KLOEMLmB8Y(98JOuAb9M z6E`(zS7;s#z6Oi7JpO&*g)U`ir6HvK{c`d7pNYMeGqDN-tdZPil3;$*#HTD_NtOD2 zI7Ql;WqPEn92~{nT%H=0CaR8$4fj0|ylx#Y{S(EQqjzUJiF1S+ zo_j<`W7=Ntj}DGt5s$!unUN4!&6#$cAI&I|KVqJ-kATkA(>hh)$*DN!%g@%ZX^!y} zQ$?GkmtE`YH3pIA``+BIYv1Dg?Giv?Kivvy_apAA>C`o!ED29BQ($evWF=dZ2Fa2E z?e%@F6fF(O@)%)npGU`g!n$`5cWdqflfdWJ?dtIKXVYG~vSy9ErqzD(L1Q3X>Mk}jM}vlR zNjNBEh}b6MvZFT(4X3}bvKJcpy?)B64~@wWMrs!+gkrvLI3>wZNj`s%DI|15sLjU4 z#w;$58yi~^fG`ckyl}GMHzY1MZXIfP!Mro=(!fB4fC1$-!MyiwPaREg;XA0d+soET zH$SAd#=)2DL2x!u*L&X=++9Y@up2P3PXCKS3^H-W4t+Cdl5F`c&G78zegs1d*nGYKret7aM|~Y$GC;e(_U9$uSi(ZYjy)05+E}Us`;!tyO!&7tc zs!^S5FN7-S{BAp$8}LC~5DWT^SnZgbD|ut#Q@#Ky%5iv+j>s(P&$LV*K7XK9BuR>Y zJV;u0Q;hk+dT1==KdBm%0QV2C4!!rERPt1pp+EAH-lC4QppwG>DNGLM$mF4|(kXey(_a6OVE@&?M=XjTVt;91 zI*gaiM*ockWbg8J0-cfKf{DYw6~eXZHKp6%?#ENP5s>hJ+32)!Uf;>y1w+LJJ{;J< ztZ@fcB_de=j|84nxad#9+-c8$3Jm#?7#(4I-T&4b@+yTfKr9mdmm^VeL%aSrG6BU- z!6vJ}w6Yi?>hpiWGn*zj*la0PBVjc%cdFyLq-S#czSpWrOp(zxDFs=;YFwybPRw`jg$uNQql+~1Cp zPNv|V5>rlo=Cf229p3W{AdrAc39qkPn#Baciy4%EFX7_8-f{AGU6sC7oahCcMpD(2 zvW37~WxJ_kzu)2)LQmgMP&6)F&;`+*MxVCHr}!c>R&%|)SHgo#EeFPo$FxWvwTUiV zrM*(YRJ^PEWFvd5>qvQZJ+YrJV=o{HTsKp?(!B3C%3!Eu!yPmI9hW=Emx<7$F=?CC z)=00mDYVIz&?XYqmV6;AUu`*z>32 zmfLc@SoOZ!`SzxaKmcp>Tha4?nR@Q~{2f=Md|R%>b4IS%48ebmRlr9X!R_Xo6^lN% zkV?0UKg5L_v!d`_ug0|sfB&@%Q;vTU_3zuIfnQ&_kA`W%@DY*50yiYznS_wg*-FMl z@akEsX;(AVQmoGALV{WzWB+)iqB%Y+{=S?6G`+mnp^{J@eb!j)i~Q+&bJ1AfeLy@K zq$_54O@-)_L@oHA3ESp*O0{@h%LE(`dCyc^mewjr$})jy)xo-eOh7g!w`Y93CGo{F ze~3ab+QSqRqJT~`o9(!tDM-8}I&<)S2rCmMbWr)V#KJVO7Ur1n-1A4VEBwQk5`fScWL9Oz^&gN+2B}2i#QE=*OndnuThpr;Ya1Dfk>lk7 zwSiVfg1)0?PvFDQxdMnnxkkCYuWP`byEP!~PbW+?dy;@qRqrP>=Ih~IT!~7&h}@WZwZVt*CFGXGQqf)r)a#pUYH~AgXD8>=VXtu_cqXW z@FpKENKzuvEC7*p=c&NTe)cn2nNOUSO_{Rq5Z-CI(shu_i+m(G1q2f2yNxU!8DRu~bhwh46-NN8 z!lNDE!kD3vh2)0K{3vcd32fuac9OdSGBW2vh*hC^=4ri>03xtVt0R{VQx7RukGc+p*ny70Y4v5m}OqIJh8q_@=PUkXLAZt{8r6S)EFl2N4o)bU? zKc}SZc94%=c4kyoo8%|U(1x1!t29`DnYKnE%5^^Q8q_VseLLGTTsvR;S@i0YET?V- z2=D?$^+e)7XS=0}D!JnU02hwsR9PhT^AnDMlZi$^^!Hk?BcPrOynM_660E>xGg_0j z`%i%iY7umwOOEsO&2;i8Oe!1*Z-DLIYLtg^8lBM`rSd=P!$|^hzj&g{=YSQh3?MKc z)6-!%5qX@M`HZ94Q;=q-Z1cI3i}QW-^3l*HMDQeMqT%$@JgWpXFg3k{V0MeH0f^&H z>GFUoJKa;-*Js9dROYs;3l^vsxjf527Qh$(;?W2}mAO7hyrftcO8Lh>q(_ z2^X%K8aDh%XthP3!OkhCX$1(dTb122hq9TzxaB<=v3kVx(O#Y?QZ;RO<4~(|-{Az=%lx+ZPdglgXt zQ&U0c#rKE+0GPFb_6OwTel+Xg78j=hKq*C7zUXS2t{+3yv!Y- zqOYZv2TLlsAGB1B{7)}@P6}x?e%e^`7}YI!rDxbBWijL#w+ff}tlDy_O_k3({@h?s zRFj|V=P0y@{57>xYq4Q~H1>DQ0&u(p0C}E2R?QSxWZx9J$gnOfFrTfJJAwpc{rNdP z?=HChw&eqE>XUa1YG^43FRy@d*9&rNSF8Qiwhux9*(dq_}Qx zJbs^SDHK*+?%~{COVyv4ESL7?Ec(FNB6N~Ai^FkW%3{_rn>S)9XzwM6@9jPBB{cJxNfwwK^$JpZq`nEafU#oSOTjMt>W%{kS zy54~Vjf;y=5lwhc@VxKZQwav z_?u=io{9gSWt~efc8gaaHDL6q<<+*}%U@dv1t27Nfh%uEpP?+kEd-LYtGL=&5--LF zUY>Lx!UF|;4xJEDCp8iu1BrYj*8&gJ{tu#&snaFhb%QoKrTm#NdaCZ1t(}ne53G|4 zz&daM)a9hdQpL&sb{RH=fsm14ZQDwHsi8c(ulZ zycSzj8#YKIHI7yls)&bdXc+-2#~do(6x7beFVSR)6U&=9(?|f39r4z`L)@+3RTzy$ z4dX!DoEH@xpDlO8#vOV+36$NIy9Y;3vi7_!=No)EO>cz1lsLOioevET${s8^B>32e zVcdU6U6>I+4ee@iUg-+mTJFSFOt7;W8z4RYmUQn9KXS60auh<0WQ7Bci%bW`>i}+k z77TJSG679FOm;uO&+`e;-%#Pvh-BE@3J~y5%xiX0mwJ#Zb@}86DAui?HH$r1q7oPy z%RW5U?NW&~#7LPAaFNA<)9Z=X-hLKh3;m^-_m#07&v2dX+zUi#DfT4ju1W&r8V?n) zJ#@o1>LTpzBU%3eAXnIrv;yQIvf<6D0Bh0(m;s{z!>ieN!OL@aG@~Q+6FqG&;O^2gNNz>N%zA|rm)(1@p%AxuMuzR#qI=5#tva`qgT%Yz z<1HDHQ&}Ia8O{;>5=GYgmM1@lb$}<3j^%UzIP?##Z@YjR^yS4}bC|`B5;bZ+95Tm@+C$8({XQdFD4zKj=r1 zSs$B;U$-`5X8Bi1Oj7k*E?cf=-52x2vgW2gTgv(PG4#uqz1yXjSzg4UM6wCad%%;) zsaf=3OcJSb=U)PpRXyUHx#8@p*=B&zad2?uBdPCw;%CJ{WZ~H0kT5K%1p>!wN9`4- zu>_@A=O8-m;}>)uh1J1;;v+I`S6I6T*jP*5nSP^)ox_0vFs`}V+MAJ@(EfGU404gd zTF204J%-05D%j%mue`g24-%0`c{;O z5dCJ6hKn-W?}w=+-sE9M$*WolqCgi3M2k-HP`@wi7+0`l1T+VO?y^^ zykGDkH3>LU05am=t}47-8@q3Sf7VNyq(Q{*_8L|0^WCtqLTaB)Io)ikOn+;(mIJUI zTMtvdaY<4l#?93D7!u3y?=JqZl{mCY>rmu7NpM0^MdYvr=x+WbygLR0W=VgN?B-uw zT=aJy3q_0X7{AlG z1Uhjt)4tu$g)7FT_4`m@)%aWrM^j z5cwlZtdq26!y?{S*yY1&N$IYB5Rw@QuUUt(J^lB1&PXS}*L)3yt zGJR4G^BqG((p|8HgHXjCSP#XeA!;}N@s>*xkau_yU=hLEJ$H1Bg0D~Sto3IHo3Rvk zA09lk#QNMQ{-8yK2gBpfJKZ~7C&YI%FIrn&iUMdUfRa|~&MYtS7$m21$59Qc1w;oH zz1G8wTFN-yfC6oBkC#y-(6#|sKLIcwauyb=<^x(QB7nWFA7Gz}W&m4kUj5y7RjZj% zb85w#_K*q8&bIjqM-kD-0gQYx(8}oieh|JIDd#h32nj8=8_A;)vWlsV1SEoPJmlqc z)R7;VDFt?>D+d4#RETD=;w-$0%S=oKRmiDP5OO*N)ObCQqW4R%m4F)*I|C5L-H&`m zYeB0LbQGUL^c$V&gRYL0fZ!!+H&eyb@?raq)E9HO#g81NvCTD?5>S`E_);7{N* z-{9GBr%X(8bM$7p(6hEQ+= z2EGlUAF~AdM_D>;jV>!|1smz?2P%VALr)=!ckFl^C9l2I69Vk&iw~6QWp`h2gZ~Ws z=j-WEvI;jwHfcIbx=)0A|9}*JH0RI!hj@+^T zdlzs^R>N6=MIvhz4riS9CnJov1m=Q*TSva#?=;K+(8#2va^L-iI5SyRqkmomJ}x3A zWcPJ5Trc-7jg!ds{!eFb9TwI4Mh#0z$G}ihhZLm-kp@v30RaOk>6R3vM5Vh?7&=5O zl#~!qq>&Qk5E4=n(t;o&`rR7_&+q;Idaw8V<8@%zvuF16+_CPp)io=Hz4y>2$v2j4GnV=e%j~_6Q+Yd)34?%us8hse&#!ZlSZt`?<*WGeGVa|%Nz!3 zY%e=}dBja`Zjl5loCpqDAniFuUFIoXBG#0)&TkyMw*VoOJa%t7XH#%i+o4ly%>GGeB)QdUa#yCk}*F>3SW5WhiDX{M9Sv~x`j2Gz)bywcaF306t4d1Ip0 zIx~#oSJNz=%I|(CcM_8rhU~(?WW18IdGZXm`K&93nk>H7A-1Sh?oYv^C$2@+@UjBt zz$;=R6oqC@23O#x(%smrL@}t}^=eFb$)1n|1Ncd?Z>EeJ_(PC-teN&TT9lEG_7WBD z3l=k3M`7C#J`~QdWc9$Xq&ca9Mwh2`uUYf}i7kS#L4l{@c=%wh^IPXz9R81HknhDt z(ftRZ*i0A|XKsls4&2kGg{R#=g?mgXgmhg0$3n4xsW^4#@VEN94b@ZJ7hzxieYu|= z*Gnl}6y<$q7Kv1R06`bI(YXctUQ&E1#i)4j6G2iw)xY;ZF-T4aYZrG1bXqYXz@EXa zD1MnB@kpwFM==)F>><*@xv%=A{!JezEzSruJl<8v8adqP(?CNXW&l_b@r665kKUdUkDbY_K?~ z{a^oi6;%xr6z6?|6&_FA9VCrq(8hfUr1^jdi4boTW@hFdT7?%rHD8}T!?;f=+d0f1 zJi5|GN={KiH01{7+129K6d~h;`z-`#u)ry_1T{Gbb*sw%UX_-zH&U%$1TB!vr``Bt zeYzAvn4n=9Avm^#XL*C<_f8Y&cY{Jg2xmG|dv~l4-+~8&M!%@ZW{p4B`>wqAOtc!u zZ8Vs*G(@1d*ZME%4Eqjd-}&i)1X8KRqH^6*OO?6gyu+|?)koQpg2VScIk3G#^q(6| zLg}pvL`k=)$m97p7YDq?UrIQCngDNr1`spHLh_K!p$iapneCO`y09`zB*|{}B zThyXkO~G-7RpHkffqs#J#qO;%@#_o-QAqAvJ9jk*+?QW-A)4y_Hy-FBf0xqBF0?MQ)8h#!gJL){R5tIsr$4l`sC$yKjR^MhsA;C zK66>#?<<{+{lSLD;Faf-@|%ZGqw#x#vZF;<0#YGJj{7uuVcM)m&IKQxg!-v!=L8U5 zRV*zxt?^pUJ32n4$1Ks!=G^^#uGVXLX?q-=5jfe@QwoIcGdW05$4d-1zz4^_b>Rj{m^2TT_afUn9!VrPQ;hDxQyp7(EMG_K& z5auq3>LYvxGCu5$LMe#0)zXP7(GX=Jyk6c9uhg5_N41KFP@rQ!>*x2XoX^|*nj{$Q zY~IadQ5~i8y_V|mPT>~s`^}omkbGPCI$w>`MG;gUo%*~a_hTa1pw34Wx?yV~!cdh^ zGJ2G z@^0*>gp6*3&*sB^GOVv^Lw`hRz=92-*7iIpHmsL#*q=5fM}8y;YW+zhT|=+BC^H;&!0F$CmOXNmF>=2}n0D^|-Y3uwT@LGdtFZk;K>b3rLM8X3fYwiA`?r z#GqtD7yBNBFZ0By>fHbbsSL{B<<*B;~4jJe9A@p5=lz2E8lUY{DrBy63kyjQ>Xb|1KYe*I%ATEvOYF)j-& ze3&unkN1_)Sd5dmbeGw5I@x)_K4^S(bI~dLeC#oCDq4xeZ{Y9psbEahs?|V*qF#>j z*y)n2PxY`%C9GQt`zQC&JjG^GCx>SJvu}QVBR@*b?w@=84`OmN`wVSISH=H!@04aBRKplf_XnkQU(!xgtIX-4L-vs z(MZ*JcIS-CVjQ80e0P8U>e25DlwUjL>kVc^kS&&|!=^FoyF+H$)wnRnPFi`%L?MPAB9R>?ce#?9t z_OPr4#NEUIX4N1&;+0!#AQ;#Hr~%xM@-$P0E1A6y-;T#Xil3F7I|QxyRR4Jt6`RZi zVw+?c_B=ra#d_PnBlpxZyG+_$Ii}x)i9Qrq7)c69dGaY-CzQUT}G&s_mNh zn2kJUd(1m$IW4vODRWs=!DnV%5vY8r!3Pu4OgIJ|^pIZhFj?eA$nD;eWO=^jvL?B> z#M5>?tS=FQ2j>)7Jivy#jZ|M-y%6N>^Z!q%#<&k zsSjYuhO?qFOqr-8I(}QsKO{|kOu`iRsKF&@c$%Hglj#p~Kgz$}VrXv-f5ED~&269b zqnh!#ob2PhG-NS$7Gidd_P{VaW=?V-YAZI&2j=CfcUzU%pp4n~z`8-dfH2sC&&&R5 zkwIyM-=A3Zh7uaV8L%WmvIbbgtt2S1S{T%dB|w$gST3@K?SNm?mEDMe832*uh!dj#QzmE-TY>+>oz*x zlNvWTjaH+kTVtC5onCsJq&1Y6AkB&v@nreFJi>@*v|d6AB7d{Dm2uGG#n5R*gj{D2 zmI=td4_Uv*OTSI#&qo~v6>#z@im)K(bqr*2twTM^@-kYwHDxnJN#5cGf{ww~G`sAD zB5ApH4`MTYd+`jk7Me1lk?N+>evkJ22EY~t?PQq{zhsQV)sT*sv9$^YDKQXq5i2~2#8lEcr0WEc&L6sMuBEzJ2s^D{ zTN4hITGugp<~9x3@tjjZOQ!eSx*kYl0{g-2g=**r*t1O_{%(`pR3{qro|b#NF;ZEO zGDXqZGU@@#E-fVtvlc8sc&GRz7sWP&=GQ&4u&_WZ2!3IPNH<2} zZVg?UxMP0<^mL9YQP)5FZ%`f+ceHNlBIfW9057-I2-13Fk(s>R{%Ovc=Oz?Ks@dRn zmd^{NwXK^abF-+FP8Pb#k1}8;$Q9>|h)mmf-iD|@o?U0f8qfe1VHfIL&rC&j+Lq%Z z(}>K)XrxQzT5;RBns4K-)qnYD{VDldTNT<5xEuzNH5$P^u}(N{KqHQ)R7{?6UfgL2 zlkYVKx6mxAjnO&(SQT$t6xEc{4%wWf1JJhxe;H5o+3Mu`BeNidElJ~@kgzm3&`J^$le)yGa%5A0a z{uVo?UR90dow>lL(U6;L#F(W&29hz=4Wrk0GU+Xn9N2ZsCGopoYva1Q`_(L3hKPWW zhD%?$b60T#OU%c_TI37pM`$s5(c*6>)Xd=H4E|IXY1P~ld_Kqdc$%Et4u$K<|G_8aXD9_i6!*`&3TrN>! zJ)Wo-Mj#FLe8+$@Kr39oc~Q`$ng;X%H!7)cWx0NJcCvk1_+*0OlP6ES9&>ID^uD2B zL;0Bvytoz(j*lZdZn%D(RQ~weW_77q3#h_EAQ%h}sDU$O+3nZDG^fp)YPutRyYJcVaf;I{%VTj%*xW_F zg;SZ$ugxDzG6)%2)A{vE&#^Av*HBk483~EpTPQKwJVB(fBJ<<3*e51C@vLm zjXMx_`Kq03sEDe2QI6kQrz^SpZ!LaUR=-|@TZvtY^Pk^)UUfXP^=`~c>c3cC1n3>m zu=K*ShGIDs*kSNevH?83Mu?JumChqml_M@l>`h2Za~KQ_#x=%FdL7xlv@d++h{I}x zW7gi&l>;6)l6MU*?hb|U2!lFWjNFzMNg|hUK=g^rxL7FW20#$@H0u^h!{hJ^J^;2$&#F z-IStAfudxQ=n9LU2OojzQthQNFhzx?kWp`{^bj2iB;`|v7k_+p^ZMfLya0>p2-8%= z!fK0L4D7E)`q+rQC~!K<6hvn!M^P_$Jkt#yshXkO9)7R)=t5SJdEVnm8UheJmYb#@ z?nw<8K)vuq`x*ZJF-@JZ`T@)}MsIJAJvPg!KlgTPPf^rk?B-w|g5DecPwVK6&lc%h z$1Lt)jM$JOjflj99!lH}n<7h4?-~mapZuZbWYc`cY?PBIKXU(*aOU?I+GW|?8o3Sm z{JEqpv``XhlJC8ih9;fZWN<}Do>(I#k%}d|9n8)^2}2l0!Hf{w6~u?W33~k@ zxL!^m|31NVdU(xDlI9wu8Up~ccir09yoW>+@MD8@!wz3&vZ`r*2GjxWc*qoB4ln#N!F2^wM{;H3pr(o?8p%l&g}U#G&A`U}wY-k)azvedVlK07WhtQU%k}(ILi= zfF3kciO^_}^CGpFF9U-_Z)0+|=Geob@Qj4Wk(ire8>!eYH@km&g6>DTnUD_phc?5P zj`Xkp{Jw=)&(4oj6^qB6?-or0;*JyDtrM0=9Egw#pW-3cj&ZB`JhZ4%vN4D_vFN%02(fTemQ7!U^VVQkiYY9@pWnVPZj)dA^a#D^U1};( zQqIN(Sbb0271#>_O93lZ&Y#<>@zNf%L#E!tTnkOq3e5t=bwN-zT?>{b<80){tBtjh z@lXruX50R8Jd`GJ($A7hG~Q!2%`P84>j1$9Y@|;XMA>(L`}%JU+u6g|WqJOE({NeO z00QYKvnB_8Y1L1EGS*7da23MpxBpm3iKwZNxgbol9?=U8 zUh~e%vI}xGGD<(dF;GDCec($HBPP+?weEo3i<~!0iCAdmOIxn`!AQ>8cpS?_Iw(g$ ze7&o^y}{v8Rv1$0d5_&pWxJ3IJqDC&>=!Rx$`Wb?YiL`JvI^stI;`ycB`{IQvTp9cd>1teH8IiWLs4v(l+rn*qLM@QH}jA7&b?xiP=5nmgQ7Fy*A96 z$`d0g(KVzj_U5DE@sJ2IPbmaAeUPv&r8R?etm{7)i$_w_i|e=2mpKZ(SH}@Jt|*+( z@ZDS)YwUm$rGM6K(?(F@nhOcOC zBA7b=`rr%uf1lEWu5$LjxP}0?;?(6ZgU=xN2p!AFHhH};n~Z14UgPCw`rTp4qo}7% zxcM9XX1el6ISP3}*cnYQ!!uXWdT#WR>sXzr>_L<)f~zTt$M3@qQ2ijN&hoC!rwRwa z#?DUL|9jZQ(}vv%5|5^8`F55h@_~*{mdw9f&Aa2bRwuutnzd%QzK%pZn?4~HQ1Gq% z2jvOOOOvAinM|*xrdEn4-@WAvQ(I^1I)%MWIs^)&^ONo!P`|YmqR?1>kfI)yaHQ<* zZjZR^4S&DOvsY$q*Pg)1f3YCqdtHg-et#d8W_D+X2qtN*NKXdd&CqKc0*8o}QuHgu z@7M%Lub<8s4V|3N3uiC0LaRgrAT-R1MSA}M)e3ObG}Q9|obc0IcKZGP_8b0-wTS+F z8b!BB82$!|`JTADAkpUBTpk(R zYUs2!m3U%nhM7$IpW#ar-564s-z}FtYKDjInk!o4x)kdSHYfMHvKj{7WHM8ik4CJB z-$E2!b4>H33sPOBPvma~C>U2?|1Kd0GU5O<^ z6r%jJa=lZg3;ay%zA)o$%tWB<-BxOPG9^1O)ZatDFUoq1KXf{mdwFG`sxR+gnpA>s zn~lPV#{~tPu>AUpB#Vuhu&a`1q*G|)JeV2#rvSMBsbJW=$h7_#EFNB{LPG>zRO7=U zsoaeygl^3qMs))pFM*jdOTOg~pmMoy?MjCnk$r_YUDKaFL*Dix{9f-22lVGx| z2#d-&;)Kb%;$bU6iE6sd^k6WQw5*HQJ+`9^@}F(+pGJRl*o}Fj69y%@^vqf_Hi{y~ zl!ohq{x? zA&d<-^b?FsVQd8urH?7>pW_IQ`HjJFwxc_R+^Y4+12qD2h99Y}cBZ@zK7&{4stnmSKQ_au|+z~!-)z9V>&;z->tkV_< z8=R#ggQe)l(Ejj8saKm!B(M9j|YApVyGY+mJ2a zL&jN0q@rd{1(p)XHIbf|sB5Yvx(~2ze_-+Xz!a`X$e^S_PButEj{kBBHoUV};ZF>> z8X2>IIn!)+#vJ0(Fr2$>)5B{1k?&2_7hP~-8&BQY2xODZ3{~`rU*h61Nhao_sB{^N zVivOfq<4Dbsfm(HeLJd(kb?A8A6U74?_)|C830iH_A zUKh9!`V0rZ`ur0iy+(x`HepT84Ob;pGM#HIjW5<``*lLeoi6}_s6eB$2C)6`WLc_^ zaTtsx=)rya`L(t+m;@g=1-6TY$%s}lA|fw5w3nXj-lLqO?6=X?dtP@% z>Zlbcey!eZcscm9NvkUj)!4M(;Sp*vVO$?Vtx`Gt3YNix3t2K-tIw;(qkev09NE9G ztSI`xjb7qcHwjkiKDtVd5pK*j4|%P@@7NpZ*?zG^qPAV@XuWc)tvizT&)b0U?*{&6 z2^;Yf_vu!3a?fQlPUVU`^%Gaf9$$%GG0$}}BxOu|)Gn;bRqCUf2Hzg1a!l@g`*=RT zi51g{Y}|k$Lf{OSD5%cF4$8(DHzkF)${PHIG)V^y`L}-#enH{hq>y+_UUVHd*5@8w zOJu<(8ywZWD2JPCW6kq<&~yhc*UCHMF3+E6P)Cj%NvP_2R__S(mH6N|44i%68s1Og zei_Ce&MV`i*5JmU%wxr>uFvrLOQHwXe5Fp=qr2Woqhg{ZHPmA0CAlF`fk(VnRV^nQ zv#UaW?F8jm8`^uJ9UJWZ%%-l9@Sb-5)Guk#NN6Vk^0ji}eWEqznCK7Z+}u>+vh4rm zli2u^$36!v?0kx^OxFmB^*4=4ivgyLMc}?rlB3UdSPvW<=Y8&S?J|q>hqMi0QY8+x z#)zv~($pVE4W8cpaNT-|!0!*Cmd;89(2)O;mmf1smOXG@7+)EnT*dCFKa-j5!?y9i z(ANBqZ^)C@Yv~ktx7`4}!61n9&934ZMUHO2|fpYo5Ujj6~SwG9aPYBwo|1QdN ztfOi@yFn9oKa-X0WI&~B8NK~?86hMrc%#FgB(hkieYN?>Xa3#Myy>WUFS}i6gg1Vu zIs{VWK9x^*bZwHSq=^N(z6P@aLZ(xMSSgf2DgIFX$gnO6iWFH?D53eAdFne81i8+} z6Jaa?#Oz00YKZ3F65$QAkE2%r+)s1t+L!C z8FoopXwv9lTlM8Clji#S{v*_F=tgq!Vn7ma;Q9M-jd7CA+UZo_f5hbW%g=O5I-37XOgXA6^Oot_i_Y zmV;)U1W4|rNxEHQYPh>C@N}5?xftj^9U$_CaQqI-j~`a%{rnSYcE33J0PQ+>*cSYe zlU#mgMioasRT1~dbmmlKq(6PHmpL7lfNxA2itvw^_mbdlC36!xaz1k?p44p+aSXv! zTjZ*1OT$utb?!@XP#cFSKjTf3+y7YvDVoiNO7pbfVQf>bs1te7f{Sbv2txW27k=8U zns5Ck$A!R<32b`SVoxMc~G!bX5{qksWK3srL?5u-@}7^oc;dHsV6y4=8` zqB`D4+#W!6>#I-ByhUiWERrtD@Nzch(;@%T;b>LNb9_3GnEfo=U}D316$Smt%O#2r0eJBG z?N(v}ShymLOV)r-l@Cn|e?w{QwfY;pgf>tvSSKSllrNEEweV!6AxZrdd-mnMvuXvDOOu!sT;`^E#Xe(KE zzWMHje^onZ{KIrXtATwE=Q0HWp@<;o_7*dAF4nOcuYeN<5VP)#sUDzTiAfjO@( z&;sPRO(PCEE$;lZW=*T1h;c^01d~qWbf@Ix?oUchCX8Wm$ng@jLdiZG=jYpTG!HT8 zxvk_SDV*!UM4sQcQjnHzBZUVyEmDUeVKu`^ru!ajpc-syR4%JI#ow|iu%s``~gfCuERW@P)AC*7c#w}FBJ(j)-U5mRS@_w5Qv6ABv&~@iS z%`q_K7&(sR=KbS`qpXGz0;$pHaS7u%j9b?fyZ{pdkG-Q375Aq>DyHCz^C#%O}*(MO%!cX2h zLJo(E{PgLih{by=cLJg(T}pt()h3YUH3DYms8#|}Pc>u&{|m5A-=~ZUz}CI`yMyrP zGJf{hQ8}xnyRF$?zb|$zB_(vwqZOmrfkF-w@JT>2D=V!#Xc343w3iJC5=KhLXAUDw zqzU1yYkjxZkXjp<+Wp{Fyzd;VQ{kJABWJ{eW*@ROJZt5*^ipr0A(ML!h0k$8JTZq4 zJmAm80NnLfn4yG&YcD=P%q=j2S_53#94LDS7bO&Uov2!}Db{H7!PMOQtaiKP&*!sm zdSerI+J`=9{keg9sL01Vgp^a+X~>1WN+~A5(38Y{NXC*vp&_6Lael|xZXt54-L?BQNou%oU}v86*V1j zVv<7P(JrYN%;Zz;La$6au^a$g^>PBjaAw%pL=(20n7!8labM z2&*0;Jw8k|byU)Pi?Bh*Z*O1A^!nuR81x`7p;n%T=HDCPohN2EVP1~EX7#(mbm3E4 zle0=sWJ*M&H}sBTc0J8tYnz~O_l|%%P?KWR*nOKT&;R_^DY8#c=?u0Qid6E6hhy&i zTvl!-l5D@|NQ&r4 z)O_Q69ZdXrsr^R>(w1Pr&NJ#d{Zm0+FZHpRexGJ{}az}OWzm$0&a%@hur0%dh(`9pXR#cydo(5p6hO0K3$GUeSU zMG4M5!b{Dt@lLbZM&qX!;DW=KWTYkC&GSf^j3n zyol}3cR%}?ncm&IIZ}}>EvhvDl8s5{9|gi`gqcabB1Vo6k7)S$&z;=N2EJaRfgCq+ z9^CrjDV53;q`*Y`*F@*SVJkyI7QdvO*Cf7QV<^s?=%>{x z4<0TDRp9I)&ddir9JkS7t`p_K(vbf5DqT;)>)Plz(HQh$hsSeESd-`PtAp6F`;wG{ zdnHMn!)0C)pq<<>QWRZL(x`)#9}+?8vY6L^(f#i)d5&c#1BgO%SXVa@Os{YsmePcw z;SggY!H@ayOGvr~VCg!$YSMuWg`!1`M|JegdK9h(;+HX5)!^Zy#%+^J_`4pF{kYHi zS60A;C}8>zp0jcn3CzD@ zC57US+ok3U148LVPGkjd%Wxs%N-1MMmR=HUks!y`a_8yF&rPkTW{HBgyGi^#&eyxn z(zk8cW?TBU2HpRBonh(BTKf7n-IDhgY4R=qZ*j|?U0vQiIPyl^adyKnzT=EXwZB~AxlMkNskHM7pU5e24IRa2(Hvk7U6h6QMkRC|w z%p@=0NGS%*9ip2N-=L zi}mpU5HKZ+2 z;J8+&u~+oKqKV@tAv#vdEXjy;~Xg)o*Y9eG*(k# zEG}oEAkO6dQwBL50ok|8(Ii zL-S7vQgXcNVH&a0{|=U@fiR-{I?2FSCxONyq+Qc80EGXM9?o#REYs1DK^&kRJv-K%&dO$)szL z4MggBnB5?ng?ng`@E>)QV9o!9$s3qBBfREZ0j`;ditoF9>D2uIQV#vc$m9&6!o{%5 z9}6Y(mG5DcAN4!VFx3+JnVFpGrWX1na+cqB^HU+72ypzRjvCO=GmGwb0rGy%*tY1C zZ#x%R*zV?9V2`aeGn^^(V3z+_6Z2xhU$u8?-Q?Bx3xXY{VWVYmcCHpk4vG>C>wHSf zH$Tr4T@tw=%fWBdE)GEt2<2!=$meC8g)sGDh-v7`QQ$x*1&Aj35)m?~aawkclg4X` zZlYN7=#g%FHBbFWxn**)=7Eu2QpSx)u5i*XT}yVCRI)nTCu)kW)mA#6%TwNKpQvw_ zyz!;Fg&IsOo@%ez3`OKA&DH^zR|H}FFNvKjo;k;hbX25X)*eL-=TjR)T`&^d(@ol3 zd~!bH_D)f4$|AGO^Cn@`y==)uC(ME7_0)qIPtLpR-w9U}UzfzD6u~9(kY4SqPOBW4 zACD}h3l(Dr+f(n%)|vP%JjA5`(@SEg!?R9?e9n-df_>rS|HTp6Z6*Q*K;N~5Y92Z5 zdTGMiiPj5_ydLse^?m65_5pap{Icr(4BFNbzweGClY0L?z0wDs$^9^pc+q-3QUc)? zLvUQiP_n*$4WY5;SR$Pi347Zjv%;Oaz2_U_GxEMI^jC9le0kTSKc&9*d%7Npj#i-b zsbtjOBJyZuwgW45;ft3X6OT(3u3V&A+JYKz3aJBcE3dt+1c?reyBVRuFU#7B;BHE+ zL(VVW4V#djF;E9uN(*#?<^oh_mXzmR0bntZB(x;c?5Mol6 z-J);Hm(tZDb9}~Rd#X4_>NVdV9mjLbJCb-G8 zNJEyuskGGe0$6rl{bpW~a?mF4s_q{-!9Rs%e=Kx zv$Y(wXg}4CF=^II-U;g*KQ>G!(xR2frLsg)$a=+ahE<=0;^T)~Em46%x)1!qj}lG5 zeA1#`=+`yqp+9>K-3?P1y3W6YTJ{6nQPHo#YRbo+>jGdl5fV&~&hHcGyTf+RvCt#t%`~|5LDi))dBC#Ix}Vzf0bD zghlRtU$j$7r=SMW^Pq&k;0>zU*hdDF^Gz@zs{dYx@lJ4KmG(7LHl2WXiWxqo+EZ1! z)bXmwZD-;^1S+o_yeU|IPbkHX6TDi4@9=7Z#v=$S59tTBK3&Oo@OdBIGAbCBC>7Ta z08kveyr03jJy_00dfYcIK!ftW&esE`()93jMOI$#x*$YY`{A;O^paX}42_GdV)$X% z4Bl>X`mBM~V8A7E+Gl+J=E7L5BrvOjV47<3+*UEbBGlHx!AKqndz?R^Kz82z(SjZ0Z=LRE1()SNIaO8W{?iP-!NL^;e5$czXB+^ zWjiV`=&sNfoHJfU&OoRqpIXC^=F}Y1YNr0hCbk{Qe$J0nrDtdULA)*;a-7l7S@;n~ z?v>hofG1jlpT8_Z(t)08{0n@`z!ccRYjf-CN)yX^ct@lWI`Ac>cnwD`yOPLNIP2A3 z;1i5m`(H1gI(=M3zh|;uT?bD|y=&O~_0fzc7rWkT_YT}ev>`u7+wp$g78A|ktT|gu zufi27p`^hzSB)PkRE5>;c`us`OdVZ+FOfhXd0S$WlHa z4y0cLR^~&&UDgu&KCVT5+wuiOeegQ3uc_rdaXpb-@l(%uieA*JS9N>O;E>_Nc4j#{5F=M^^S5xUs#PXgu~Q^> zFF4F-hFBXcOQNem)d0s<8!)o?>DB% z7$gW>Mk=2_k5KWcg9D^1ADq>HYPM3D>PDj#L;av}c}M zS4)*|A?xM!pcvXrZN1QBKWyw5`QE&0c_~NTqC4{~SqeLzUpY3s#bHaQd6Y72!AB=5 zvuQW3)sCn4_--(A{LQjbw9vhNGL0FcxSCSL5Rt@v>4EZ5Br)K`wts7O Date: Fri, 25 Oct 2024 14:38:03 +0530 Subject: [PATCH 04/18] Delete Drone Navigation Detection using Reinforcement Learning techniques/drone nav files --- .../drone nav files | 1 - 1 file changed, 1 deletion(-) delete mode 100644 Drone Navigation Detection using Reinforcement Learning techniques/drone nav files diff --git a/Drone Navigation Detection using Reinforcement Learning techniques/drone nav files b/Drone Navigation Detection using Reinforcement Learning techniques/drone nav files deleted file mode 100644 index 8b1378917..000000000 --- a/Drone Navigation Detection using Reinforcement Learning techniques/drone nav files +++ /dev/null @@ -1 +0,0 @@ - From 62d5027b803a1ea5eb4a12b334ec40ecf9d747cf Mon Sep 17 00:00:00 2001 From: Panchadip <165953910+Panchadip-128@users.noreply.github.com> Date: Fri, 25 Oct 2024 15:03:56 +0530 Subject: [PATCH 05/18] Create model files --- .../Model/model files | 1 + 1 file changed, 1 insertion(+) create mode 100644 Drone Navigation Detection using Reinforcement Learning techniques/Model/model files diff --git a/Drone Navigation Detection using Reinforcement Learning techniques/Model/model files b/Drone Navigation Detection using Reinforcement Learning techniques/Model/model files new file mode 100644 index 000000000..8b1378917 --- /dev/null +++ b/Drone Navigation Detection using Reinforcement Learning techniques/Model/model files @@ -0,0 +1 @@ + From 81265231c2cb52a37ac966e862e66fcb1bb72f2e Mon Sep 17 00:00:00 2001 From: Panchadip <165953910+Panchadip-128@users.noreply.github.com> Date: Fri, 25 Oct 2024 15:04:41 +0530 Subject: [PATCH 06/18] Add files via upload --- .../Drone_Navigation_Detection (1).ipynb | 935 ++++++++++++++++++ 1 file changed, 935 insertions(+) create mode 100644 Drone Navigation Detection using Reinforcement Learning techniques/Model/Drone_Navigation_Detection (1).ipynb diff --git a/Drone Navigation Detection using Reinforcement Learning techniques/Model/Drone_Navigation_Detection (1).ipynb b/Drone Navigation Detection using Reinforcement Learning techniques/Model/Drone_Navigation_Detection (1).ipynb new file mode 100644 index 000000000..16554b9bf --- /dev/null +++ b/Drone Navigation Detection using Reinforcement Learning techniques/Model/Drone_Navigation_Detection (1).ipynb @@ -0,0 +1,935 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "**Part 1: Custom Drone Navigation Environment**\n", + "\n", + "This code sets up a custom environment for a drone that can move in 8 possible directions. It uses the Gym framework to manage actions, states, rewards, and termination conditions." + ], + "metadata": { + "id": "o4DN_tEg2jvr" + } + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "HEk1YPjS2alK" + }, + "outputs": [], + "source": [ + "import gym\n", + "import numpy as np\n", + "import random\n", + "\n", + "# Define a custom environment for drone navigation\n", + "class DroneEnv(gym.Env):\n", + " def __init__(self):\n", + " super(DroneEnv, self).__init__()\n", + " self.action_space = gym.spaces.Discrete(8) # 8 possible actions\n", + " self.observation_space = gym.spaces.Box(low=0, high=10, shape=(2,), dtype=np.float32)\n", + " self.state = np.array([5, 5]) # Start position\n", + " self.target = np.array([8, 8]) # Target position\n", + " self.obstacles = [np.array([6, 6]), np.array([7, 7])] # Obstacles\n", + " self.epsilon = 0.1 # Exploration rate\n", + "\n", + " def reset(self):\n", + " self.state = np.array([5, 5])\n", + " return self.state\n", + "\n", + " def step(self, action):\n", + " if random.random() < self.epsilon: # Exploration\n", + " action = self.action_space.sample()\n", + "\n", + " # Define 8-direction movement\n", + " movements = [(0, 1), (0, -1), (-1, 0), (1, 0), (1, 1), (-1, 1), (1, -1), (-1, -1)]\n", + " move = movements[action]\n", + " self.state = np.clip(self.state + move, 0, 10) # Ensure within bounds\n", + "\n", + " # Check for collisions and termination conditions\n", + " reward = -1\n", + " done = False\n", + " if any(np.array_equal(self.state, obs) for obs in self.obstacles):\n", + " reward = -10 # Penalty for hitting an obstacle\n", + " done = True\n", + " elif np.array_equal(self.state, self.target):\n", + " reward = 10 # Reward for reaching the target\n", + " done = True\n", + "\n", + " return self.state, reward, done, {}\n", + "\n", + " def render(self):\n", + " print(f\"Drone Position: {self.state}, Target: {self.target}, Obstacles: {self.obstacles}\")\n" + ] + }, + { + "cell_type": "markdown", + "source": [ + "**Part 2: A* Pathfinding Algorithm**\n", + "The A* pathfinding algorithm helps the drone find an optimal path to the target while avoiding obstacles. This function takes a start position, a goal, obstacles, and grid dimensions as inputs." + ], + "metadata": { + "id": "Grvzyodk2vqP" + } + }, + { + "cell_type": "code", + "source": [ + "import heapq\n", + "\n", + "# Heuristic function for A* (Euclidean distance)\n", + "def heuristic(a, b):\n", + " return np.linalg.norm(np.array(a) - np.array(b))\n", + "\n", + "# A* pathfinding function\n", + "def a_star(start, goal, obstacles, grid_width, grid_height):\n", + " open_set = []\n", + " heapq.heappush(open_set, (0, start))\n", + " came_from = {}\n", + " g_score = {start: 0}\n", + " f_score = {start: heuristic(start, goal)}\n", + "\n", + " while open_set:\n", + " current = heapq.heappop(open_set)[1]\n", + "\n", + " if current == goal:\n", + " # Reconstruct path from goal to start\n", + " path = []\n", + " while current in came_from:\n", + " path.append(current)\n", + " current = came_from[current]\n", + " return path[::-1]\n", + "\n", + " for direction in [(1, 0), (0, 1), (-1, 0), (0, -1)]:\n", + " neighbor = (current[0] + direction[0], current[1] + direction[1])\n", + " if neighbor in obstacles or not (0 <= neighbor[0] < grid_width and 0 <= neighbor[1] < grid_height):\n", + " continue\n", + "\n", + " tentative_g_score = g_score[current] + 1\n", + " if neighbor not in g_score or tentative_g_score < g_score[neighbor]:\n", + " came_from[neighbor] = current\n", + " g_score[neighbor] = tentative_g_score\n", + " f_score[neighbor] = tentative_g_score + heuristic(neighbor, goal)\n", + " if neighbor not in [i[1] for i in open_set]:\n", + " heapq.heappush(open_set, (f_score[neighbor], neighbor))\n", + "\n", + " return [] # No path found if the open_set is exhausted\n" + ], + "metadata": { + "id": "gShrXNbi2rzU" + }, + "execution_count": 2, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "**Part 3: Visualization of the Navigation Graph**\n", + "This block uses NetworkX and Matplotlib to visualize waypoints and paths in the navigation graph. Each edge represents a possible route between waypoints, and weights can represent distance or cost." + ], + "metadata": { + "id": "YUdnEH9f27PA" + } + }, + { + "cell_type": "code", + "source": [ + "import networkx as nx\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Visualization function for navigation graph\n", + "def visualize_graph():\n", + " G = nx.DiGraph()\n", + " G.add_nodes_from([1, 2, 3, 4, 5])\n", + " G.add_edge(1, 2, weight=1.5)\n", + " G.add_edge(1, 3, weight=2.0)\n", + " G.add_edge(2, 4, weight=1.2)\n", + " G.add_edge(3, 4, weight=0.9)\n", + " G.add_edge(4, 5, weight=1.8)\n", + " G.add_edge(3, 5, weight=1.5)\n", + "\n", + " # Define layout\n", + " pos = nx.spring_layout(G)\n", + " plt.figure(figsize=(8, 6))\n", + " nx.draw(G, pos, with_labels=True, node_size=700, node_color=\"lightblue\", edge_color=\"gray\", arrows=True)\n", + "\n", + " # Annotate with edge weights\n", + " edge_labels = nx.get_edge_attributes(G, 'weight')\n", + " nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=10)\n", + " plt.title(\"Drone Navigation Graph\")\n", + " plt.show()\n" + ], + "metadata": { + "id": "ZdfU_8XT24wE" + }, + "execution_count": 3, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "**Part 4: Reinforcement Learning with PPO**\n", + "\n", + "We use Stable-Baselines3 to train a PPO model on the custom DroneEnv. The model learns how to navigate the environment and reach the target." + ], + "metadata": { + "id": "QgKGZZGj3FsG" + } + }, + { + "cell_type": "code", + "source": [ + "!pip install stable-baselines3[extra]\n", + "from stable_baselines3 import PPO\n", + "\n", + "# Initialize environment and PPO model\n", + "env = DroneEnv()\n", + "model = PPO(\"MlpPolicy\", env, verbose=1)\n", + "model.learn(total_timesteps=10000) # Train the model\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "X8DFgdHe3CaC", + "outputId": "d64581c2-1172-40d4-be11-93030890bfbf" + }, + "execution_count": 6, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above.\n", + " and should_run_async(code)\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Collecting stable-baselines3[extra]\n", + " Downloading stable_baselines3-2.3.2-py3-none-any.whl.metadata (5.1 kB)\n", + "Collecting gymnasium<0.30,>=0.28.1 (from stable-baselines3[extra])\n", + " Downloading gymnasium-0.29.1-py3-none-any.whl.metadata (10 kB)\n", + "Requirement already satisfied: numpy>=1.20 in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]) (1.26.4)\n", + "Requirement already satisfied: torch>=1.13 in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]) (2.5.0+cu121)\n", + "Requirement already satisfied: cloudpickle in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]) (3.1.0)\n", + "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]) (2.2.2)\n", + "Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]) (3.7.1)\n", + "Requirement already satisfied: opencv-python in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]) (4.10.0.84)\n", + "Requirement already satisfied: pygame in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]) (2.6.1)\n", + "Requirement already satisfied: tensorboard>=2.9.1 in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]) (2.17.0)\n", + "Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]) (5.9.5)\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]) (4.66.5)\n", + "Requirement already satisfied: rich in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]) (13.9.3)\n", + "Collecting shimmy~=1.3.0 (from shimmy[atari]~=1.3.0; extra == \"extra\"->stable-baselines3[extra])\n", + " Downloading Shimmy-1.3.0-py3-none-any.whl.metadata (3.7 kB)\n", + "Requirement already satisfied: pillow in /usr/local/lib/python3.10/dist-packages (from stable-baselines3[extra]) (10.4.0)\n", + "Collecting autorom~=0.6.1 (from autorom[accept-rom-license]~=0.6.1; extra == \"extra\"->stable-baselines3[extra])\n", + " Downloading AutoROM-0.6.1-py3-none-any.whl.metadata (2.4 kB)\n", + "Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from autorom~=0.6.1->autorom[accept-rom-license]~=0.6.1; extra == \"extra\"->stable-baselines3[extra]) (8.1.7)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from autorom~=0.6.1->autorom[accept-rom-license]~=0.6.1; extra == \"extra\"->stable-baselines3[extra]) (2.32.3)\n", + "Collecting AutoROM.accept-rom-license (from autorom[accept-rom-license]~=0.6.1; extra == \"extra\"->stable-baselines3[extra])\n", + " Downloading AutoROM.accept-rom-license-0.6.1.tar.gz (434 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m434.7/434.7 kB\u001b[0m \u001b[31m8.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", + " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", + " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + "Requirement already satisfied: typing-extensions>=4.3.0 in /usr/local/lib/python3.10/dist-packages (from gymnasium<0.30,>=0.28.1->stable-baselines3[extra]) (4.12.2)\n", + "Collecting farama-notifications>=0.0.1 (from gymnasium<0.30,>=0.28.1->stable-baselines3[extra])\n", + " Using cached Farama_Notifications-0.0.4-py3-none-any.whl.metadata (558 bytes)\n", + "Collecting ale-py~=0.8.1 (from shimmy[atari]~=1.3.0; extra == \"extra\"->stable-baselines3[extra])\n", + " Downloading ale_py-0.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (8.1 kB)\n", + "Requirement already satisfied: absl-py>=0.4 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]) (1.4.0)\n", + "Requirement already satisfied: grpcio>=1.48.2 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]) (1.64.1)\n", + "Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]) (3.7)\n", + "Requirement already satisfied: protobuf!=4.24.0,<5.0.0,>=3.19.6 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]) (3.20.3)\n", + "Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]) (75.1.0)\n", + "Requirement already satisfied: six>1.9 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]) (1.16.0)\n", + "Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]) (0.7.2)\n", + "Requirement already satisfied: werkzeug>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.9.1->stable-baselines3[extra]) (3.0.4)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch>=1.13->stable-baselines3[extra]) (3.16.1)\n", + "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.13->stable-baselines3[extra]) (3.4.2)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.13->stable-baselines3[extra]) (3.1.4)\n", + "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from torch>=1.13->stable-baselines3[extra]) (2024.6.1)\n", + "Requirement already satisfied: sympy==1.13.1 in /usr/local/lib/python3.10/dist-packages (from torch>=1.13->stable-baselines3[extra]) (1.13.1)\n", + "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from sympy==1.13.1->torch>=1.13->stable-baselines3[extra]) (1.3.0)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->stable-baselines3[extra]) (1.3.0)\n", + "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib->stable-baselines3[extra]) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->stable-baselines3[extra]) (4.54.1)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->stable-baselines3[extra]) (1.4.7)\n", + "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->stable-baselines3[extra]) (24.1)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->stable-baselines3[extra]) (3.2.0)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib->stable-baselines3[extra]) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->stable-baselines3[extra]) (2024.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas->stable-baselines3[extra]) (2024.2)\n", + "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich->stable-baselines3[extra]) (3.0.0)\n", + "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich->stable-baselines3[extra]) (2.18.0)\n", + "Requirement already satisfied: importlib-resources in /usr/local/lib/python3.10/dist-packages (from ale-py~=0.8.1->shimmy[atari]~=1.3.0; extra == \"extra\"->stable-baselines3[extra]) (6.4.5)\n", + "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich->stable-baselines3[extra]) (0.1.2)\n", + "Requirement already satisfied: MarkupSafe>=2.1.1 in /usr/local/lib/python3.10/dist-packages (from werkzeug>=1.0.1->tensorboard>=2.9.1->stable-baselines3[extra]) (3.0.2)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->autorom~=0.6.1->autorom[accept-rom-license]~=0.6.1; extra == \"extra\"->stable-baselines3[extra]) (3.4.0)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->autorom~=0.6.1->autorom[accept-rom-license]~=0.6.1; extra == \"extra\"->stable-baselines3[extra]) (3.10)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->autorom~=0.6.1->autorom[accept-rom-license]~=0.6.1; extra == \"extra\"->stable-baselines3[extra]) (2.2.3)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->autorom~=0.6.1->autorom[accept-rom-license]~=0.6.1; extra == \"extra\"->stable-baselines3[extra]) (2024.8.30)\n", + "Downloading AutoROM-0.6.1-py3-none-any.whl (9.4 kB)\n", + "Downloading gymnasium-0.29.1-py3-none-any.whl (953 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m953.9/953.9 kB\u001b[0m \u001b[31m28.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading Shimmy-1.3.0-py3-none-any.whl (37 kB)\n", + "Downloading stable_baselines3-2.3.2-py3-none-any.whl (182 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m182.3/182.3 kB\u001b[0m \u001b[31m13.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading ale_py-0.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.7/1.7 MB\u001b[0m \u001b[31m50.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hUsing cached Farama_Notifications-0.0.4-py3-none-any.whl (2.5 kB)\n", + "Building wheels for collected packages: AutoROM.accept-rom-license\n", + " Building wheel for AutoROM.accept-rom-license (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for AutoROM.accept-rom-license: filename=AutoROM.accept_rom_license-0.6.1-py3-none-any.whl size=446660 sha256=663d6689e3906f5403b7df59abdc9bf6d2ad16ad590ad4f03726d9fc8d3c7593\n", + " Stored in directory: /root/.cache/pip/wheels/6b/1b/ef/a43ff1a2f1736d5711faa1ba4c1f61be1131b8899e6a057811\n", + "Successfully built AutoROM.accept-rom-license\n", + "Installing collected packages: farama-notifications, gymnasium, ale-py, shimmy, AutoROM.accept-rom-license, autorom, stable-baselines3\n", + "Successfully installed AutoROM.accept-rom-license-0.6.1 ale-py-0.8.1 autorom-0.6.1 farama-notifications-0.0.4 gymnasium-0.29.1 shimmy-1.3.0 stable-baselines3-2.3.2\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/tensorflow/lite/python/util.py:55: DeprecationWarning: jax.xla_computation is deprecated. Please use the AOT APIs; see https://jax.readthedocs.io/en/latest/aot.html. For example, replace xla_computation(f)(*xs) with jit(f).lower(*xs).compiler_ir('hlo'). See CHANGELOG.md for 0.4.30 for more examples.\n", + " from jax import xla_computation as _xla_computation\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Using cpu device\n", + "Wrapping the env with a `Monitor` wrapper\n", + "Wrapping the env in a DummyVecEnv.\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/stable_baselines3/common/vec_env/patch_gym.py:49: UserWarning: You provided an OpenAI Gym environment. We strongly recommend transitioning to Gymnasium environments. Stable-Baselines3 is automatically wrapping your environments in a compatibility layer, which could potentially cause issues.\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "---------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 101 |\n", + "| ep_rew_mean | -107 |\n", + "| time/ | |\n", + "| fps | 756 |\n", + "| iterations | 1 |\n", + "| time_elapsed | 2 |\n", + "| total_timesteps | 2048 |\n", + "---------------------------------\n", + "----------------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 58.6 |\n", + "| ep_rew_mean | -63.8 |\n", + "| time/ | |\n", + "| fps | 728 |\n", + "| iterations | 2 |\n", + "| time_elapsed | 5 |\n", + "| total_timesteps | 4096 |\n", + "| train/ | |\n", + "| approx_kl | 0.01260215 |\n", + "| clip_fraction | 0.109 |\n", + "| clip_range | 0.2 |\n", + "| entropy_loss | -2.07 |\n", + "| explained_variance | -0.0333 |\n", + "| learning_rate | 0.0003 |\n", + "| loss | 13.1 |\n", + "| n_updates | 10 |\n", + "| policy_gradient_loss | -0.0109 |\n", + "| value_loss | 95.8 |\n", + "----------------------------------------\n", + "-----------------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 28 |\n", + "| ep_rew_mean | -32.4 |\n", + "| time/ | |\n", + "| fps | 655 |\n", + "| iterations | 3 |\n", + "| time_elapsed | 9 |\n", + "| total_timesteps | 6144 |\n", + "| train/ | |\n", + "| approx_kl | 0.011939146 |\n", + "| clip_fraction | 0.157 |\n", + "| clip_range | 0.2 |\n", + "| entropy_loss | -2.04 |\n", + "| explained_variance | -0.0245 |\n", + "| learning_rate | 0.0003 |\n", + "| loss | 25.8 |\n", + "| n_updates | 20 |\n", + "| policy_gradient_loss | -0.0172 |\n", + "| value_loss | 90.1 |\n", + "-----------------------------------------\n", + "------------------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 14.9 |\n", + "| ep_rew_mean | -20.3 |\n", + "| time/ | |\n", + "| fps | 620 |\n", + "| iterations | 4 |\n", + "| time_elapsed | 13 |\n", + "| total_timesteps | 8192 |\n", + "| train/ | |\n", + "| approx_kl | 0.0099224895 |\n", + "| clip_fraction | 0.203 |\n", + "| clip_range | 0.2 |\n", + "| entropy_loss | -2 |\n", + "| explained_variance | -0.003 |\n", + "| learning_rate | 0.0003 |\n", + "| loss | 40.7 |\n", + "| n_updates | 30 |\n", + "| policy_gradient_loss | -0.0139 |\n", + "| value_loss | 103 |\n", + "------------------------------------------\n", + "-----------------------------------------\n", + "| rollout/ | |\n", + "| ep_len_mean | 10.3 |\n", + "| ep_rew_mean | -16.5 |\n", + "| time/ | |\n", + "| fps | 601 |\n", + "| iterations | 5 |\n", + "| time_elapsed | 17 |\n", + "| total_timesteps | 10240 |\n", + "| train/ | |\n", + "| approx_kl | 0.014140065 |\n", + "| clip_fraction | 0.183 |\n", + "| clip_range | 0.2 |\n", + "| entropy_loss | -1.96 |\n", + "| explained_variance | -0.000966 |\n", + "| learning_rate | 0.0003 |\n", + "| loss | 73.6 |\n", + "| n_updates | 40 |\n", + "| policy_gradient_loss | -0.019 |\n", + "| value_loss | 114 |\n", + "-----------------------------------------\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "**Part 5: Using A* Pathfinding and Testing the Model**\n", + "\n", + "In this part, we apply the A* algorithm to find an optimal path from the start to the target. We also test the trained model by running a few steps and observing its behavior in the environment" + ], + "metadata": { + "id": "fSLp-6PM3cdE" + } + }, + { + "cell_type": "code", + "source": [ + "# Test A* pathfinding from start to goal\n", + "obstacles = [(6, 6), (7, 7)]\n", + "start, goal = (5, 5), (8, 8)\n", + "path = a_star(start, goal, obstacles, grid_width=10, grid_height=10)\n", + "print(\"Optimal path found by A*:\", path)\n", + "\n", + "# Test the trained agent\n", + "obs = env.reset()\n", + "for _ in range(20):\n", + " action, _states = model.predict(obs)\n", + " obs, rewards, done, info = env.step(action)\n", + " env.render()\n", + " if done:\n", + " break\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AAWY4Ejn3Yjw", + "outputId": "4feb2cd3-152a-42a0-88f1-b5ebefaf68b9" + }, + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Optimal path found by A*: [(5, 6), (5, 7), (6, 7), (6, 8), (7, 8), (8, 8)]\n", + "Drone Position: [6 6], Target: [8 8], Obstacles: [array([6, 6]), array([7, 7])]\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "**Visualization 1: Environment Setup with Obstacles and Target**\n", + "\n", + "This code will set up a grid environment, place the drone, target, and obstacles on it, and display the current state of the environment." + ], + "metadata": { + "id": "NZmG9rDZ4THp" + } + }, + { + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "def visualize_environment(drone_pos, target_pos, obstacles):\n", + " # Define the grid size\n", + " grid_size = (10, 10)\n", + "\n", + " # Create a blank grid\n", + " env_grid = np.zeros(grid_size)\n", + "\n", + " # Mark obstacles\n", + " for obs in obstacles:\n", + " env_grid[obs[0], obs[1]] = -1 # Obstacles marked as -1\n", + "\n", + " # Mark target position\n", + " env_grid[target_pos[0], target_pos[1]] = 2 # Target marked as 2\n", + "\n", + " # Mark drone position\n", + " env_grid[drone_pos[0], drone_pos[1]] = 1 # Drone marked as 1\n", + "\n", + " # Plot the grid\n", + " plt.imshow(env_grid, cmap=\"coolwarm\", origin=\"upper\")\n", + " plt.colorbar(label=\"Environment Elements\")\n", + " plt.scatter(drone_pos[1], drone_pos[0], color='blue', label=\"Drone\")\n", + " plt.scatter(target_pos[1], target_pos[0], color='green', label=\"Target\")\n", + " for obs in obstacles:\n", + " plt.scatter(obs[1], obs[0], color='red', label=\"Obstacle\" if obs == obstacles[0] else \"\")\n", + "\n", + " plt.legend(loc=\"upper right\")\n", + " plt.title(\"Drone Environment with Obstacles and Target\")\n", + " plt.show()\n", + "\n", + "# Test Visualization\n", + "drone_pos = (5, 5)\n", + "target_pos = (8, 8)\n", + "obstacles = [(6, 6), (7, 7)]\n", + "visualize_environment(drone_pos, target_pos, obstacles)\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 452 + }, + "id": "SFZkp-QU3pcR", + "outputId": "5db87dd3-1af4-42cc-febf-2380fae14b6e" + }, + "execution_count": 8, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "

" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgIAAAGzCAYAAABdO3+BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABdf0lEQVR4nO3deVwU5R8H8M+AsBwCCnIKCh6JKOKVJt4n3pF3YiIapmmKeFcKmYrmhVeilkf91DQ1r1JTvK+8zco7VCTBC0FUQHbn9wexuXItew7web9e86p5duaZ744LfPe5RhBFUQQRERGVSibGDoCIiIiMh4kAERFRKcZEgIiIqBRjIkBERFSKMREgIiIqxZgIEBERlWJMBIiIiEoxJgJERESlGBMBIiKiUoyJQDF0+/ZtCIKANWvWGDuUUkcQBERGRqp97MiRI/Ub0GsOHToEQRCwefNmg11TWyX9s9yqVSu0atXK2GEQFUivicCaNWsgCIJys7CwgJubGwICArBo0SI8e/ZMn5fXO09PT5X39/rWsWNHY4dXqpw4cQKRkZF4+vRpibru48ePMX78eNSoUQMWFhawt7dHQEAAdu3apZfrvW7mzJnYtm2b3q9TmkVGRub7O+T1TYrJBD8fJUcZQ1xk2rRp8PLywqtXr5CYmIhDhw4hLCwM8+fPx44dO1CnTh1DhKEXdevWxdixY3OVu7m56e2alStXxsuXL2FmZqa3axQ3J06cwBdffIFBgwahXLlyervOy5cvUabMfz82+rzutWvX0LZtWzx8+BAhISFo2LAhnj59inXr1qFbt24YN24c5syZo9Nrvm7mzJno1asXAgMD9XaN0q5Hjx6oVq2acj8tLQ3Dhw/He++9hx49eijLnZ2djRFegfj5KDkMkgh06tQJDRs2VO5PnjwZBw4cQNeuXdG9e3dcuXIFlpaW+Z7//PlzWFtbGyLUIqtYsSIGDBhg0GvmtK4URsr3rbhS577rwqtXr9CrVy8kJyfjyJEjaNy4sfK1MWPGICgoCHPnzkXDhg3Rt29fg8REulenTh2VL0KPHj3C8OHDUadOHZ38XuHvAFKH0cYItGnTBlOmTMGdO3fwv//9T1k+aNAglC1bFrdu3ULnzp1hY2ODoKAgANkf6rFjx8LDwwMymQw1atTA3Llz8eYDFHP6Zrdt24batWtDJpOhVq1a2LNnT644EhISMHjwYDg7OyuPW7VqlU7fa857SkhIQGBgIMqWLQtHR0eMGzcOcrkcQPYvfnt7e4SEhOQ6PzU1FRYWFhg3bhyAvPtVDXnfcpozr1+/jgEDBsDOzg6Ojo6YMmUKRFFEfHw83n33Xdja2sLFxQXz5s3L9Z4yMjIQERGBatWqQSaTwcPDAxMmTEBGRkaRY4qMjMT48eMBAF5eXsrm1Nu3b+f577Fo0SKYmpqqNOfPmzcPgiAgPDxcWSaXy2FjY4OJEyeqxJMzRkDd66rzOXzTli1b8Mcff2DSpEkqSQAAmJqaYvny5ShXrlye4xXkcjk+/fRTuLi4wNraGt27d0d8fLzKMTdu3EDPnj3h4uICCwsLuLu7o1+/fkhJSVG+z+fPn2Pt2rXK9zVo0CAAwJ07d/Dxxx+jRo0asLS0hIODA3r37p3n/X769CnGjBkDT09PyGQyuLu7Y+DAgXj06FGB7//q1avo1asX7O3tYWFhgYYNG2LHjh0qx7x69QpffPEFqlevDgsLCzg4OKBZs2bYt29fgXU/efIE48aNg6+vL8qWLQtbW1t06tQJly5dUjkuZ8zFpk2bMGPGDLi7u8PCwgJt27bFzZs3c9W7YsUKVK1aFZaWlmjUqBGOHj1aYBzqUvd+53TFHj58GB9//DGcnJzg7u6ufH3p0qWoUqWKSnx5jWFQ52ezoM8HFT8GaRHIzwcffIBPP/0Uv/76K0JDQ5XlWVlZCAgIQLNmzTB37lxYWVlBFEV0794dBw8exJAhQ1C3bl3s3bsX48ePR0JCAhYsWKBS97Fjx7B161Z8/PHHsLGxwaJFi9CzZ0/cvXsXDg4OAICkpCS88847yj82jo6O2L17N4YMGYLU1FSEhYUV+h5evXqV5y81a2trlVYOuVyOgIAANG7cGHPnzsX+/fsxb948VK1aFcOHD4eZmRnee+89bN26FcuXL4e5ubny3G3btiEjIwP9+vUrMBZD3bccffv2Rc2aNTFr1iz8/PPPmD59Ouzt7bF8+XK0adMGs2fPxrp16zBu3Di8/fbbaNGiBQBAoVCge/fuOHbsGIYOHYqaNWvi8uXLWLBgAa5fv56r37GwmHr06IHr169jw4YNWLBgASpUqAAAcHR0zPM+NW/eHAqFAseOHUPXrl0BAEePHoWJiYnKL+8LFy4gLS1NGfeb1LluUe7n63bu3AkAGDhwYJ6v29nZ4d1338XatWtx8+ZNleblGTNmQBAETJw4EQ8ePEB0dDTatWuHixcvwtLSEpmZmQgICEBGRgY++eQTuLi4ICEhAbt27cLTp09hZ2eH77//Hh9++CEaNWqEoUOHAgCqVq0KADhz5gxOnDiBfv36wd3dHbdv38ayZcvQqlUr/PXXX7CysgKQ3czdvHlzXLlyBYMHD0b9+vXx6NEj7NixA/fu3VPerzf9+eefaNq0KSpWrIhJkybB2toamzZtQmBgILZs2YL33nsPQHYiFhUVpYwzNTUVZ8+exfnz59G+fft87+3ff/+Nbdu2oXfv3vDy8kJSUhKWL1+Oli1b4q+//srVrTdr1iyYmJhg3LhxSElJwVdffYWgoCD89ttvymO+/fZbfPTRR/D390dYWBj+/vtvdO/eHfb29vDw8Mg3FnWoe79zfPzxx3B0dMTUqVPx/PlzAMCyZcswcuRING/eHGPGjMHt27cRGBiI8uXLqyQL6v5sFvT5oGJI1KPVq1eLAMQzZ87ke4ydnZ1Yr1495X5wcLAIQJw0aZLKcdu2bRMBiNOnT1cp79WrlygIgnjz5k1lGQDR3NxcpezSpUsiAHHx4sXKsiFDhoiurq7io0ePVOrs16+faGdnJ7548aLA91e5cmURQJ5bVFRUrvc0bdo0lfPr1asnNmjQQLm/d+9eEYC4c+dOleM6d+4sVqlSRbkfFxcnAhBXr16d6xqGuG8REREiAHHo0KHKsqysLNHd3V0UBEGcNWuWsjw5OVm0tLQUg4ODlWXff/+9aGJiIh49elQlppiYGBGAePz48SLHNGfOHBGAGBcXJxZGLpeLtra24oQJE0RRFEWFQiE6ODiIvXv3Fk1NTcVnz56JoiiK8+fPF01MTMTk5GSVeCIiItS6rrqx56Vu3bqinZ1dgcfMnz9fBCDu2LFDFEVRPHjwoAhArFixopiamqo8btOmTSIAceHChaIoiuKFCxdEAOKPP/5YYP3W1tYq/2458vq5OHnypAhA/O6775RlU6dOFQGIW7duzXW8QqEQRTHvz3Lbtm1FX19fMT09XeV4f39/sXr16soyPz8/sUuXLgW+h7ykp6eLcrlcpSwuLk6UyWQqP6M597NmzZpiRkaGsnzhwoUiAPHy5cuiKIpiZmam6OTkJNatW1fluBUrVogAxJYtW6od28OHD3N9xtS93zm/b5s1ayZmZWUpyzMyMkQHBwfx7bffFl+9eqUsX7NmTa74ivKzmd/ng4ofo08fLFu2bJ6zB4YPH66y/8svv8DU1BSjRo1SKR87dixEUcTu3btVytu1a6eSodapUwe2trb4+++/AQCiKGLLli3o1q0bRFHEo0ePlFtAQABSUlJw/vz5QuNv3Lgx9u3bl2t7//33cx07bNgwlf3mzZsr4wGyu0sqVKiAjRs3KsuSk5Oxb98+tfuB9X3fXvfhhx8q/9/U1BQNGzaEKIoYMmSIsrxcuXKoUaOGyvk//vgjatasCW9vb5X73qZNGwDAwYMHNY5JHSYmJvD398eRI0cAAFeuXMHjx48xadIkiKKIkydPAshuJahdu7ZWgwA1jf3Zs2ewsbEp8Jic11NTU1XKBw4cqHJur1694Orqil9++QVAdmsCAOzduxcvXrxQ/8386/WWrlevXuHx48eoVq0aypUrp/Izs2XLFvj5+Sm/wb9OEIQ8637y5AkOHDiAPn364NmzZ8rPxuPHjxEQEIAbN24gISEBQPZn688//8SNGzeKFL9MJoOJSfavPrlcjsePH6Ns2bKoUaNGnj/zISEhKi10zZs3BwDlv+HZs2fx4MEDDBs2TOW4QYMGKe+1NtS93zlCQ0Nhamqq3D979iweP36M0NBQlYGuQUFBKF++vMq5Rf3ZpJLBqF0DQHbzoZOTk0pZmTJlVJqrgOx+Mjc3t1y/HGvWrKl8/XWVKlXKda3y5csjOTkZAPDw4UM8ffoUK1aswIoVK/KM7cGDB4XGX6FCBbRr167Q4ywsLHI1Vb8eD5D9vnv27In169cjIyMDMpkMW7duxatXr9RKBAxx3wo61s7ODhYWFrmafO3s7PD48WPl/o0bN3DlypV8m+7fvO9FiUldzZs3R2RkJF6+fImjR4/C1dUV9evXh5+fH44ePYr27dvj2LFj6NOnj8bXADSP3cbGptB+9JwE+s1/2+rVq6vsC4KAatWqKfuUvby8EB4ejvnz52PdunVo3rw5unfvrhzvUZiXL18iKioKq1evRkJCgspYk5wxBgBw69Yt9OzZs9D6Xnfz5k2IoogpU6ZgypQpeR7z4MEDVKxYEdOmTcO7776Lt956C7Vr10bHjh3xwQcfFDoLSaFQYOHChfj6668RFxenHKcDIM/umjf/DXP+eOb8G+b8DL15383MzFClSpVC3nHh1L3fOby8vFT2c+J7vfsIyP594enpqVJW1J9NKhmMmgjcu3cPKSkpuT6gr2fsmno9I35dzg+RQqEAAAwYMADBwcF5HqvLaY35xfOmfv36Yfny5di9ezcCAwOxadMmeHt7w8/Pr9BzDXHfCjtWnfMVCgV8fX0xf/78PI99s0+1KDGpq1mzZnj16hVOnjyJo0ePKr/lNW/eHEePHsXVq1fx8OFDZbmmNI29Zs2auHjxIu7evZtnMgEAv//+OwDAx8enyHHNmzcPgwYNwvbt2/Hrr79i1KhRiIqKwqlTp3Ilk2/65JNPsHr1aoSFhaFJkyaws7ODIAjo16+f8udKUznnjxs3DgEBAXkek/P7okWLFrh165byPXzzzTdYsGABYmJiVFqr3jRz5kxMmTIFgwcPxpdffgl7e3uYmJggLCwsz/j18fkriqLe74JmYBWmqD+bVDIYNRH4/vvvASDfH/jXVa5cGfv378/VZHr16lXl60Xh6OgIGxsbyOVytb7RG0qLFi3g6uqKjRs3olmzZjhw4AA+++wzjevT9X3ThapVq+LSpUto27Ztvk3ERVXUeho1agRzc3McPXoUR48eVY7+b9GiBVauXInY2Fjlvi6vq66uXbtiw4YN+O677/D555/nej01NRXbt2+Ht7d3rkT6zaZyURRx8+bNXImtr68vfH198fnnn+PEiRNo2rQpYmJiMH36dAD5v7fNmzcjODhYZTZIenp6rkWVqlatij/++EPt9wxA+Q3azMxMrZ/LnJk2ISEhyoGdkZGRBSYCmzdvRuvWrfHtt9+qlD99+jTfAYwFyfkZunHjhrIJHchuxo+Li1MriS+Iuve7sPhu3ryJ1q1bK8uzsrJw+/Ztlc9FUX429fXZJ8Mz2hiBAwcO4Msvv4SXl5dymltBOnfuDLlcjiVLlqiUL1iwAIIgoFOnTkW6vqmpKXr27KmcpvWmhw8fFqk+XTExMUGvXr2wc+dOfP/998jKytJqnriu75su9OnTBwkJCVi5cmWu116+fKkc6VwUOXOl1f3laGFhgbfffhsbNmzA3bt3VVoEXr58iUWLFqFq1apwdXXV6XXV1atXL/j4+GDWrFk4e/asymsKhQLDhw9HcnIyIiIicp373XffqYy72bx5M+7fv6/8t05NTUVWVpbKOb6+vjAxMVGZImZtbZ3n+zI1Nc31bXjx4sUqTewA0LNnT1y6dAk//fRTrjry+zbt5OSEVq1aYfny5bh//36u11//uXy9uwnIHm9UrVq1XFNQ1Yn/xx9/VI49KKqGDRvC0dERMTExyMzMVJavWbNGJ58Lde93QfE5ODhg5cqVKv/u69aty9VFVZSfzfw+H1T8GKRFYPfu3bh69SqysrKQlJSEAwcOYN++fahcuTJ27Nih1iIt3bp1Q+vWrfHZZ5/h9u3b8PPzw6+//ort27cjLCxMo6krs2bNwsGDB9G4cWOEhobCx8cHT548wfnz57F//348efKk0DoSEhJU1kHIUbZsWY1X3Orbty8WL16MiIgI+Pr6KvvzNaGP+6atDz74AJs2bcKwYcNw8OBBNG3aFHK5HFevXsWmTZuwd+9elQWo1NGgQQMAwGeffYZ+/frBzMwM3bp1K3AxlebNm2PWrFmws7ODr68vgOw/RDVq1MC1a9fUmhetyXXVYW5ujs2bN6Nt27Zo1qyZysqC69evx/nz5zF27Ng8p5Ta29srz0lKSkJ0dDSqVaumnKJ74MABjBw5Er1798Zbb72FrKwsfP/998rk+PX3tn//fsyfPx9ubm7w8vJC48aN0bVrV3z//fews7ODj48PTp48if379+fqXx8/fjw2b96M3r17Y/DgwWjQoAGePHmCHTt2ICYmJt9vykuXLkWzZs3g6+uL0NBQVKlSBUlJSTh58iTu3bunnO/v4+ODVq1aoUGDBrC3t8fZs2exefPmQp/v0LVrV0ybNg0hISHw9/fH5cuXsW7dOo37883MzDB9+nR89NFHaNOmDfr27Yu4uDisXr1aJ2ME1L3f+TE3N0dkZCQ++eQTtGnTBn369MHt27exZs0aVK1aVeWbfVF+NvP7fFAxpM8pCTnTWXI2c3Nz0cXFRWzfvr24cOFClSlOOYKDg0Vra+s863v27Jk4ZswY0c3NTTQzMxOrV68uzpkzRzkVKQcAccSIEbnOr1y5cq7pLklJSeKIESNEDw8P0czMTHRxcRHbtm0rrlixotD3V9D0wcqVKxf6nnKm4b1JoVCIHh4eeU77E8X8pw8a6r7lxP3w4UOV4/KLoWXLlmKtWrVUyjIzM8XZs2eLtWrVEmUymVi+fHmxQYMG4hdffCGmpKQUOSZRFMUvv/xSrFixomhiYqLWVMKff/5ZBCB26tRJpfzDDz8UAYjffvttrnPwxtSugq5blNjz8+DBAzE8PFysVq2aKJPJxHLlyont2rVTThl8Xc50tw0bNoiTJ08WnZycREtLS7FLly7inTt3lMf9/fff4uDBg8WqVauKFhYWor29vdi6dWtx//79KvVdvXpVbNGihWhpaSkCUMacnJwshoSEiBUqVBDLli0rBgQEiFevXs3zfT1+/FgcOXKkWLFiRdHc3Fx0d3cXg4ODlVN28/osi6Io3rp1Sxw4cKDo4uIimpmZiRUrVhS7du0qbt68WXnM9OnTxUaNGonlypUTLS0tRW9vb3HGjBliZmZmgfc0PT1dHDt2rOjq6ipaWlqKTZs2FU+ePCm2bNlSZSpdzv18c5plfjF//fXXopeXlyiTycSGDRuKR44cyVVnYfKaPqju/S5suvaiRYvEypUrizKZTGzUqJF4/PhxsUGDBmLHjh1VjlP3ZzO/zwcVP4IoGmjECxERSYZCoYCjoyN69OiRZ1cAlR5GX0eAiIj0Kz09Pdc4g++++w5PnjyR5JMNybDYIkBEVMIdOnQIY8aMQe/eveHg4IDz58/j22+/Rc2aNXHu3DmVhZCo9DH6gkJERKRfnp6e8PDwwKJFi/DkyRPY29tj4MCBmDVrFpMAYtcAEVFJ5+npiR07diAxMRGZmZlITEzEqlWrcq3qWtpFRUXh7bffho2NDZycnBAYGIhr164Vet6PP/4Ib29vWFhYwNfXV7mcd3HBRICIiAjA4cOHMWLECJw6dQr79u3Dq1ev0KFDhwLXNjlx4gTef/99DBkyBBcuXEBgYCACAwOLvJiWMXGMABERUR4ePnwIJycnHD58ON9VRvv27Yvnz59j165dyrJ33nkHdevWRUxMjKFC1YrBxwgoFAr8888/sLGx4RKVRETFjCiKePbsGdzc3LR+tklB0tPTVVZq1JQoirn+1shkMshkskLPzXmok729fb7HnDx5EuHh4SplAQEB2LZtW9GDNRKDJwL//PMPH1xBRFTMxcfHF/qAKk2lp6fDzbIskqHeMsoFKVu2LNLS0lTKIiIiEBkZWeB5CoUCYWFhaNq0KWrXrp3vcYmJiXB2dlYpc3Z2RmJiosYxG5rBE4GcB98s23YHlta2hr48ERFp4eXzVAwPrJzr8de6lJmZiWTIsdaiCqy0GMr2AgoEp/2N+Ph42Nr+9/dGndaAESNG4I8//sCxY8c0vn5xYfBEIKeJxtLaFlZMBIiIiiVDdO1awQRWgnqPcM/TvyPgbG1tVRKBwowcORK7du3CkSNHCm31cHFxQVJSkkpZUlISXFxcihyusXDWABERSZJQRoCJFptQpmjJiiiKGDlyJH766SccOHAAXl5ehZ7TpEkT5WPLc+zbtw9NmjQp0rWNiQsKERGRJAlmJhAEzb+vCkWcFDdixAisX78e27dvh42NjbKf387ODpaWlgCAgQMHomLFioiKigIAjB49Gi1btsS8efPQpUsX/PDDDzh79ixWrFihcdyGxhYBIiKSJBNT7VoETEyL1iKwbNkypKSkoFWrVnB1dVVuGzduVB5z9+5d3L9/X7nv7++P9evXY8WKFfDz88PmzZuxbdu2AgcYSg1bBIhIz0SYIAumOhgBTvonhykUKAOg9E3vVmdZnUOHDuUq6927N3r37q2HiAyDiQAR6Y0pMmFfJhHWZV6Ay4YUD6IIPM+ywpMsF8hh3OcQCGYCBBPNPziCgh86dTARICI9UcDV/DZsrMqgnH1FlCljhtL4LbN4EZGV9QpPnzyE7MVt3MusBmP2IJuUEWCiRSJgwkRALUwEiEgvyiATZqYKODi6QmZhZexwSE3mMkuYmpZB+r07KINXyELhc+6peGMiQER6kfNdTJtR32QcOf9mAoz7KBp2DRgGEwEiIpIkE9Oij/xXOV/OREAdTNWJiIhKMbYIEBGRJAmmAgQtWgQEDk5Vi0YtAkuXLoWnpycsLCzQuHFjnD59WtdxEREZzYiPQuBgYwIHGxM4lzeHdxUX9OjeAeu+WwWFQmHs8EqNnK4BbTYqXJETgY0bNyI8PBwRERE4f/48/Pz8EBAQgAcPHugjPiIiyOXAsaPAlh+z/ys3wNpEbdt3xF83/8GFP+OwcesvaNa8FSZPDMP7vbshKysrz3NevXql/8CIdKzIicD8+fMRGhqKkJAQ+Pj4ICYmBlZWVli1apU+4iOiUm7ndqBuLeDdzgKGDhbwbmcBdWtll+uTubkMzs4ucHOrCL+69RE+/lP874dt2P/rbmz43xoAgIONCVZ9swxBfd6Fh3NZzJ8zAwCw6ptlaFCnGlzsZWhUzxsbN3yvUreDjQm+X/MNPni/B9ydrPF23bew++cdKsdc+esP9OnRGZVcbOBdxQXDQgfi8aNH+n3TEiOYCFpvVLgiJQKZmZk4d+4c2rVr918FJiZo164dTp48mec5GRkZSE1NVdmIiNSxczsQ8gHwT4Jq+f1/ssv1nQy8qUXLNqjt64ddO39Sln018wt07haIo6d+R9AHg7Frx0/4dEIYPv4kHMd+u4xBg4fik+GDcfTIQZW6vpo1DYE9euPIyUto16ETPvpwAJKfPAEApDx9isAubeFbpy72Hz6DTT/txsMHSRgc3Neg79fYBFMTrTcqXJHu0qNHjyCXy+Hs7KxS7uzsrHxK05uioqJgZ2en3Dw8PDSPlohKDbkc+HRi9pK3b65IKIrZ+59NNEw3weuqv+WNu3duK/d79nkfQR+EwNOrCtw9KmHponl4PygYQ0I/RrXqb+HjT8LRtXsPLF04T6We94OC0bP3+6hStRo+j5iJ52lpOH8ue7zVyhVL4OtXD1MiZ+KtGt6o41cPi77+FseOHMTNG9cN+XaNimMEDEPv6dLkyZORkpKi3OLj4/V9SSIqAU6eAP5JEJDfssSiKCAhQcDJE4aNSxRFCK89OKFuvYYqr1+/fgWN3mmqUtb4HX9cv35FpaxW7TrK/7e2toaNrS0ePswea/Xn5d9x7MhBVHKxUW5NGtQEANyOu6XT90NUpOmDFSpUgKmpKZKSklTKk5KS4OLikuc5MpkMMhmXqCSioknKu5FR4+N05fq1K6hc2Uu5b2VlrVE92c9e+I8gCMoZCc+fpyGgUzdETJuV6zxnF1eNrlccCQJXFjSEIrUImJubo0GDBoiNjVWWKRQKxMbGokmTJjoPjohKL+e8v1tofJwuHDl8AH/9eRld3+2R7zFvvVUTp08dVyn77dQJ1Kjho/Z16vjVw9Urf6JSZU9UqVpNZbO21izxKI4EU+26BwRTY7+D4qHIXQPh4eFYuXIl1q5diytXrmD48OF4/vw5QkJC9BEfEZVSTfwBt4oiBCHv9e4FQUTFiiKa+Ovn+pmZGUhKSsQ//yTg0sXzmD9nJgb0C0RAx67o139gvueNHD0OG9atxapvluHWzRv4evF87NqxFSNGj1X72kOGjsDT5CcIDemP8+fOIO7vWziwfy9GDhsMuaEHRVCJV+SVBfv27YuHDx9i6tSpSExMRN26dbFnz55cAwiJiLRhagrMnJ09O0AQROUAQQDK5GDG7Ozj9CF23x74VHNDmTJlUK5cedTy9UPUVwvxflAwTEzy/w7VpVsgZn4VjaWL5uHTCWGoVNkLi5etQrPmrdS+tqurG37ZdwxfTJ2EXoEByMzIgLtHZbRtH1DgtUsarVcWFNk1oA5BFEWDPl4qNTUVdnZ2WLMvGVbWtoa8NBEZkBnS4W55G+4eXjCXWWhcz87t2bMHsgcOZqtYUcSM2UC3d3URKb0pMyMd9+LjcO+lJ15B9d/uxfNUDGpfHikpKbC11c/v8Jy/E4eaNULZMpqvhJ+WlYVWx07rNdaSgM8aICJJ6/Yu0LkrcPKEiKTE7DEBTfz11xJAVNowESAiyTM1BZo1N3YUZGjarg7IlQXVw0SAiIgkSdtFgUw4RkAtpWfUCREREeXCFgEiIpIkdg0YBhMBIiKSJEEwgaDFdElBYKO3OpgIEBGRJLFFwDCYLhEREZVibBEgIiJJ0nrWAB86pBYmAkREJEnsGjAMdg0QkeTJFXIciz+ELVc24Fj8IcgV+nvwjoONSYHb7JmReru2OrH9vHOb0a5PJRNbBIhI0nbe2IpPD4Thn7R7yjK3su6Y2SYa3arn/zhgTf118x/l/2/bshFRMyLw2/mryjJr67JFqi8zMxPm5uY6i680EUy0nDVQih7QpA3eJSKSrJ03tiJkR2+VJAAA7qclIGRHb+y8sVXn13R2dlFuNrZ2EARBuf/i+XN8NGQAvKu4oJKLDdq2bIRDB/ernF+3lhfmzv4Sw4cGo7KbHcZ88hEA4LvVK+HrXQnuTtb44P0e+HrxfHi5l1c595dd29G6WQO4VbBEfd+q+CrqC2RlZSnrBYCB/XvAwcZEuV+S5XQNaLNR4ZgIEJEkyRVyfHogDCJyPyA1p+yzg2P02k3wpufP09A+oBN+2rUfB4+dR9t2AQjq0x334u+qHLdk0TzUrl0Hh46dx7iJn+O3k8cxNmw4Pho+CoeOX0CrNu0wf85MlXNOHj+Kjz8KxtDho3DizJ+YtzAGG9atxfw5MwAA+w+dBgAsXrYKf938R7lPpC0mAkQkSScTjuZqCXidCBEJz+JxMuGowWKq7euHQYM/Qk2f2qharTo+nfIlPL2qYvcvO1SOa96iDUaMGguvKlXhVaUqVi5fgnbtO2Hk6HGoVv0tDAn9GG07dFI556tZ0zB6zES8HxQMT68qaN2mPSZ/Pg1rVq0AAFRwdAQA2NmVg7Ozi3K/JGOLgGFwjAARSVJS2n2dHqcLaWlp+GpmJH7d+wuSku5DnpWFly9fIuGNFoG69Ruo7N+8cQ1dugWqlNVv8DZ+3bNLuf/n5Us4feo4Fsz9r6VALpcjPT0dL168gJWVle7fkMRx1oBhMBEgIklyLuuq0+N0IeKzcTh0cD++mD4HVapWg4WFJUI+6I3MV5kqx1lbWRe57ufP0zDx00h07Z57AKSFhYXGMRMVhokAEUlSk4rN4VbWHffTEvIcJyBAgJuNO5pUbG6wmH47dQLvBwWja/f3AGS3ENy9extN0bLA86pVr4EL586qlF04r7pfx68+bt64hipVq+Vbj5mZmUHHRBhbdouANrMG2CKgDo4RICJJMjUxxcw20QCy/+i/Lmd/RusFMDUxNVhMVapWx64dP+Hy7xfxx+VL+GhwEBQKRaHnhX40Evt+/QVfL56PWzdvYM2q5Yj9dTcE4b/3NX7SFGzc8D2+ivoCV6/8iWtXr2Dr5h8wY9rnymMqVfLEkUOxSEpKxNPkZL28RykRTATl6oKabEwE1MNEgIgkq1v1Hljd/Ue4lq2oUu5m447V3X/UyzoCBZkeNQ925cqjU7um6N+nO1q36wA/v/qFnte4SVPMi16Gr5csQEv/uojdtxfDRobBQvZfk3+bdgHY8ONOHIzdh3YtGyGgbRMsWxoND4/KymOmzZyLwwf3o453JbRqVvh1izsOFjQMQRTF3G1uepSamgo7Ozus2ZcMK2tbQ16aiAzIDOlwt7wNdw8vmMu06+OWK+Q4mXAUSWn34VzWFU0qNjdoS4A+hI0MxY3r1/Dzr0eMHUoumRnpuBcfh3svPfEKqv92L56nYlD78khJSYGtrX5+h+f8nbj4fgfYmJtpXM+zzFeou+FXvcZaEnCMABFJnqmJKZp5tDJ2GFpZsnAuWrVpDysra+zftxs/rP8Oc+YvNXZYksaVBQ2DiQARkQGcP3cGi6PnIC3tGSp7VkHUnIX4YNCHxg5L0jh90DCYCBARGcCq7zYaOwSiPDERICIiSWKLgGEwESAiIkniGAHD4F0iIiIqxdgiQEREksSuAcNgIkBERJLErgHD4F0iIiIqxZgIEBFpqG4tL8QsjTZ2GCru3rkNBxsTXP79orFD0Z4gaL9RoZgIEJH0yeUoc/QQzH/cgDJHDwFy/T+BL+FePD4ZPhg+1SvCxV4GPx9PTJ4wGk8eP9bZNaSYSEiJIGj5rAEmAmphIkBEkma2fSvsannBtnMblB0cBNvObWBXywtm27fq7Zq34/5G2xZv4+9bN7Fy9XqcvXQD86KX4cihA+jY1h/JT57o7dr0n5wxAtpsRXXkyBF069YNbm5uEAQB27ZtK/D4Q4cOZScsb2yJiYkavmvDYyJARJJltn0ryn7QGyYJ91TKTf5JQNkPeustGZgwdiTMzM2xefteNG3WEu4eldCuQyds3bkP9+8nYPq0z5THpqU9Q2hIf3g4l0Wtt9zxzYr/nh8giiJmz4xEnZqV4epgAZ/qFTFp/CgAQPdOrRF/9w4+mxQOBxsTONhk/zp+8vgxQkP6o9Zb7nB3skazxnWw5ccNKvEpFAosWvAVGvpVh6uDBerUrIx5c2bk+36u/PUH+vTojEouNvCu4oJhoQPx+NEjXd6yEuP58+fw8/PD0qVFew7EtWvXcP/+feXm5OSkpwh1j4kAEUmTXA6riWGAKOLNBl7h34emWk0co/NuguQnT3Bg/14M/nA4LC0tVV5zdnZBrz79sW3rJuQ8uHXxwrmoVbsODh47j9HhE/HphDAcPLAPALBz+xYsWxqN+QtjcObidXy/4Sf4+PgCANau2wK3iu6Y/PkX+OvmP/jr5j8AgPSMdPjVrY8fNu/Csd8uY2BIKIaHDsS5s6eVcUyLmIyFC2Zj7ITPceLMn1jx7To4OTrn+X5Snj5FYJe28K1TF/sPn8Gmn3bj4YMkDA7uq9P7pg/GeAxxp06dMH36dLz33ntFOs/JyQkuLi7KzaQYzVjg9EEikqQyJ47C9I2WgNcJogjThHiUOXEUWc1b6ey6t27dgCiKeKtGzTxff6tGTTxNTsajRw8BAI3faYqwsZMAANWqv4XTp04gZmk0Wrdpj3vxd+Hk5IKWrdvBzMwM7h6V0KBhIwBAeXt7mJqaomxZGzg7uyjrd3OriJGjxyn3hw77BAf3/4rtWzehQcNGePbsGVYsW4TZcxfj/aBgAIBXlap4x79ZnvGuXLEEvn71MCVyprJs0dffoo53Jdy8cR3Vqr+lxd3SL11NH0xNTVUpl8lkkMlkWsX2prp16yIjIwO1a9dGZGQkmjZtqtP69an4pCxEVKqYJN7X6XFFlfONvzBvN3on1/71a1cAAO++1xvp6S9R37cqwkaGYteOn5CVlVVgfXK5HHNnf4lmjeugaiUHVHKxwYHYvbh3Lx4AcP3aFWRkZKBFq7Zqxffn5d9x7MhBVHKxUW5NGmQnObfjbqlVR3Hn4eEBOzs75RYVFaWzul1dXRETE4MtW7Zgy5Yt8PDwQKtWrXD+/HmdXUPf2CJARJKkcHHV6XHqqlKlGgRB+PePee7m4evXrqBc+fKoUMGx0Loqunvgt/NXcfjgfhw6uA8TwkdgycK52LnnEMzMzPI8Z3H0HCz/ehFmzF4An1q+sLKyxmcTxyAzMxMAcnVXFOb58zQEdOqGiGmzcr3mrON7p2uCiXarAwr/ftWNj4+Hra2tslyXrQE1atRAjRo1lPv+/v64desWFixYgO+//15n19EntggQkSRl+TeHvKI7xHymgImCAHlFD2T5N9fpde0dHNCqTXus+mYZXr58qfJaUlIiNm9aj8AefZRT086e+U3lmLNnflPpVrC0tETHzt0wa84ibP/lIM6cPom//rwMADA3M4f8jTEOp0+dQKcu3dGn3wDU9vWDp1cV3Lp5Xfl6larVYWlpiSOHYtV6P3X86uHqlT9RqbInqlStprJZW1urf2OMQFdjBGxtbVU2XXcLvKlRo0a4efOmXq+hS0wEiEiaTE3xYnY0AORKBnL2X8xeAJia6vzSs+cuRmZGBnoHdsSJY0eQcC8esfv2oGf3DnB1rYjPp/43Qv+3U8exaMFXuHnjOr5ZsRTbf/oRHw3Pnhmw/n9r8L+13+LKX3/gdtzf+HHj/2BpaQkPj8oAAI/Knjhx/Cj++SdBOYq/StVqOHRwP06fOoFrV68gfNRHePAwSXk9CwsLjBozAZFTJ+KH9d8h7u9bOHP6FP639ts838uQoSPwNPkJQkP64/y5M4j7+xYO7N+LkcMG50pCSDcuXrwIV1dpt7a8jl0DRCRZr97tgbTvf4TVxDCVgYMKN3e8mL0Ar97toZfrVq1WHbFHzmDWjEgMCe6L5OQncHJ2Qeeu72LCpAiUt7dXHjvik3BcvHAOc2ZNg42NLb6Mmoc27QIAAHZ25bBw/mx8/ulYKORy1PTxxbpNO2Dv4AAAmPTZFxg7ehga1qmGjIwMPH6mwNgJn+P27Tj0eq8jrCytMDAkFJ27BCI1NUV5zXETp8C0TBnMmhGBxPv/wNnFFYMGf5Tne3F1dcMv+47hi6mT0CswAJkZGXD3qIy27QOkP7LdxCR70+b8IkpLS1P5Nh8XF4eLFy/C3t4elSpVwuTJk5GQkIDvvvsOABAdHQ0vLy/UqlUL6enp+Oabb3DgwAH8+uuvmsdtYIKo7ogYHUlNTYWdnR3W7EuGlbVt4ScQUbFkhnS4W96Gu4cXzGUW2lUml6PMiaMwSbwPhYtrdneAHloCKFtmRjruxcfh3ktPvILqv92L56kY1L48UlJSVPrddSnn78Stcf1hIzPXuJ5nGZmoOnd9kWI9dOgQWrdunas8ODgYa9aswaBBg3D79m0cOnQIAPDVV19hxYoVSEhIgJWVFerUqYOpU6fmWYdUsUWAiKTP1FSnUwSJ8tOqVasCZ4ysWbNGZX/ChAmYMGGCnqPSLyYCREQkSXwMsWEwESAiIknSdHXA18+nwjERICIiaRK0HCwosEVAHbxLRKRnBh2PTDrBf7PShC0CRKQXWTCDQgFkpL+Auaxoq+GRcWWkv4BCkf1vaFRadg2AXQNqYSJARHohwhQpr8qhzL8P55FZWAG5niNI0iIiI/0FHj96iJRX5SDCuFM0BcEEghbN+9qcW5owESAivXmqcAbSgaykB1p19ZLhKBRAyqty2f92VCowESAiPRLwVOGClAxHlMErYwdDasiCmdFbApRMBO2a99k1oBYmAkSkdyJM8Uoqf1yo2OA6AobBu0RERFSKsUWAiIgkiQsKGQYTASIikiZB0G5RIIGJgDrYNUBERFSKsUWAiIgkiV0DhsFEgIiIpMlEy2cNcNaAWpgIEBGRJAmCAEGLfn5tzi1NmC4RERGVYmwRICIiaeJjiA2CiQAREUkSBwsaBtMlIiKiUqxIiUBUVBTefvtt2NjYwMnJCYGBgbh27Zq+YiMiotJMMNF+o0IV6S4dPnwYI0aMwKlTp7Bv3z68evUKHTp0wPPnz/UVHxERlVY5Tx/UZqNCFWmMwJ49e1T216xZAycnJ5w7dw4tWrTQaWBERESkf1oNFkxJSQEA2Nvb53tMRkYGMjIylPupqanaXJKIiEoJQTCBoEXzvjbnliYa3yWFQoGwsDA0bdoUtWvXzve4qKgo2NnZKTcPDw9NL0lERKUJuwYMQuNEYMSIEfjjjz/www8/FHjc5MmTkZKSotzi4+M1vSQRERHpmEZdAyNHjsSuXbtw5MgRuLu7F3isTCaDTCbTKDgiIiq9BBMTCFosKKTNuaVJkRIBURTxySef4KeffsKhQ4fg5eWlr7iIiKi0E4TsTZvzqVBFSgRGjBiB9evXY/v27bCxsUFiYiIAwM7ODpaWlnoJkIiISikTQcunDzIRUEeR7vCyZcuQkpKCVq1awdXVVblt3LhRX/ERERGRHhW5a4CIiMgg2DVgEHzoEBERSRIHCxoG7xIREVEpxhYBIiKSJm0fHMSVBdXCRICIiKRJ0HJ1QI4RUAvTJSIiolKMLQJERCRJfOiQYTARICIiadL2wUFcUEgtTJeIiIhKMbYIEBGRNHHWgEHwLhERkTTlrCyozVaC7NmzB8eOHVPuL126FHXr1kX//v2RnJyscb1MBIiISJpMTLTfSpDx48cjNTUVAHD58mWMHTsWnTt3RlxcHMLDwzWul10DRERExUBcXBx8fHwAAFu2bEHXrl0xc+ZMnD9/Hp07d9a43pKVLhERUcmRM0ZAm60EMTc3x4sXLwAA+/fvR4cOHQAA9vb2ypYCTbBFgIiIpInTB1U0a9YM4eHhaNq0KU6fPo2NGzcCAK5fvw53d3eN6y1Z6RIREVEJtWTJEpQpUwabN2/GsmXLULFiRQDA7t270bFjR43rZYsAERFJkyBoOX2wZLUIVKpUCbt27cpVvmDBAq3qZYsAERFJE6cPqjA1NcWDBw9ylT9+/BimpqYa18tEgIiIqBgQRTHP8oyMDJibm2tcL7sGiIhImrRdC6CErCOwaNEiAIAgCPjmm29QtmxZ5WtyuRxHjhyBt7e3xvUzESAiImnStnm/hHQN5IwBEEURMTExKt0A5ubm8PT0RExMjMb1l4x0iYiISAeOHDmCbt26wc3NDYIgYNu2bYWec+jQIdSvXx8ymQzVqlXDmjVrdBpTXFwc4uLi0LJlS1y6dEm5HxcXh2vXrmHv3r1o3LixxvUzESAiImkywoJCz58/h5+fH5YuXarW8XFxcejSpQtat26NixcvIiwsDB9++CH27t1b5GsX5uDBgyhfvrzO62XXABERSZOg5RgBDRKBTp06oVOnTmofHxMTAy8vL8ybNw8AULNmTRw7dgwLFixAQEBAka9fELlcjjVr1iA2NhYPHjyAQqFQef3AgQMa1ctEgIiIpElHYwTeXH5XJpNBJpNpE5nSyZMn0a5dO5WygIAAhIWF6aT+140ePRpr1qxBly5dULt2bQg6GgPBRICIiEo0Dw8Plf2IiAhERkbqpO7ExEQ4OzurlDk7OyM1NRUvX76EpaWlTq4DAD/88AM2bdqk1QOG8sJEgIiIpEnbBwf9e258fDxsbW2VxbpqDTA0c3NzVKtWTef1crAgERFJk45WFrS1tVXZdJkIuLi4ICkpSaUsKSkJtra2Om0NAICxY8di4cKF+S4spCm2CBAREWmoSZMm+OWXX1TK9u3bhyZNmuj8WseOHcPBgwexe/du1KpVC2ZmZiqvb926VaN6mQgQEZE0GWFlwbS0NNy8eVO5HxcXh4sXL8Le3h6VKlXC5MmTkZCQgO+++w4AMGzYMCxZsgQTJkzA4MGDceDAAWzatAk///yz5nHno1y5cnjvvfd0Xi8TASIikiRRECBqMTJek3PPnj2L1q1bK/fDw8MBAMHBwVizZg3u37+Pu3fvKl/38vLCzz//jDFjxmDhwoVwd3fHN998o/OpgwCwevVqndcJMBEgIiJSatWqVYF98HmtGtiqVStcuHBBj1H9JysrC4cOHcKtW7fQv39/2NjY4J9//oGtra3KMwiKgokAERFJkyBoOWugZDxrIMedO3fQsWNH3L17FxkZGWjfvj1sbGwwe/ZsZGRkaPy8Ac4aICIiaTLCEsNSNnr0aDRs2BDJyckqMxLee+89xMbGalwvWwSIiIiKgaNHj+LEiRMwNzdXKff09ERCQoLG9TIRICIiSTLGYEEpUygUkMvlucrv3bsHGxsbjestWe0mRERUcrBrQEWHDh0QHR2t3BcEAWlpaYiIiNBq2WG2CBARkTTp6KFDJcW8efMQEBAAHx8fpKeno3///rhx4wYqVKiADRs2aFwvEwEiIqJiwN3dHZcuXcIPP/yA33//HWlpaRgyZAiCgoK0Ws6YiQAREUmTEVYWlLoyZcpgwIABuq1Tp7URERHpCAcL5vbPP//g2LFjePDgARQKhcpro0aN0qhOJgJERETFwJo1a/DRRx/B3NwcDg4OEF5LdARBYCJAREQljLYj/0vYrIEpU6Zg6tSpmDx5Mkx02O3BRICIiCRJFEwgavHHXJtzpejFixfo16+fTpMAgOsIEBERFQtDhgzBjz/+qPN62SJARETSxHUEVERFRaFr167Ys2cPfH19YWZmpvL6/PnzNaqXiQAREUmSCC27BkpYo3dUVBT27t2LGjVqAECuwYKaYiJARETSxBYBFfPmzcOqVaswaNAgndZbstIlIiKiEkomk6Fp06Y6r5eJABERSZMgaPnQoZLVIjB69GgsXrxY5/Wya4CIiCSJKwuqOn36NA4cOIBdu3ahVq1auQYLbt26VaN6mQgQEREVA+XKlUOPHj10Xi8TASIikiauLKhi9erVeqm3ZN0lIiIqMUQIWm8lTVZWFvbv34/ly5fj2bNnALIfRJSWlqZxnWwRICIiKgbu3LmDjh074u7du8jIyED79u1hY2OD2bNnIyMjAzExMRrVyxYBIiKSpJxnDWizlSSjR49Gw4YNkZycDEtLS2X5e++9h9jYWI3rZYsAERFJE8cIqDh69ChOnDgBc3NzlXJPT08kJCRoXG/JuktEREQllEKhgFwuz1V+79492NjYaFwvEwEiIpKknHUEtNlKkg4dOiA6Olq5LwgC0tLSEBERgc6dO2tcL7sGiIhIkrTt5y9pYwTmzZuHgIAA+Pj4ID09Hf3798eNGzdQoUIFbNiwQeN6mQgQEZE08aFDKtzd3XHp0iX88MMP+P3335GWloYhQ4YgKChIZfBgUTERICIiKibKlCmDAQMG6LZOndZGRESkK9pOASwBXQM7duxQ+9ju3btrdA0mAkREJEnarg5YElYWDAwMVOs4QRDynFGgDq3SpVmzZkEQBISFhWlTDREREeVBoVCotWmaBABatAicOXMGy5cvR506dTS+OBERUX44a8AwNLpLaWlpCAoKwsqVK1G+fHldx0RERAQI+G/mgEabsd+AbnTu3BkpKSnK/VmzZuHp06fK/cePH8PHx0fj+jVKBEaMGIEuXbqgXbt2hR6bkZGB1NRUlY2IiIjUs3fvXmRkZCj3Z86ciSdPnij3s7KycO3aNY3rL3LXwA8//IDz58/jzJkzah0fFRWFL774osiBERFR6SbCBKIWQ9m0OVdKRFEscF9bRbpL8fHxGD16NNatWwcLCwu1zpk8eTJSUlKUW3x8vEaBEhFR6cIlhg2jSC0C586dw4MHD1C/fn1lmVwux5EjR7BkyRJkZGTA1NRU5RyZTAaZTKabaImIiEoZQRAgvJHUvLmvjSIlAm3btsXly5dVykJCQuDt7Y2JEyfmSgKIiIg0xVkD2URRxKBBg5RfqtPT0zFs2DBYW1sDgMr4AU0UKRGwsbFB7dq1Vcqsra3h4OCQq5yIiEgbXFAoW3BwsMp+XksMDxw4UOP6ubIgERFJElsEsq1evVqv9WudCBw6dEgHYRAREZExsEWAiIgkSduR/5w1oB4mAkREJEkcI2AYJaMDhYiIiDTCRICIiCQpZ7CgNltJcuTIEWRlZeUqz8rKwpEjRzSut2TdJSIiKjFyuga02UqS1q1bqzxjIEdKSgpat26tcb1MBIiIiIoBURTzXFHw8ePHysWFNMHBgkREJEkitFxHoIR81+3RoweA7GWFX19hEMhe5v/333+Hv7+/xvUzESAiIknirIFsdnZ2ALJbBGxsbGBpaal8zdzcHO+88w5CQ0M1rp+JABER0WuWLl2KOXPmIDExEX5+fli8eDEaNWqU57Fr1qxBSEiISplMJkN6errO4slZWdDT0xPjxo3TqhsgL0wEiIhIkrIXFNJmieGitwhs3LgR4eHhiImJQePGjREdHY2AgABcu3YNTk5OeZ5ja2uLa9euKfd1+WTA10VEROil3pLRgUJERCWOrmYNpKamqmwFPa1v/vz5CA0NRUhICHx8fBATEwMrKyusWrUq33MEQYCLi4tyc3Z21vm9AICkpCR88MEHcHNzQ5kyZWBqaqqyaYotAkR60DVFvw8J0cQuu5DCDyKSEF0tMezh4aFSHhERgcjIyFzHZ2Zm4ty5c5g8ebKyzMTEBO3atcPJkyfzvU5aWhoqV64MhUKB+vXrY+bMmahVq5bGcedn0KBBuHv3LqZMmQJXV1edtTwwESAiohItPj4etra2yv3XR92/7tGjR5DL5bm+0Ts7O+Pq1at5nlOjRg2sWrUKderUQUpKCubOnQt/f3/8+eefcHd3192bAHDs2DEcPXoUdevW1Wm9TASIiEiSRFGAKGrRIvDvuba2tiqJgC41adIETZo0Ue77+/ujZs2aWL58Ob788kudXsvDwwOiKOq0ToBjBIiISLJMstcS0HAr6p+4ChUqwNTUFElJSSrlSUlJcHFxUasOMzMz1KtXDzdv3izStdURHR2NSZMm4fbt2zqtl4kAERERsufkN2jQALGxscoyhUKB2NhYlW/9BZHL5bh8+TJcXV11Hl/fvn1x6NAhVK1aFTY2NrC3t1fZNMWuASIikiRjLCgUHh6O4OBgNGzYEI0aNUJ0dDSeP3+uXCtg4MCBqFixIqKiogAA06ZNwzvvvINq1arh6dOnmDNnDu7cuYMPP/xQ47jzEx0drfM6ASYCREQkUcZIBPr27YuHDx9i6tSpSExMRN26dbFnzx7lAMK7d+/CxOS/xvTk5GSEhoYiMTER5cuXR4MGDXDixAn4+PhoHHd+goODdV4nwESAiIhIxciRIzFy5Mg8Xzt06JDK/oIFC7BgwQIDRJXt1q1bWL16NW7duoWFCxfCyckJu3fvRqVKlTSessgxAkREJEl8DLGqw4cPw9fXF7/99hu2bt2KtLQ0AMClS5e0WnWQiQAREUkSEwFVkyZNwvTp07Fv3z6Ym5sry9u0aYNTp05pXC8TASIiomLg8uXLeO+993KVOzk54dGjRxrXy0SAiIgkKWdBIW22kqRcuXK4f/9+rvILFy6gYsWKGtfLRICIiCSJXQOq+vXrh4kTJyIxMRGCIEChUOD48eMYN24cBg4cqHG9TASIiEiSmAiomjlzJry9veHh4YG0tDT4+PigRYsW8Pf3x+eff65xvZw+SCRBcrmA4386I/GJFVzsX6BprSSYmup+jXEiKj7Mzc2xcuVKTJkyBX/88QfS0tJQr149VK9eXat6mQgQScy245UxPuYdJDwqqyyrWCENc4adQmDTO0aMjMiwjLGgUHFQqVIlVKpUSWf1MREgkpBtxysjaHpbvPnd/59H1gia3hbrPo9lMkClhggtnz5YwhIBURSxefNmHDx4EA8ePIBCoVB5fevWrRrVyzECRBIhlwsYH/POv0mA6i+wnF9oE5a/A7m8ZP1yIyL1hIWF4YMPPkBcXBzKli0LOzs7lU1TbBEgkojjfzqrdAe8SYSAew/L4vifzmhRJ9GAkREZhwICFFp8q9fmXCn6/vvvsXXrVnTu3Fmn9TIRIJKIxCdWOj2OqLjjGAFVdnZ2qFKlis7rZdcAkUS42L/Q6XFEVLJERkbiiy++wMuXL3VaL1sEiCSiaa0kVKyQhn8eWef5TUaAiIqOz9G0VpIRoiMyPG1XByxpKwv26dMHGzZsgJOTEzw9PWFmZqby+vnz5zWql4kAkUSYmoqYM+wUgqa3hQBRJRkQ/h1C+NVHp7ieAJUaIrRr3i9pPynBwcE4d+4cBgwYAGdnZwiCbhIdJgJEEhLY9A7WfR6bex0Bx+f46iOuI0BUmv3888/Yu3cvmjVrptN6mQgQSUxg0zvo9s5drixIpR67BlR5eHjA1tZW5/UyESCSIFNTkVMEqdTjrAFV8+bNw4QJExATEwNPT0+d1ctEgIiIJIktAqoGDBiAFy9eoGrVqrCysso1WPDJkyca1ctEgIiIqBiIjo7WS71MBIiISJJEAIpCjyr4/JIkODhYL/UyESAiIkli10BuCoUCN2/ezPOhQy1atNCoTiYCRERExcCpU6fQv39/3LlzB6Ko2t4hCALkcrlG9TIRICIiSeKsAVXDhg1Dw4YN8fPPP8PV1ZULChERUcnGrgFVN27cwObNm1GtWjWd1suHDhERERUDjRs3xs2bN3VeL1sEiIhIktg1oOqTTz7B2LFjkZiYCF9f31zrCNSpU0ejepkIEBGRJCnE7E2b80uSnj17AgAGDx6sLBMEAaIocrAgERFRSRcXF6eXepkIEOnBLrsQY4eQS/TMo8YOIZewT5sbOwSSMHYNqKpcubJe6mUiQEREksRZA7ndunUL0dHRuHLlCgDAx8cHo0ePRtWqVTWuk7MGiIhIkkRR+60k2bt3L3x8fHD69GnUqVMHderUwW+//YZatWph3759GtfLFgEiIqJiYNKkSRgzZgxmzZqVq3zixIlo3769RvWyRYCIiCRJAUHrrSS5cuUKhgwZkqt88ODB+OuvvzSul4kAERFJUs4YAW22ksTR0REXL17MVX7x4kU4OTlpXC+7BoiIiIqB0NBQDB06FH///Tf8/f0BAMePH8fs2bMRHh6ucb1MBIiISJK0HfBX0gYLTpkyBTY2Npg3bx4mT54MAHBzc0NkZCRGjRqlcb1MBIiISJK4jsB/srKysH79evTv3x9jxozBs2fPAAA2NjZa180xAkRERBJXpkwZDBs2DOnp6QCyEwBdJAEAEwEiIpKonGcNaLOVJI0aNcKFCxd0Xi+7BoiISJq0HflfwmYNfPzxxxg7dizu3buHBg0awNraWuV1Pn2QiIioBOvXrx8AqAwM5NMHiYioxOKsAVV8+iARGZWJKIff49/hkPEEj2X2uORQBwrB1NhhUQmm7eqAJW1lQck8fTAhIQETJ07E7t278eLFC1SrVg2rV69Gw4YN9REfEUlAy/tHMPrPxXBOf6gsS7JwxMJan+CwawsjRkYlGVsEgB07dqBTp04wMzPDjh07Cjy2e/fuGl2jSIlAcnIymjZtitatW2P37t1wdHTEjRs3UL58eY0uTkTS1/L+Ecw4NxVv/k51TH+IGeem4rMG05gMEOlJYGAgEhMT4eTkhMDAwHyPM9gYgdmzZ8PDwwOrV69Wlnl5eWl0YSKSPhNRjtF/LoaI3HONTQAoAIz+cwmOujRlNwHpnLbPCygJzxpQKBR5/r8uFWkdgR07dqBhw4bo3bs3nJycUK9ePaxcubLAczIyMpCamqqyEVHx4Pf4dzinP8z3F4UJAOf0B/B7/Lshw6JSgusIqIqPj9dLvUVKBP7++28sW7YM1atXx969ezF8+HCMGjUKa9euzfecqKgo2NnZKTcPDw+tgyYiw3DIeKLT44hIc56enmjZsiVWrlyJ5ORkndVbpERAoVCgfv36mDlzJurVq4ehQ4ciNDQUMTEx+Z4zefJkpKSkKDd9ZTREpHuPZfY6PY6oKHIGC2qzlSRnz55Fo0aNMG3aNLi6uiIwMBCbN29GRkaGVvUWKRFwdXWFj4+PSlnNmjVx9+7dfM+RyWSwtbVV2YioeLjkUAdJFo7Ir2dSASDJwgmXHDRb0YyoIDkPHdJm08TSpUvh6ekJCwsLNG7cGKdPny7w+B9//BHe3t6wsLCAr68vfvnlF42uW5h69ephzpw5uHv3rnLA/tChQ+Hs7IzBgwdrXG+REoGmTZvi2rVrKmXXr1/X29xGIjIuhWCKhbU+gQDkSgYUAAQAC2uN5EBBKjE2btyI8PBwRERE4Pz58/Dz80NAQAAePHiQ5/EnTpzA+++/jyFDhuDChQsIDAxEYGAg/vjjD73FKAgCWrdujZUrV2L//v3w8vIqsIu+MEVKBMaMGYNTp05h5syZuHnzJtavX48VK1ZgxIgRGgdARNJ22LUFPmswDQ8tHFXKH1o4ceog6ZUCWg4W1OCa8+fPR2hoKEJCQuDj44OYmBhYWVlh1apVeR6/cOFCdOzYEePHj0fNmjXx5Zdfon79+liyZIlW770g9+7dw1dffYW6deuiUaNGKFu2LJYuXapxfUWaPvj222/jp59+wuTJkzFt2jR4eXkhOjoaQUFBGgdARNJ32LUFjro05cqCZFC6WlDozdlqMpkMMpks1/GZmZk4d+4cJk+erCwzMTFBu3btcPLkyTyvcfLkSYSHh6uUBQQEYNu2bZoHno/ly5dj/fr1OH78OLy9vREUFITt27dr3Spf5JUFu3btiq5du2p1USIqfhSCKS5UqGfsMIiK7M3ZahEREYiMjMx13KNHjyCXy+Hs7KxS7uzsjKtXr+ZZd2JiYp7HJyYmahd0HqZPn473338fixYtgp+fn87q5bMGiIhIknTVIhAfH68yUD2v1oDi4O7duxAE3S+SxESAiIgkSSEKUGixOmDOuerOWKtQoQJMTU2RlJSkUp6UlAQXF5c8z3FxcSnS8doQBAFPnz7F6dOn8eDBg1wrDQ4cOFCjepkIEBGRJBn6oUPm5uZo0KABYmNjlev6KxQKxMbGYuTIkXme06RJE8TGxiIsLExZtm/fPjRp0kTDqPO3c+dOBAUFIS0tDba2tiqtA4IgaJwIFGnWABERUUkWHh6OlStXYu3atbhy5QqGDx+O58+fIyQkBED2t+7XBxOOHj0ae/bswbx583D16lVERkbi7Nmz+SYO2hg7diwGDx6MtLQ0PH36FMnJycrtyRPNV/dkiwAREUmSMR5D3LdvXzx8+BBTp05FYmIi6tatiz179igHBN69excmJv99h/b398f69evx+eef49NPP0X16tWxbds21K5dW/PA85GQkIBRo0bByspKp/UyESAiIkkStXxwkKZJxMiRI/P9Rn/o0KFcZb1790bv3r01u1gRBAQE4OzZs6hSpYpO62UiQEREVAx06dIF48ePx19//QVfX1+YmZmpvN69e3eN6mUiQEREkiSKAkQtZg1oc64UhYaGAgCmTZuW6zVBECCXyzWql4kAERFJkjHGCEjZm9MFdYWzBoiIiEoxJgJERCRJWj1wSMuBhlLSuXNnpKSkKPdnzZqFp0+fKvcfP34MHx8fjetn1wBRKRH2aXNjh5BL9Myjxg4hFynep9KKXQPZ9u7di4yMDOX+zJkz0adPH5QrVw4AkJWVhWvXrmlcP1sEiIiIJEx8I6N5c19bbBEgIiJJYouAYTARICIiSdK2n7+kjBEQBCHXUwd1+RRCJgJERCRJbBHIJooiBg0apHx8cnp6OoYNGwZra2sAUBk/oAkmAkRERBIWHByssj9gwIBcx2j65EGAiQAREUmUQpG9aXN+SbB69Wq91s9EgIiIJIldA4bB6YNERESlGFsEiIhIktgiYBhMBIiISJIU0HL6oM4iKdnYNUBERFSKsUWAiIgkSRRFrZbT1fVSvCUVEwEiIpIkjhEwDCYCRFRsmYhy+D3+HQ4ZT/BYZo9LDnWgEEyNHRZRscJEgIiKpZb3j2D0n4vhnP5QWZZk4YiFtT7BYdcWRoyMdEXUckEhkaMF1cLBgkRU7LS8fwQzzk2F42tJAAA4pj/EjHNT0fL+ESNFRrqU0zWgzUaFYyJARMWKiSjH6D8XQ0TuX2AmAEQAo/9cAhNRbvjgSKdynj6ozUaFYyJARMWK3+Pf4Zz+MN9fXiYAnNMfwO/x74YMi6jY4hgBIipWHDKe6PQ4ki7OGjAMJgJEVKw8ltnr9DiSLlEhQtSifV+bc0sTdg0QUbFyyaEOkiwc810+VgEgycIJlxzqGDIsomKLiQARFSsKwRQLa30CAbnXklcAEAAsrDWS6wmUABwsaBhMBIio2Dns2gKfNZiGhxaOKuUPLZzwWYNpXEeghOD0QcPgGAEiKpYOu7bAUZemXFmQSEtMBIio2FIIprhQoZ6xwyA9UShEKLRo39fm3NKEiQAREUkSpw8aBscIEBERlWJsESAiIklii4BhMBEgIiJJUogiFFr8Ndfm3NKEiQAREUmSqNDuUcJ8DLF6OEaAiIioFGOLABERSZIIEaIWzfsi2DWgDiYCREQkSaICULBrQO/YNUBERFSKsUWAiIgkSRS17BrgrAG1MBEgIiJJ0vYJglxhWD1MBIjIaMI+bW7sEHKxbF7T2CHk8vLoFWOHQCUYEwEiIpIkUSFC1OJrvTbnliZMBIiISJK4xLBhcNYAERFRKcYWASIikiSFQoRCi+Z9bc4tTZgIEBGRJHH6oGEwESAiIkniQ4cMg2MEiIiISjG2CBARkSQpRBEKLZr3tTm3NGGLABERSVLOGAFtNn168uQJgoKCYGtri3LlymHIkCFIS0sr8JxWrVpBEASVbdiwYXqNszBsESAiItJAUFAQ7t+/j3379uHVq1cICQnB0KFDsX79+gLPCw0NxbRp05T7VlZW+g61QEwEiIhIkqQ8ffDKlSvYs2cPzpw5g4YNGwIAFi9ejM6dO2Pu3Llwc3PL91wrKyu4uLjoLbaiYtcAERFJUs7KgtpsAJCamqqyZWRkaB3byZMnUa5cOWUSAADt2rWDiYkJfvvttwLPXbduHSpUqIDatWtj8uTJePHihdbxaIMtAkREVKJ5eHio7EdERCAyMlKrOhMTE+Hk5KRSVqZMGdjb2yMxMTHf8/r374/KlSvDzc0Nv//+OyZOnIhr165h69atWsWjDSYCREQ6JBdE/FXpJZ6UzYJ9Whn43LWEqSgYO6xiSRS1fOjQv00C8fHxsLW1VZbLZLJ8z5k0aRJmz55dYL1Xrmj+NMihQ4cq/9/X1xeurq5o27Ytbt26hapVq2pcrzaKlAjI5XJERkbif//7HxITE+Hm5oZBgwbh888/hyDwg05EpdsJ72dY0eEhHttlKcscUspg6K+O8L9qY8TIiidRy+mDOYmAra2tSiJQkLFjx2LQoEEFHlOlShW4uLjgwYMHKuVZWVl48uRJkfr/GzduDAC4efNm8UgEZs+ejWXLlmHt2rWoVasWzp49i5CQENjZ2WHUqFH6ipGISPJOeD9DVK/7ucof22Yhqtd9TN4MJgPFgKOjIxwdHQs9rkmTJnj69CnOnTuHBg0aAAAOHDgAhUKh/OOujosXLwIAXF1dNYpXF4o0WPDEiRN499130aVLF3h6eqJXr17o0KEDTp8+ra/4iIgkTy6IWNHhYfbOm42j/+6v7PAQcoEL3BSFqBC13vSlZs2a6NixI0JDQ3H69GkcP34cI0eORL9+/ZQzBhISEuDt7a38G3nr1i18+eWXOHfuHG7fvo0dO3Zg4MCBaNGiBerUqaO3WAtTpETA398fsbGxuH79OgDg0qVLOHbsGDp16pTvORkZGblGbBIRlSR/VXqZ3R2QXw+pADyyy8JflV4aNK7iTsqJAJA9+t/b2xtt27ZF586d0axZM6xYsUL5+qtXr3Dt2jXlrABzc3Ps378fHTp0gLe3N8aOHYuePXti586deo2zMEXqGpg0aRJSU1Ph7e0NU1NTyOVyzJgxA0FBQfmeExUVhS+++ELrQImIpOpJ2azCDyrCcZRNIWZv2pyvT/b29gUuHuTp6amyuqGHhwcOHz6s36A0UKQWgU2bNmHdunVYv349zp8/j7Vr12Lu3LlYu3ZtvudMnjwZKSkpyi0+Pl7roImIpMQ+Tb3vVOoeR2RIRfpUjh8/HpMmTUK/fv0AZE99uHPnDqKiohAcHJznOTKZrMCpGkRExZ3PXUs4pJTBY9t8ugdEoEJq9lRCUp+2zfv67hooKYrUIvDixQuYmKieYmpqCoWCD30motLLVBQw9Nd/R5q/+bfn3/3QXx25nkARSf2hQyVFkVoEunXrhhkzZqBSpUqoVasWLly4gPnz52Pw4MH6io+IqFjwv2qDyZuRax2BCqllEMp1BEjCipQILF68GFOmTMHHH3+MBw8ewM3NDR999BGmTp2qr/iIiIoN/6s2aHytLFcW1BGFQrsHB7GxWj1FSgRsbGwQHR2N6OhoPYVDRFS8mYoCfO8Y97GyJYW2zfvsGlAPnz5IRERUinEuCxERSRJnDRgGEwEiIpIkJgKGwa4BIiKiUowtAkREJEkKaPcYYkWuRR0oL0wEiIhIktg1YBhMBIiISJI4fdAwOEaAiIioFGOLABERSZKoELVaWZBdA+phIkBERJLEMQKGwa4BIiKiUowtAkREr3l59IqxQ6B/cbCgYTARICIiSRIVCohaPEJQm3NLE3YNEBERlWJsESAiIklSaDlrQJtzSxMmAkREJEkcI2AY7BogIiIqxdgiQEREksR1BAyDiQAREUkSEwHDYCJARESSpIACClHzKYAKcPqgOjhGgIiIqBRjiwAREUmSqNCueV+LxoRShYkAERFJEscIGAa7BoiIiEoxtggQEZEkcUEhw2AiQEREkqRQKKDQ4sFB2pxbmrBrgIiIqBRjiwAREUkSBwsaBhMBIiKSJFFUQNRiDqA255Ym7BogIiIqxdgiQEREksSuAcNgIkBERNKkZSIAJgJqYSJARESSpBC1fOgQxwiohWMEiIiISjG2CBARkSRxjIBhMBEgIiJJEkUFRC1WB+T0QfWwa4CIiKgUY4sAERFJErsGDIOJABERSRJXFjQMdg0QERGVYmwRICIiSVIoAIUWzft8CrF6mAgQEZEkiQotZw0wE1ALuwaIiIhKMbYIEBGRJHHWgGGwRYCIiCQpZ9aANps+zZgxA/7+/rCyskK5cuXUfE8ipk6dCldXV1haWqJdu3a4ceOGXuMsDBMBIiKSpJwWAW02fcrMzETv3r0xfPhwtc/56quvsGjRIsTExOC3336DtbU1AgICkJ6ersdIC8auASIiIg188cUXAIA1a9aodbwoioiOjsbnn3+Od999FwDw3XffwdnZGdu2bUO/fv30FWqBDJ4IiGJ2hvbyeaqhL01ERFrK+d2d87tcn7Iyn2k18l+e9RwAkJqq+vdGJpNBJpNpFZsm4uLikJiYiHbt2inL7Ozs0LhxY5w8ebL0JALPnj0DAAwPrGzoSxMRkY48e/YMdnZ2eqnb3NwcLi4uOBvbR+u6ypYtCw8PD5WyiIgIREZGal13USUmJgIAnJ2dVcqdnZ2VrxmDwRMBNzc3xMfHw8bGBoIgaFxPamoqPDw8EB8fD1tbWx1GWLLwPqmH90k9vE/qKcn3SRRFPHv2DG5ubnq7hoWFBeLi4pCZmal1XaIo5vpbU1BrwKRJkzB79uwC67xy5Qq8vb21jk0qDJ4ImJiYwN3dXWf12dralrgfNH3gfVIP75N6eJ/UU1Lvk75aAl5nYWEBCwsLvV/nTWPHjsWgQYMKPKZKlSoa1e3i4gIASEpKgqurq7I8KSkJdevW1ahOXeBgQSIion85OjrC0dFRL3V7eXnBxcUFsbGxyj/8qamp+O2334o080DXOH2QiIhIA3fv3sXFixdx9+5dyOVyXLx4ERcvXkRaWpryGG9vb/z0008AAEEQEBYWhunTp2PHjh24fPkyBg4cCDc3NwQGBhrpXRTjFgGZTIaIiAijjPwsTnif1MP7pB7eJ/XwPpUOU6dOxdq1a5X79erVAwAcPHgQrVq1AgBcu3YNKSkpymMmTJiA58+fY+jQoXj69CmaNWuGPXv2GKUbJIcgGmIOCBEREUkSuwaIiIhKMSYCREREpRgTASIiolKMiQAREVEpxkSAiIioFCu2icDSpUvh6ekJCwsLNG7cGKdPnzZ2SJISFRWFt99+GzY2NnByckJgYCCuXbtm7LAkbdasWcp5vqQqISEBAwYMgIODAywtLeHr64uzZ88aOyxJkcvlmDJlCry8vGBpaYmqVaviyy+/NMjDeYi0USwTgY0bNyI8PBwRERE4f/48/Pz8EBAQgAcPHhg7NMk4fPgwRowYgVOnTmHfvn149eoVOnTogOfPnxs7NEk6c+YMli9fjjp16hg7FMlJTk5G06ZNYWZmht27d+Ovv/7CvHnzUL58eWOHJimzZ8/GsmXLsGTJEly5cgWzZ8/GV199hcWLFxs7NKICFct1BBo3boy3334bS5YsAQAoFAp4eHjgk08+waRJk4wcnTQ9fPgQTk5OOHz4MFq0aGHscCQlLS0N9evXx9dff43p06ejbt26iI6ONnZYkjFp0iQcP34cR48eNXYokta1a1c4Ozvj22+/VZb17NkTlpaW+N///mfEyIgKVuxaBDIzM3Hu3DmV5zmbmJigXbt2OHnypBEjk7acla3s7e2NHIn0jBgxAl26dFH5TNF/duzYgYYNG6J3795wcnJCvXr1sHLlSmOHJTn+/v6IjY3F9evXAQCXLl3CsWPH0KlTJyNHRlSwYrfE8KNHjyCXy/N8nvPVq1eNFJW0KRQKhIWFoWnTpqhdu7axw5GUH374AefPn8eZM2eMHYpk/f3331i2bBnCw8Px6aef4syZMxg1ahTMzc0RHBxs7PAkY9KkSUhNTYW3tzdMTU0hl8sxY8YMBAUFGTs0ogIVu0SAim7EiBH4448/cOzYMWOHIinx8fEYPXo09u3bZ9R1vqVOoVCgYcOGmDlzJoDs9dT/+OMPxMTEMBF4zaZNm7Bu3TqsX78etWrVwsWLFxEWFgY3NzfeJ5K0YpcIVKhQAaampkhKSlIpT0pKUj7rmf4zcuRI7Nq1C0eOHIG7u7uxw5GUc+fO4cGDB6hfv76yTC6X48iRI1iyZAkyMjJgampqxAilwdXVFT4+PiplNWvWxJYtW4wUkTSNHz8ekyZNQr9+/QAAvr6+uHPnDqKiopgIkKQVuzEC5ubmaNCgAWJjY5VlCoUCsbGxaNKkiREjkxZRFDFy5Ej89NNPOHDgALy8vIwdkuS0bdsWly9fVj469OLFi2jYsCGCgoJw8eJFJgH/atq0aa6pp9evX0flypWNFJE0vXjxAiYmqr9STU1NoVAojBQRkXqKXYsAAISHhyM4OBgNGzZEo0aNEB0djefPnyMkJMTYoUnGiBEjsH79emzfvh02NjZITEwEANjZ2cHS0tLI0UmDjY1NrjET1tbWcHBw4FiK14wZMwb+/v6YOXMm+vTpg9OnT2PFihVYsWKFsUOTlG7dumHGjBmoVKkSatWqhQsXLmD+/PkYPHiwsUMjKphYTC1evFisVKmSaG5uLjZq1Eg8deqUsUOSFAB5bqtXrzZ2aJLWsmVLcfTo0cYOQ3J27twp1q5dW5TJZKK3t7e4YsUKY4ckOampqeLo0aPFSpUqiRYWFmKVKlXEzz77TMzIyDB2aEQFKpbrCBAREZFuFLsxAkRERKQ7TASIiIhKMSYCREREpRgTASIiolKMiQAREVEpxkSAiIioFGMiQEREVIoxESAiIirFmAgQERGVYkwEiIiISjEmAkRERKXY/wEvDEkHAA6oDwAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "**Visualization 2: A* Pathfinding Visualization**\n", + "\n", + "Once the A* algorithm generates a path, we can overlay this path on the environment setup. The path points are highlighted to show the optimal path from the drone’s start position to the target." + ], + "metadata": { + "id": "ql7ZSfxR4aIV" + } + }, + { + "cell_type": "code", + "source": [ + "def visualize_astar_path(drone_pos, target_pos, obstacles, path):\n", + " # Create a grid for the environment\n", + " grid_size = (10, 10)\n", + " env_grid = np.zeros(grid_size)\n", + "\n", + " # Mark obstacles\n", + " for obs in obstacles:\n", + " env_grid[obs[0], obs[1]] = -1 # Obstacles marked as -1\n", + "\n", + " # Mark target position\n", + " env_grid[target_pos[0], target_pos[1]] = 2 # Target marked as 2\n", + "\n", + " # Mark drone position\n", + " env_grid[drone_pos[0], drone_pos[1]] = 1 # Drone marked as 1\n", + "\n", + " # Plot the grid with A* path\n", + " plt.imshow(env_grid, cmap=\"coolwarm\", origin=\"upper\")\n", + " plt.colorbar(label=\"Environment Elements\")\n", + " plt.scatter(drone_pos[1], drone_pos[0], color='blue', label=\"Drone Start\")\n", + " plt.scatter(target_pos[1], target_pos[0], color='green', label=\"Target\")\n", + " for obs in obstacles:\n", + " plt.scatter(obs[1], obs[0], color='red', label=\"Obstacle\" if obs == obstacles[0] else \"\")\n", + "\n", + " # Draw the A* path\n", + " if path:\n", + " path_x, path_y = zip(*path)\n", + " plt.plot(path_y, path_x, color=\"yellow\", linewidth=2, marker=\"o\", label=\"A* Path\")\n", + "\n", + " plt.legend(loc=\"upper right\")\n", + " plt.title(\"A* Pathfinding for Drone Navigation\")\n", + " plt.show()\n", + "\n", + "# Test A* Visualization\n", + "path = a_star(start=drone_pos, goal=target_pos, obstacles=obstacles, grid_width=10, grid_height=10)\n", + "visualize_astar_path(drone_pos, target_pos, obstacles, path)\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 452 + }, + "id": "hr1bJdal30ZW", + "outputId": "cb6746c5-beed-450a-945b-bf4cf3343b1f" + }, + "execution_count": 9, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgIAAAGzCAYAAABdO3+BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABllklEQVR4nO3dd1xV5R8H8M/hsqeCTAHBkYoLR5p7izuz3CaiWZYLMVemorknpqZpOTJNLWeWmqI4cg9cuUNFFHCCoIDce35/EPfn5SJc7jzA5/16nVed557znC+HK/d7n3UEURRFEBERUbFkZuoAiIiIyHSYCBARERVjTASIiIiKMSYCRERExRgTASIiomKMiQAREVExxkSAiIioGGMiQEREVIwxESAiIirGmAgUQeHh4RAEAY8fP8732MzMTIwZMwY+Pj4wMzNDly5dAACCICA8PFyvceWsc82aNRAEAXfu3NHrdTS1Z88eBAYGwtraGoIg4Pnz5yaJg3Rn6vdS//794efnZ5JrE+mKiUAuvvvuOwiCgHr16uV7bEH+8Wf/screrK2t8c4772Do0KFISEgocJwzZszA9u3bC3zem1atWoW5c+fio48+wtq1azFy5Eid6issnjx5gu7du8PGxgZLly7FunXrYGdnZ7Dr5fa79/LyQlBQEL799lu8ePHCYNc2Bj8/PwiCgGHDhqm9FhUVBUEQ8Ntvv5kgMv158OABwsPDER0dbepQiPRLJDUNGjQQ/fz8RADizZs31V7ft2+fmJmZKYqiKJYpU0ZZvmfPnjzrXb16tQhAnDp1qrhu3Tpx5cqVYnBwsGhmZib6+/uLqampBYrTzs5ODA4OViufPHmyCEB89OhRvnX06NFDLF26tFr5q1evxNevXxconvwAECdPnqzcz8zMFF+9eiUqFAq9XkcTu3fvFgGI+/btM8r1cv7uV61aJc6YMUNs06aNKAiCWKZMGfHChQtGicUQypQpIwIQraysxLi4OJXXDh48KAIQf/31V4Nd3xjvpdOnT4sAxNWrV6u9lpGRIaalpRns2kSGxBaBHGJiYnDs2DEsWLAArq6uWL9+vcrroihi5cqVeO+993DhwgXlOUFBQZg/fz5SUlLyvUa7du3Qt29ffPLJJ1izZg1CQ0MRExODHTt2GORnyktiYiJKlCihVm5tbQ1zc3ODXlsmkymb5Y0tMTERAHL92bWVmpqa7zHZv/uQkBCMHz8ee/fuxf79+5GYmIjOnTvj1atXOl/DVKpUqQK5XI5Zs2YZ/dqmfC8BgIWFBaysrExybSJdMRHIYf369ShZsiQ6dOiAjz76SC0REAQBmzZtwoIFCzB48GA8fPgQXbt2xZAhQ/DXX3/B3t6+wNds0aIFgKyEAgDmzZuHBg0awMXFBTY2Nqhdu7Zas6ogCEhNTcXatWuVzc39+/dXOeb58+fo378/SpQoAScnJ4SEhODly5cAgDt37kAQBBw8eBBXrlxR1hEVFaWs/83+/OxxB7du3XprndnS09MxcuRIuLq6wsHBAZ07d8b9+/fVfu7c+nX9/PzQsWNHHD16FHXr1oW1tTXKli2Ln376Se38ixcvomnTprCxsYG3tzemTZuG1atX59tX3KxZMwQHBwMA3n33XbV79+uvv6J27dqwsbFBqVKl0LdvX8TFxanU0b9/f9jb2+P27dto3749HBwc0KdPn7deMy8tWrTAxIkTcffuXfz8888aXSM1NRWjRo2Cj48PrKysULFiRcybNw9ijoeJCoKAoUOHYvv27ahatSqsrKxQpUoV7NmzRy2OuLg4DBgwAO7u7srjVq1apfHP4efnh379+mHlypV48OBBnsfevXsXX3zxBSpWrAgbGxu4uLigW7duKr+3M2fOQBAErF27Vu38vXv3QhAE7Nq1C0Du7yWFQoHw8HB4eXnB1tYWzZs3xz///AM/Pz+V3/fTp0/x5Zdfolq1arC3t4ejoyPatWunTPSBrO6Nd999FwAQEhKi/PeyZs0aALmPETDE74jIEJgI5LB+/Xp07doVlpaW6NWrF27evInTp0+rHWdmZqby7UOXbyK3b98GALi4uAAAFi1ahJo1a2Lq1KmYMWMGzM3N0a1bN/zxxx/Kc9atWwcrKys0btwY69atw7p16/DZZ5+p1Nu9e3e8ePECM2fORPfu3bFmzRpMmTIFAODq6op169ahUqVK8Pb2VtZRuXLlPGPNq85sn3zyCSIiItCmTRvMmjULFhYW6NChg8b349atW/joo4/QunVrzJ8/HyVLlkT//v1x5coV5TFxcXFo3rw5rly5gvHjx2PkyJFYv349Fi1alG/9EyZMwKeffgoAmDp1qsq9W7NmDbp37w6ZTIaZM2di0KBB2Lp1Kxo1aqQ2mDAzMxNBQUFwc3PDvHnz8OGHH2r8M+b08ccfAwD++uuvfK8hiiI6d+6MhQsXom3btliwYAEqVqyI0aNHIywsTK3uo0eP4osvvkDPnj0xZ84cpKWl4cMPP8STJ0+UxyQkJOC9997D/v37MXToUCxatAjly5fHwIEDERERofHPMWHCBGRmZubbKnD69GkcO3YMPXv2xLfffovBgwcjMjISzZo1UyaWderUQdmyZbF582a18zdt2oSSJUsiKCjordcYP348pkyZgjp16mDu3LmoUKECgoKC1FpV/v33X2zfvh0dO3bEggULMHr0aFy6dAlNmzZVJjSVK1fG1KlTAQCffvqp8t9LkyZNcr22IX5HRAZj0o4JiTlz5oxKv7FCoRC9vb3FESNGKI9RKBRi7969xTp16ojR0dFimTJlxH///Vds3bq12Lp1a/HFixdvrT+7n3j//v3io0ePxNjYWHHjxo2ii4uLaGNjI96/f18URVF8+fKlynkZGRli1apVxRYtWqiU5zdGYMCAASrlH3zwgeji4qJS1rRpU7FKlSpqdSBHf76mdUZHR4sAxC+++ELluN69e6vVmX0/YmJilGXZfc2HDx9WliUmJopWVlbiqFGjlGXDhg0TBUEQz58/ryx78uSJ6OzsrFZnbrKvffr0aWVZRkaG6ObmJlatWlV89eqVsnzXrl0iAHHSpEnKsuDgYBGAOG7cuDyvk9f1cnJychJr1qyZ7zW2b98uAhCnTZumUv7RRx+JgiCIt27dUpYBEC0tLVXKLly4IAIQFy9erCwbOHCg6OnpKT5+/Filzp49e4pOTk5q78mcypQpI3bo0EEURVEMCQkRra2txQcPHoiimPsYgdzqO378uAhA/Omnn5Rl48ePFy0sLMSnT58qy9LT08USJUqovBdzvpfi4+NFc3NzsUuXLirXCA8PFwGo/LtJS0sT5XK5ynExMTGilZWVOHXqVGVZXmMEgoODVcYLGeJ3RGQobBF4w/r16+Hu7o7mzZsDyPqW36NHD2zcuBFyuVxZ1r9/f5w4cQI1atQAAPj7++Ovv/5CWFiYRl0DrVq1gqurK3x8fNCzZ0/Y29tj27ZtKF26NADAxsZGeeyzZ8+QlJSExo0b49y5cwX6eQYPHqyy37hxYzx58gTJyckFqqcgdf75558AgOHDh6scFxoaqvE1AgIC0LhxY+W+q6srKlasiH///VdZtmfPHtSvXx+BgYHKMmdnZ62b54GspujExER88cUXsLa2VpZ36NABlSpVUmmRyfb5559rfb2c7O3tc509kPMaf/75J2Qymdo9HjVqFERRxO7du1XKW7VqhXLlyin3q1evDkdHR+X9FEURW7ZsQadOnSCKIh4/fqzcgoKCkJSUVKD33tdff51vq8Cb7/HXr1/jyZMnKF++PEqUKKFyrR49euD169fYunWrsuyvv/7C8+fP0aNHj7fWHxkZiczMTHzxxRcq5bnNarCysoKZWdafQrlcjidPnsDe3h4VK1Ys8L+5bPr+HREZEhOB/8jlcmzcuBHNmzdHTEwMbt26hVu3bqFevXpISEhAZGSk8tjWrVtDJpOp1dG2bVuNrrV06VLs27cPBw8exD///IN///1XpYlz165deO+992BtbQ1nZ2e4urpi2bJlSEpKKtDP5Ovrq7JfsmRJAFnJhbbyq/Pu3bswMzNT+aMGABUrVtT6GtnXeTPuu3fvonz58mrH5Vamqbt37wLIPdZKlSopX89mbm4Ob29vra+XU0pKChwcHPK9xt27d+Hl5aV2bHa3Ts4487ufjx49wvPnz7FixQq4urqqbCEhIQD+P7hSE2XLlsXHH3+MFStW4OHDh7ke8+rVK0yaNEnZf16qVCm4urri+fPnKu/zGjVqoFKlSti0aZOybNOmTShVqpRybE1usu9BzveDs7Oz8j2bTaFQYOHChahQoYJKLBcvXizwv7k3r6/P3xGRIRl2WHghcuDAATx8+BAbN27Exo0b1V5fv3492rRpo1auzQImdevWRZ06dXJ97ciRI+jcuTOaNGmC7777Dp6enrCwsMDq1auxYcOGAl0nt2QFgNpgJVPXaYpr6MOb3yR1df/+fSQlJal9cOnjGvndT4VCAQDo27evchBlTtWrVy/QNSdMmIB169Zh9uzZykWq3jRs2DCsXr0aoaGhqF+/PpycnCAIAnr27KmMJ1uPHj0wffp0PH78GA4ODti5cyd69eqlt1ktM2bMwMSJEzFgwAB88803cHZ2hpmZGUJDQ9ViMZTC8p6noomJwH/Wr18PNzc3LF26VO21rVu3Ytu2bVi+fLlKk6YhbNmyBdbW1ti7d6/KdKTVq1erHWuqqVJ5KVOmDBQKBW7fvq3yzfr69et6v86tW7fUynMrK0idQFasOb9tXr9+Xfm6Iaxbtw4A8hz8lq1MmTLYv38/Xrx4ofKN89q1a8rXCyJ7dodcLkerVq0KdO7blCtXDn379sX333+f68Jcv/32G4KDgzF//nxlWVpaWq6rO/bo0QNTpkzBli1b4O7ujuTkZPTs2TPP62ffg1u3bsHf319Z/uTJE7Vv2b/99huaN2+OH3/8UaX8+fPnKFWqlHK/IP/e9P07IjIkdg0gq5ly69at6NixIz766CO1bejQoXjx4gV27txp8FhkMhkEQVCOSQCyWh1yW0HQzs5OcsvitmvXDgDw7bffqpQXZOS5JoKCgnD8+HGVVd6ePn2qNt2zIOrUqQM3NzcsX74c6enpyvLdu3fj6tWrBZr5UBAHDhzAN998A39/f43GOLRv3x5yuRxLlixRKV+4cCEEQVD+DjQlk8nw4YcfYsuWLbh8+bLa648ePSpQfdm+/vprvH79GnPmzMn1mjm/7S5evFjlfZ+tcuXKqFatGjZt2oRNmzbB09PzraP1s7Vs2RLm5uZYtmyZSnnOe/a2WH799Ve1KaPZK09q8m9O378jIkNiiwCAnTt34sWLF+jcuXOur7/33nvKxYXyGqCkDx06dMCCBQvQtm1b9O7dG4mJiVi6dCnKly+Pixcvqhxbu3Zt7N+/HwsWLICXlxf8/f01WhbZkAIDA9GrVy989913SEpKQoMGDRAZGanTN/XcjBkzBj///DNat26NYcOGwc7ODj/88AN8fX3x9OlTrVpLLCwsMHv2bISEhKBp06bo1asXEhISsGjRIvj5+ell+eXdu3fj2rVryMzMREJCAg4cOIB9+/ahTJky2Llzp8ogxbfp1KkTmjdvjgkTJuDOnTuoUaMG/vrrL+zYsQOhoaFq4zM0MWvWLBw8eBD16tXDoEGDEBAQgKdPn+LcuXPYv38/nj59WuA6s1sFclsHoGPHjli3bh2cnJwQEBCA48ePY//+/coptDn16NEDkyZNgrW1NQYOHJhvd4m7uztGjBiB+fPno3Pnzmjbti0uXLiA3bt3o1SpUirvj44dO2Lq1KkICQlBgwYNcOnSJaxfvx5ly5ZV+3lKlCiB5cuXw8HBAXZ2dqhXr55Ki0M2Q/yOiAzGRLMVJKVTp06itbV1nkv89u/fX7SwsFCbXlUQmkwhE0VR/PHHH8UKFSqIVlZWYqVKlcTVq1crp++96dq1a2KTJk1EGxsblSlRb1tiOLfpegWdPqhJna9evRKHDx8uuri4iHZ2dmKnTp3E2NhYjacPZk9De1PTpk3Fpk2bqpSdP39ebNy4sWhlZSV6e3uLM2fOFL/99lsRgBgfH69WR25x5/a72LRpk1izZk3RyspKdHZ2Fvv06aOc2pktODhYtLOzy/MauV0ve7O0tBQ9PDzE1q1bi4sWLRKTk5PVzsnrGi9evBBHjhwpenl5iRYWFmKFChXEuXPnqi2xC0AcMmSI2vllypRRm3qakJAgDhkyRPTx8REtLCxEDw8PsWXLluKKFSvy/fne9nu7efOmKJPJ1KYPPnv2TAwJCRFLlSol2tvbi0FBQeK1a9dyjSu7nux7d/ToUbXXc3svZWZmihMnThQ9PDxEGxsbsUWLFuLVq1dFFxcXcfDgwcrj0tLSxFGjRomenp6ijY2N2LBhQ/H48eO5vud27NghBgQEiObm5ipTCXNOHxRFw/yOiAxBEEWORqGiIzQ0FN9//z1SUlLeOgCLiq/nz5+jZMmSmDZtGiZMmGDqcIgkgWMEqNDKuS7/kydPsG7dOjRq1IhJAOX63IbssSrNmjUzbjBEEsYxAlRo1a9fH82aNUPlypWRkJCAH3/8EcnJyZg4caKpQyMJ2LRpE9asWYP27dvD3t4eR48exS+//II2bdqgYcOGpg6PSDKYCFCh1b59e/z2229YsWIFBEFArVq18OOPP+Y7opyKh+rVq8Pc3Bxz5sxBcnKycgDhtGnTTB0akaRwjAARERGAmTNnYuvWrbh27RpsbGzQoEEDzJ49O9+VUX/99VdMnDgRd+7cQYUKFTB79my0b9/eSFHrjmMEiIiIABw6dAhDhgzBiRMnsG/fPrx+/Rpt2rRRe2Llm44dO4ZevXph4MCBOH/+PLp06YIuXbrkuiaHVLFFgIiIKBePHj2Cm5sbDh069NYuxx49eiA1NRW7du1Slr333nsIDAzE8uXLjRWqTow+RkChUODBgwdwcHCQ5BK5RET0dqIo4sWLF/Dy8tLbszZyk5aWhoyMDJ3rEUVR7bPGyspKZQn3t8l+6JSzs/Nbjzl+/DjCwsJUyoKCgnJdDVaqjJ4IPHjwAD4+Psa+LBER6VFsbKxen775prS0NHjZ2OMZ1JecLih7e3ukpKSolE2ePBnh4eF5nqdQKBAaGoqGDRuiatWqbz0uPj4e7u7uKmXu7u6Ij4/XOmZjM3oikP0AjmXb78LGztHYlyciIh28Sk3G513KqD1iWZ8yMjLwDHKstS4LWx2Gsr2EAsEp/yI2NhaOjv//vNGkNWDIkCG4fPkyjh49qvX1CwujJwLZTTQ2do6wZSJARFQoGaNr1xZmsBV0WBzsvxFwjo6OKolAfoYOHYpdu3bh8OHD+bZ6eHh4ICEhQaUsISEBHh4eBQ7XVDhrgIiIJEkwF2CmwyaYFyxZEUURQ4cOxbZt23DgwIFcHyiVU/369REZGalStm/fPtSvX79A1zYlLihERESSJFiYQRC0/74qFHBS3JAhQ7Bhwwbs2LEDDg4Oyn5+Jycn2NjYAAD69euH0qVLY+bMmQCAESNGoGnTppg/fz46dOiAjRs34syZM1ixYoXWcRsbWwSIiEiSzGS6tQiYyQrWIrBs2TIkJSWhWbNm8PT0VG6bNm1SHnPv3j08fPhQud+gQQNs2LABK1asQI0aNfDbb79h+/bteQ4wlBq2CBBRLkSYIRMyPYzapsJFDhkUMAdQ/KZ3a7KsTlRUlFpZt27d0K1bNwNEZBxMBIhIhQwZcDaPh535S3Cpj+JHFIHUTFs8zfSAHJYmjUWwECCYaf8mFBR8A2uCiQARvUEBT8s7cLA1Rwnn0jA3t0Bx/GZYfInIzHyN508fwerlHdzPKA9T9iCbmQsw0yERMGMioBEmAkSkZI4MWMgUcHH1hJW1ranDIROwtLKBTGaOtPt3YY7XyET+c+6pcGMiQERK2d+fdBmpTYVf9u9fgGkfRcOuAeNgIkBERJJkJiv4yH+V8+VMBDTBtJ+IiKgYY4sAERFJkiATIOjQIiBwoKtGtGoRWLp0Kfz8/GBtbY169erh1KlT+o6LiEhjQz4LgYuDGVwczOBe0hKVynqga+c2WP/TKigUClOHl6efVq9Ek/qB8PVwgL93STRrWAsL581Uvj7ksxD07fmB3q7XuV1zfDU2VG/1GVJ214AuG+WvwInApk2bEBYWhsmTJ+PcuXOoUaMGgoKCkJiYaIj4iKgQksuBo0eALb9m/VduhHWJWrZui39uPcD5KzHYtPVPNGrcDOPHhqJXt07IzMx863mvX782fHBvsf6nVZgwbiQ+HTwMUX+fx+59RzEsdDRSU1PyP7mAMjIy9F4nFQ0FTgQWLFiAQYMGISQkBAEBAVi+fDlsbW2xatUqQ8RHRIXM7zuAwCrA++0FfDpAwPvtBQRWySo3JEtLK7i7e8DLqzRqBNZC2Oiv8PPG7dj/12788vMa5XEuDmZY9cMy9On+Pnzc7bFg7nQAwKoflqF29fLwcLZC3ZqVsOmXdSr1uziYYd2aH/Bxr67wdrPDu4HvYPcfO1WOufrPZXTv2h6+Hg6oVNYDgwf1w5PHj98a8+4/f8f7H3RH3+CBKFuuPCpVroIPu/XC15OzYpo9IxwbN6zF7j92KFs8jh6JAgCETxyLuoEV4e1mh1rVymHGNxNVkprZM8LRtEFNrFvzA2pWLQuvUjYY8lkI/j56CN9/962yvnt372h/0w1MMBN03ih/BUoEMjIycPbsWbRq1er/FZiZoVWrVjh+/Hiu56SnpyM5OVllI6Ki6fcdQMjHwIM41fKHD7LKDZ0M5NSkaQtUrVYDu37fplI+Z8YUtO/UBUdOXESfjwdg185t+GpMKL4YFoajJy+h/4BPMezzAThy+KDqebOmokvXbjh8/AJatWmHzz7pi2dPnwIAkp4/R5cOLVGteiD2HzqNzdt241FiAgYE93hrfO7u7jhz+gRi793N9fUhw79El67dla0d/9x6gLr1GgAA7B0csGT5ahw7fQUzZkdg3ZofsGzJQpXzY/69hd93bsXa9Vtw6Nh5zJwTgXfr1ke//p8o6yvt7VPg+2osgsxM543yV6DBgo8fP4ZcLoe7u7tKubu7O65du5brOTNnzsSUKVO0j5CICgW5HPhqbNYStTlXIxRFAYIgYsJYoH1HQKbDI+YLqsI7lXDl8kWVsg+790Kfj0OU+4NCeqNXn2AMHPQFAKB8hTCcOX0SSxfNR+MmzZXH9eoTjA+79QIAfD15BlYsW4xzZ0+hZeu2WLliCarVqImJ4TOUx3/73Y+oXskXt27eQPkK76jFNnr8ZFzu/SECq/ijXPl38G7d+mgd1A6du3wEMzMz2Nvbw9raBunp6XB3V32+/Zdjvlb+v28ZP9y6OQpbt2zC8JFjlOUZGRn47vu1KOXqqiyztLSEja2tWn1SpPP0QQ4W1IjB06Xx48cjKSlJucXGxhr6kkRkAsePAQ/iBLxtSWJRFBAXJ+D4MePGJYoihBwPTQisWUdl/8aNq6j7XkOVsnrvNcCNG1dVyqpUra78fzs7Ozg4OuLRo6zxUVcuXcTRwwfh6+Gg3OrXrgwAuBNzO9fYPDw8sffAMRw9eRGffTEcmfJMDPmsP7p90C7fQY7btmxCu1aNULmcJ3w9HDDjm4mIi72ncoyPbxmVJIAoNwVqEShVqhRkMhkSEhJUyhMSEuDhkXt2aWVlBSsrLlFJVNQlxOv3OH25cf0qypTxVymztbXTqq6sZy/8nyAIyg/s1NQUBLXrhMlTZ6md5+7hmWe9lQOqonJAVQwc9AVODPgMHYKa4O+jh1RaI950+uRxfDawL8ZOCEeLlkFwdHTCti0bsXTxApXjtP05pUIQuLKgMRSoRcDS0hK1a9dGZGSkskyhUCAyMhL169fXe3BEVHho2tJszBbpw4cO4J8rl9Dx/a55HvfOO5Vx6sTfKmUnTxxDxYoBGl+reo2auHb1CnzL+KFsufIqm52d5h/IFStlXfNlaioAwNLSAooc0y5OnTwGH98yGDV6AmrWqoNy5Su8dZxBThaWlpAbYxqHHggy3aYQCkbsgirMCrygUFhYGIKDg1GnTh3UrVsXERERSE1NRUhISP4nE1GRVb8B4FVaxMMHWd0AOQmCCC+vrOMMISMjHQkJ8ZDL5XiUmIDIfXsQsWAWgtp2RM/e/fI8d+iILzEwuAeq1aiJps1aYe/u37Fr51Zs/X2fxtcf+OkQrFvzAwaF9Maw0NEoWdIZMf/ewtbfNmHR0pWQ5TIwYlTo5/D09ELjJi3gVdob8fEPsWDOdJQq5Yp362Z9ufLx9cOByL9w88Z1ODu7wNHJCWXLVcD92HvY+ttG1Kz1Lv7a+wf++H27RnH6+pbB2TOncO/uHdjZ2aOkszPMzDiorjgr8G+/R48emDdvHiZNmoTAwEBER0djz549agMIiah4kcmAGbOz/l8QVB9Wk70/fbbhBgpG7tuDgPJeqFnFH90/aIejR6Iwc84i/Lxpe64fwm/q0KkLZsyJwNJv56Nh3apYs2oFFi9bhUaNm2l8fU9PL/y57yjkcjk+6hKExu9Vx1djR8KphNNbP2ibNm+FM6dOIqRfd9StWRH9+34EK2trbNu1H84uLgCAfv0HoXyFimjZ9F284++Gkyf+RrsOnfH5kFCMHTUMTRvWxOmTx/Hl2K9zvUZOQ4Z/CZmZDA3erYJ3/N1wP8e4AinJXllQl43yJ4iiaNTHSyUnJ8PJyQlr9j2DrZ2jMS9NRPmwQBq8be7A28cfllbWWtXx+46s2QNZAwezlC4tYvpsoNP7+oqUDCkjPQ33Y2Nw/5UfXkP1ffAyNRn9W5dEUlISHB0N8zc8+3MiqlFd2JtrvxJ+SmYmmh09ZdBYiwI+a4CI9KrT+1lTBI8fE5EQnzUmoH4D404ZJCLNMREgIr2TyYBGjU0dBRV2uq4OyJUFNcNEgIiIJEnnBYVyGbRK6jhUlIiIqBhjiwAREUkSuwaMg4kAERFJkiCYQdBhjQNBYKO3JpgIEBGRJLFFwDiYLhERERVjbBEgIiJJ0nnWAB86pBEmAkREJEnsGjAOdg0Qkd7JFXIcjY3Clqu/4GhsFOQKwz3tzsXBLM9t9oxwg11bk9g0fRgQkamwRYCI9Or3m1vx1YFQPEi5ryzzsvfGjBYR6FQh78cBa+OfWw+U/799yybMnD4ZJ89dU5bZ2dkXqL6MjAxYWlrqLT7SnmCm46wBPlVRI7xLRKQ3v9/cipCd3VSSAAB4mBKHkJ3d8PvNrXq/pru7h3JzcHSCIAjK/ZepqfhsYF9UKusBXw8HtGxaF1EH96ucH1jFH/Nmf4PPPw1GGS8njBz2GQDgp9UrUa2SL7zd7PBxr674bvEC+HuXVDn3z1070LxRbXiVskGtauUwZ+YUZGZmKusFgH69u8LFwUy5T5rL7hrQZaP8MREgIr2QK+T46kAoRKg/0DS7bMLBkQbtJsgpNTUFrYPaYduu/Th49BxatgpCn+6d1R69u+Tb+ahatTqijp7Dl2O/xsnjf2NU6Of47PPhiPr7PJq1aIUFc2eonHP87yP44rNgfPr5cBw7fQXzFy3HL+vXYsHc6QCA/VGnAACLl63CP7ceKPeJpIaJABHpxfG4I2otAW8SISLuRSyOxx0xWkxVq9VA/wGfoXJAVZQrXwFfTfwGfv7lsPvPnSrHNW7SAkOGj4J/2XLwL1sOK79fglat22HoiC9RvsI7GDjoC7Rs007lnDmzpmLEyLHo1ScYfv5l0bxFa4z/eirWrFoBACjl6goAcHIqAXd3D+U+aY4tAsbBMQJEpBcJKQ/1epw+pKSkYM6McPy1908kJDyEPDMTr169QlyOFoHAWrVV9m/dvI4OnbqolNWq/S7+2rNLuX/l0gWcOvE3Fs77f0uBXC5HWloaXr58CVtbW/3/QMUMZw0YBxMBItILd3tPvR6nD5MnfImog/sxZdpclC1XHtbWNgj5uBsyXmeoHGdna1fgulNTUzD2q3B07Kw+ANLa2lrrmImMjYkAEelF/dKN4WXvjYcpcbmOExAgwMvBG/VLNzZaTCdPHEOvPsHo2PkDAFktBPfu3UFDNM3zvPIVKuL82TMqZefPqe5Xr1ELt25eR9ly5d9aj4WFhVHHRBQ1WS0CuswaYIuAJjhGgIj0QmYmw4wWEQCyPvTflL0/vflCyMxkRoupbLkK2LVzGy5djMblSxfw2YA+UCgU+Z436LOh2PfXn/hu8QLcvnUTa1Z9j8i/dkMQ/v9zjR43EZt+WYc5M6fg2tUruH7tKrb+thHTp36tPMbX1w+HoyKRkBCP58+eGeRnLMoEM0G5uqA2GxMBzTARICK96VShK1Z3/hWe9qVVyr0cvLG6868GWUcgL9NmzodTiZJo16ohenfvjOat2qBGjVr5nlevfkPMj1iG75YsRNMGgYjctxeDh4bC2ur/Tf4tWgXhl19/x8HIfWjVtC6CWtbHsqUR8PEpozxm6ox5OHRwP6pX8kWzRvlfl1RxsKBxCKIoqrfhGVBycjKcnJywZt8z2No5GvPSRJQPC6TB2+YOvH38YWmlfT+3XCHH8bgjSEh5CHd7T9Qv3dioLQGGEDp0EG7euI4//jps6lAMLiM9DfdjY3D/lR9eQ/V98DI1Gf1bl0RSUhIcHQ3zNzz7cyK6Vxs4WFpoXc+LjNcI/OUvg8ZaFHCMABHpncxMhkY+zUwdhk6WLJqHZi1aw9bWDvv37cbGDT9h7oKlpg6rWOHKgsbBRICIKBfnzp7G4oi5SEl5gTJ+ZTFz7iJ83P8TU4dVrHD6oHEwESAiysWqnzaZOgQio2AiQEREksQWAeNgIkBERJLEMQLGwbtERERUjLFFgIiIJIldA8bBRICIiCSJXQPGwbtERERUjDERIKJiJbCKP5YvjTB1GCru3b0DFwczXLoYbepQpEUQdN8oX0wEiEj/5HKYH4mC5a+/wPxIFCA3zhP44u7HYtjnAxBQoTQ8nK1QI8AP48eMwNMnT/R2DSkmEkWVIOj4rAEmAhphIkBEemWxYyucqvjDsX0L2A/oA8f2LeBUxR8WO7Ya9Lp3Yv5Fyybv4t/bt7By9QacuXAT8yOW4XDUAbRt2QDPnj416PVJ/7LHCOiyFdThw4fRqVMneHl5QRAEbN++Pc/jo6KishKWHFt8fLyWP7XxMREgIr2x2LEV9h93g1ncfZVyswdxsP+4m0GTgTGjhsLC0hK/7diLho2awtvHF63atMPW3/fh4cM4TJs6QXlsSsoLDArpDR93e1R5xxs/rPj/MwREUcTsGeGoXrkMPF2sEVChNMaNHg4A6NyuOWLv3cWEcWFwcTCDi0PWn9CnT55gUEhvVHnHG95udmhUrzq2/PqLSnwKhQLfLpyDOjUqwNPFGtUrl8H8udPf+vNc/ecyundtD18PB1Qq64HBg/rhyePH+rxllIvU1FTUqFEDS5cW7LkS169fx8OHD5Wbm5ubgSLUPyYCRKQfcjlsx4YCooicDbLCfw85tR070iDdBM+ePsWB/Xsx4JPPYWNjo/Kau7sHPureG9u3bkb2w1YXL5qHKlWr4+DRcxgRNhZfjQnFwQP7AAC/79iCZUsjsGDRcpyOvoF1v2xDQEA1AMDa9VvgVdob47+egn9uPcA/tx4AANLS01AjsBY2/rYLR09eQr+QQfh8UD+cPXNKGcfUyeOxaOFsjBrzNY6dvoIVP66Hm6t7rj9P0vPn6NKhJapVD8T+Q6exedtuPEpMwIDgHnq/d1JmiscQt2vXDtOmTcMHH3xQoPPc3Nzg4eGh3MwK0YwFTh8kIr0wP3YEshwtAW8SRBGyuFiYHzuCzMbN9Hrt27dvQhRFvFOxcq6vv1OxMp4/e4bHjx8BAOq91xCho8YBAMpXeAenThzD8qURaN6iNe7H3oObmweaNm8FCwsLePv4onadugCAks7OkMlksLd3gLu7h7J+L6/SGDriS+X+p4OH4eD+v7Bj62bUrlMXL168wIpl32L2vMXo1ScYAOBfthzea9Ao13hXrliCajVqYmL4DGXZt9/9iOqVfHHr5g2Ur/CODner8NDX9MHk5GSVcisrK1hZWekUW06BgYFIT09H1apVER4ejoYNG+q1fkMqPCkLEUmaWfxDvR6njexv/Pl5t+57avs3rl8FALz/QTekpb1CrWrlEDp0EHbt3IbMzMw865PL5Zg3+xs0qlcd5Xxd4OvhgAORe3H/fiwA4Mb1q0hPT0eTZi01iu/KpYs4evggfD0clFv92llJzp2Y2xrVQf/n4+MDJycn5TZz5ky91e3p6Ynly5djy5Yt2LJlC3x8fNCsWTOcO3dOb9cwNLYIEJFeKDw89XpcQZQtWx6CIPz3Ya7epHvj+lWUKFkSpUq55ltXaW8fnDx3DYcO7kfUwX0YEzYESxbNw+97omBhYZHrOYsj5uL7777F9NkLEVClGmxt7TBh7EhkZGQAgFp3RX5SU1MQ1K4TJk+dpfaauwHun1QJZrqtDij891U3NjYWjo6OynJ9tgZUrFgRFStWVO43aNAAt2/fxsKFC7Fu3Tq9XceQ2CJARHqR2aAx5KW9Ib5lypYoCJCX9kFmg8Z6v7aziwuatWiNVT8sw6tXr1ReS0iIx2+bN6BL1+7K6WRnTp9UOebM6ZMq3Qo2NjZo274TZs39Fjv+PIjTp47jnyuXAACWFpaQ5xjncOrEMbTr0Bnde/ZF1Wo14OdfFrdv3VC+XrZcBdjY2OBwVKRGP0/1GjVx7eoV+JbxQ9ly5VU2Ozs7zW9MIaevMQKOjo4qm767BXKqW7cubt26ZdBr6BMTASLSD5kML2dHAIBaMpC9/3L2QkAmM8jlZ89bjIz0dHTr0hbHjh5G3P1YRO7bgw87t4GnZ2l8Pen/I/RPnvgb3y6cg1s3b+CHFUuxY9uv+OzzrJkBG35eg5/X/oir/1zGnZh/8eumn2FjYwMfnzIAAJ8yfjj29xE8eBCnHMVftlx5RB3cj1MnjuH6tasIG/4ZEh8lKK9nbW2N4SPHIHzSWGzc8BNi/r2N06dO4Oe1P+b6swz8dAieP3uKQSG9ce7sacT8exsH9u/F0MED1JIQkp7o6Gh4ehaelht2DRCR3rx+vytS1v0K27GhKgMHFV7eeDl7IV6/39Vg1y5XvgIiD5/GrOnhGBjcA8+ePYWbuwfad3wfY8ZNRklnZ+WxQ4aFIfr8WcydNRUODo74ZuZ8tGgVBABwciqBRQtm4+uvRkEhl6NyQDWs37wTzi4uAIBxE6Zg1IjBqFO9PNLT0/HkhQKjxnyNO3di8NEHbWFrY4t+IYPQvkMXJCcnKa/55diJkJmbY9b0yYh/+ADuHp7oP+CzXH8WT08v/LnvKKZMGoePugQhIz0d3j5l0LJ1UKEaja4zM7OsTZfzCyglJUXl23xMTAyio6Ph7OwMX19fjB8/HnFxcfjpp58AABEREfD390eVKlWQlpaGH374AQcOHMBff/2lfdxGJoiajq7Rk+TkZDg5OWHNvmewtXPM/wQiMhoLpMHb5g68ffxhaWWtfUVyOcyPHYFZ/EMoPDyzugMM1BJA+peRnob7sTG4/8oPr6H6PniZmoz+rUsiKSlJpd9dn7I/J25/2RsOVpZa1/MiPQPl5m0oUKxRUVFo3ry5WnlwcDDWrFmD/v37486dO4iKigIAzJkzBytWrEBcXBxsbW1RvXp1TJo0Kdc6pIotAkSkfzKZ3qcIEhlDs2bN8px9smbNGpX9MWPGYMyYMQaOyrCYCBARkSTxMcTGwUSAiIgkSdvVAd88n/LHRICIiKRJ0HGwoMAWAU3wLhERERVjbBEgIiJp0rFrAOwa0AgTASIikiRBMIOgQ/O+LucWJ7xLRERExRhbBIiISJrMBN2a99k1oBG2CBCRAchhLouCpfkvMJdFAeD6+NlcHMzwx+/bTR1GoZC9joAuG+WPd4mI9MpCthVOtv5wtGkBe+s+cLRpASdbf1jIthr82qdPHoerkzl6ftjxrcds+HkNNvy8Jt+6OrdrDhcHM7g4mMGrlA3q16mCH1d+p3Ess2eEo2mDmhofT2QqTASISG8sZFthb90NZsJ9lXIzIQ721t0Mngz8/NOPGDR4KI4dO4yHDx+ovLZsyUK8ePFCuf/ixQssW7Iwz/r69f8E/9x6gGOnr6BL124YEzYUW379xSCxkzp9PYaY8sZEgIj0RA5bq1AAInI8hRiCkLV2u63VSBiqmyAlJQXbtm5GyMDP0SaoA37J8a3fqURJfNi5DU4eP4qTx4/iw85t4FSiZJ512tjawt3dA37+ZTH2q3CUK1cBe/78HQAQPnEs6gZWhLebHWpVK4cZ30zE69evAWS1OsyZORWXL11Qtiq82Qrx9MljfNyrK7zd7PBu4DvY/cdOvd6LIkMQshYF0npjIqAJDhYkojw52rwLMyFegyPTYWb2+K2vCoIImRCLEraeAKzyrU0heiD51WmN49yxdTMqvFMJFd6piG49+mDCuJEY+eV4CP99GPTu2x9NmrZA62b1AAD7ok7C28dX4/oBwNrGBhkZGQAAewcHLFm+Gh6eXvjnyiWMHPYp7O0dMHzkGHzwYQ9c++cyIvfvxdbf9wEAHB2dlPXMmTUV4d/MxpRpc7Dy+8X47JO+uHDljsqjkomMhS0CRJQnMyEeZmZxGmxvTwJU6jN7rFl9GiUf//fzT6vQvUcfAEDL1m2RnJSEv48eUr6+eePPGNCvB1oHtUfroPYY0K8HNm/8WaO65XI5Nm/8GVcuX0TjplmPl/1yzNeo+14D+JbxQ9v2nTBk+Chs3/YrAMDGxgZ29vYwNzeHu7sH3N09YGNjo6yvV59gfNitF8qWK4+vJ89AakoKzp09VaCftzhg14BxsEWAiPKkED0AhSZH5t0ioKxPUQqatgho6uaN6zh39hR++iVrDIK5uTm6fNgdP/+0Co3+exzy40eJ2LLzL/y+YwsAYPrsCKxbszLPeletXIaf1/6IjIwMyGQyfD4kFAM++RwAsG3LJqxYthh3Ym4jNTUFmZmZcHDQ7Jn3VapWV/6/nZ0dHBwd8ehRosY/b7FhpuOzBjhrQCNMBIgoT5o3z8vhZOsPMyFOOSbgTaIoQCF6I+nlvwBkeo1x/U8/IjMzE1UqlH7jeiKsrKyQPG8xHJ2c8MWwMJVzHBwc1Mpy+qh7H4SN/grWNjbw8PCE2X8fLKdPHsdnA/ti7IRwtGgZBEdHJ2zbshFLFy/QKF5zcwuVfUEQoFBolG0VK4IgKLt2tD2f8sdEgIj0RIaX6RGwt+4GURRUkgFRzPqD/DJ9IfSdBGRmZmLTL+vwzYx5aN6yjcprH/f6AFt++wUhAwcry3r37a9x3Y5Ojihbrrxa+amTx+DjWwajRk9QlsXeu6tyjIWFJeRyrp9A0sdEgIj05rW8K1LSfoWtVShkb0whVIjeeJm+EK/lXfV+zb27d+H582fo228gHJ2cVF7r2Lkrfv5plUoioA9ly1XA/dh72PrbRtSs9S7+2vuH2iJBvmX8cO9uDC5djIaXlzfsHRxgZZV/lwi9gY8hNgreJSLSq9fyrkh6GYPkVweQkrYeya8OIOnlvwZJAgBg/U+r0LRZK7UkAAA6vf8hos+dwZXLF/V6zXYdOuPzIaEYO2oYmjasidMnj+PLsV+rXbtFq7Z4v0MLvOPvxvUHtMDBgsYhiKKo3plnQMnJyXBycsKafc9ga6fZwBoiMg4LpMHb5g68ffxhaWVt6nDIRDLS03A/Ngb3X/nhNVTfBy9Tk9G/dUkkJSXB0dEwf8OzPyfi5g6Ho432rSjJr9JRevS3Bo21KChQi8DMmTPx7rvvwsHBAW5ubujSpQuuX79uqNiIiKg402kxITN2DWioQHfp0KFDGDJkCE6cOIF9+/bh9evXaNOmDVJTUw0VHxERFVfZTx/UZaN8FWiw4J49e1T216xZAzc3N5w9exZNmjTRa2BERERkeDrNGkhKSgIAOOexLGZ6ejrS09OV+8nJybpckoiIiglBMIOgQ/O+LucWJ1rfJYVCgdDQUDRs2BBVq1Z963EzZ86Ek5OTcvPx8dH2kkRkNEYdQ0ySI5HfP7sGjELrRGDIkCG4fPkyNm7cmOdx48ePR1JSknKLjY3V9pJEZGCZsIBCAaSnvTR1KGRC6WkvoVBkvR+o6NOqa2Do0KHYtWsXDh8+DG9v7zyPtbKy4iIaRIWECBmSXpeA+eNHAAAra1sA/FZVfIhIT3uJJ48fIel1CYh6XgWyoAQzMwg6LCiky7nFSYESAVEUMWzYMGzbtg1RUVHw9/c3VFxEZCLPFe5AGpCZkMhnthRDCgWQ9LpE1vvA1AQha9PlfMpXgRKBIUOGYMOGDdixYwccHBwQH5/1mFAnJyeVR2wSUWEm4LnCA0nprjDHa1MHQ0aWCQuTtwQomQk6Pn2QiYAmCpQILFu2DADQrFkzlfLVq1ejf//++oqJiCRAhAyvpfKBQEQGU+CuASIiIqNg14BR8OmDREQkSRwsaBy8S0RERMUYWwSIiEiadH1wEFcW1AgTASIikiZBx9UBOUZAI0yXiIiIijG2CBARkSTxoUPGwUSAiIikSdcHB3FBIY0wXSIiIirG2CJARETSxFkDRsG7RERE0pS9sqAuWxGyZ88eHD16VLm/dOlSBAYGonfv3nj27JnW9TIRICIiaTIz030rQkaPHo3k5GQAwKVLlzBq1Ci0b98eMTExCAsL07pedg0QEREVAjExMQgICAAAbNmyBR07dsSMGTNw7tw5tG/fXut6i1a6RERERUf2GAFdtiLE0tISL1++BADs378fbdq0AQA4OzsrWwq0wRYBIiKSJk4fVNGoUSOEhYWhYcOGOHXqFDZt2gQAuHHjBry9vbWut2ilS0REREXUkiVLYG5ujt9++w3Lli1D6dKlAQC7d+9G27Ztta6XLQJERCRNgqDj9MGi1SLg6+uLXbt2qZUvXLhQp3rZIkBERNLE6YMqZDIZEhMT1cqfPHkCmUymdb1MBIiIiAoBURRzLU9PT4elpaXW9bJrgIiIpEnXtQCKyDoC3377LQBAEAT88MMPsLe3V74ml8tx+PBhVKpUSev6mQgQEZE06dq8X0S6BrLHAIiiiOXLl6t0A1haWsLPzw/Lly/Xuv6ikS4RERHpweHDh9GpUyd4eXlBEARs374933OioqJQq1YtWFlZoXz58lizZo1eY4qJiUFMTAyaNm2KCxcuKPdjYmJw/fp17N27F/Xq1dO6fiYCREQkTSZYUCg1NRU1atTA0qVLNTo+JiYGHTp0QPPmzREdHY3Q0FB88skn2Lt3b4GvnZ+DBw+iZMmSeq+XXQNERCRNgo5jBLRIBNq1a4d27dppfPzy5cvh7++P+fPnAwAqV66Mo0ePYuHChQgKCirw9fMil8uxZs0aREZGIjExEQqFQuX1AwcOaFUvEwEiIpImPY0RyLn8rpWVFaysrHSJTOn48eNo1aqVSllQUBBCQ0P1Uv+bRowYgTVr1qBDhw6oWrUqBD2NgWAiQERERZqPj4/K/uTJkxEeHq6XuuPj4+Hu7q5S5u7ujuTkZLx69Qo2NjZ6uQ4AbNy4EZs3b9bpAUO5YSJARETSpOuDg/47NzY2Fo6OjspifbUGGJulpSXKly+v93o5WJCIiKRJTysLOjo6qmz6TAQ8PDyQkJCgUpaQkABHR0e9tgYAwKhRo7Bo0aK3LiykLbYIEBERaal+/fr4888/Vcr27duH+vXr6/1aR48excGDB7F7925UqVIFFhYWKq9v3bpVq3qZCBARkTSZYGXBlJQU3Lp1S7kfExOD6OhoODs7w9fXF+PHj0dcXBx++uknAMDgwYOxZMkSjBkzBgMGDMCBAwewefNm/PHHH9rH/RYlSpTABx98oPd6mQgQEZEkiYIAUYeR8dqce+bMGTRv3ly5HxYWBgAIDg7GmjVr8PDhQ9y7d0/5ur+/P/744w+MHDkSixYtgre3N3744Qe9Tx0EgNWrV+u9ToCJABERkVKzZs3y7IPPbdXAZs2a4fz58waM6v8yMzMRFRWF27dvo3fv3nBwcMCDBw/g6Oio8gyCgmAiQERE0iQIOs4aKBrPGsh29+5dtG3bFvfu3UN6ejpat24NBwcHzJ49G+np6Vo/b4CzBoiISJpMsMSwlI0YMQJ16tTBs2fPVGYkfPDBB4iMjNS6XrYIEBERFQJHjhzBsWPHYGlpqVLu5+eHuLg4retlIkBERJJkisGCUqZQKCCXy9XK79+/DwcHB63rLVrtJkREVHSwa0BFmzZtEBERodwXBAEpKSmYPHmyTssOs0WAiIikSU8PHSoq5s+fj6CgIAQEBCAtLQ29e/fGzZs3UapUKfzyyy9a18tEgIiIqBDw9vbGhQsXsHHjRly8eBEpKSkYOHAg+vTpo9NyxkwEiIhImkywsqDUmZubo2/fvvqtU6+1ERER6QkHC6p78OABjh49isTERCgUCpXXhg8frlWdTASIiIgKgTVr1uCzzz6DpaUlXFxcILyR6AiCwESAiIiKGF1H/hexWQMTJ07EpEmTMH78eJjpsduDiQAREUmSKJhB1OHDXJdzpejly5fo2bOnXpMAgOsIEBERFQoDBw7Er7/+qvd62SJARETSxHUEVMycORMdO3bEnj17UK1aNVhYWKi8vmDBAq3qZSJARESSJELHroEi1ug9c+ZM7N27FxUrVgQAtcGC2mIiQERE0sQWARXz58/HqlWr0L9/f73WW7TSJSIioiLKysoKDRs21Hu9TASIiEiaBEHHhw4VrRaBESNGYPHixXqvl10DREQkSVxZUNWpU6dw4MAB7Nq1C1WqVFEbLLh161at6mUiQEREVAiUKFECXbt21Xu9TASIiEiauLKgitWrVxuk3qJ1l4iIqMgQIei8FTWZmZnYv38/vv/+e7x48QJA1oOIUlJStK6TLQJERESFwN27d9G2bVvcu3cP6enpaN26NRwcHDB79mykp6dj+fLlWtXLFgEiIpKk7GcN6LIVJSNGjECdOnXw7Nkz2NjYKMs/+OADREZGal0vWwSIiEiaOEZAxZEjR3Ds2DFYWlqqlPv5+SEuLk7reovWXSIiIiqiFAoF5HK5Wvn9+/fh4OCgdb1MBIiISJKy1xHQZStK2rRpg4iICOW+IAhISUnB5MmT0b59e63rZdcAERFJkq79/EVtjMD8+fMRFBSEgIAApKWloXfv3rh58yZKlSqFX375Ret6mQgQEZE08aFDKry9vXHhwgVs3LgRFy9eREpKCgYOHIg+ffqoDB4sKCYCREREhYS5uTn69u2r3zr1WhsREZG+6DoFsAh0DezcuVPjYzt37qzVNZgIEBGRJOm6OmBRWFmwS5cuGh0nCEKuMwo0oVO6NGvWLAiCgNDQUF2qISIiolwoFAqNNm2TAECHFoHTp0/j+++/R/Xq1bW+OBER0dtw1oBxaHWXUlJS0KdPH6xcuRIlS5bUd0xERESAgP/PHNBqM/UPoB/t27dHUlKScn/WrFl4/vy5cv/JkycICAjQun6tEoEhQ4agQ4cOaNWqVb7HpqenIzk5WWUjIiIizezduxfp6enK/RkzZuDp06fK/czMTFy/fl3r+gvcNbBx40acO3cOp0+f1uj4mTNnYsqUKQUOjIiIijcRZhB1GMqmy7lSIopinvu6KtBdio2NxYgRI7B+/XpYW1trdM748eORlJSk3GJjY7UKlIiIihcuMWwcBWoROHv2LBITE1GrVi1lmVwux+HDh7FkyRKkp6dDJpOpnGNlZQUrKyv9REtERFTMCIIAIUdSk3NfFwVKBFq2bIlLly6plIWEhKBSpUoYO3asWhJARESkLc4ayCKKIvr376/8Up2WlobBgwfDzs4OAFTGD2ijQImAg4MDqlatqlJmZ2cHFxcXtXIiIiJdcEGhLMHBwSr7uS0x3K9fP63r58qCREQkSWwRyLJ69WqD1q9zIhAVFaWHMIiIiMgU2CJARESSpOvIf84a0AwTASIikiSOETCOotGBQkRERFphIkBERJKUPVhQl60oOXz4MDIzM9XKMzMzcfjwYa3rLVp3iYiIiozsrgFdtqKkefPmKs8YyJaUlITmzZtrXS8TASIiokJAFMVcVxR88uSJcnEhbXCwIBERSZIIHdcRKCLfdbt27Qoga1nhN1cYBLKW+b948SIaNGigdf1MBIiISJI4ayCLk5MTgKwWAQcHB9jY2Chfs7S0xHvvvYdBgwZpXT8TASIiojcsXboUc+fORXx8PGrUqIHFixejbt26uR67Zs0ahISEqJRZWVkhLS1Nb/Fkryzo5+eHL7/8UqdugNwwESAiIknKWlBIlyWGC94isGnTJoSFhWH58uWoV68eIiIiEBQUhOvXr8PNzS3XcxwdHXH9+nXlvj6fDPimyZMnG6TeotGBQkRERY6+Zg0kJyerbHk9rW/BggUYNGgQQkJCEBAQgOXLl8PW1harVq166zmCIMDDw0O5ubu76/1eAEBCQgI+/vhjeHl5wdzcHDKZTGXTFlsEiAygY5JhHxKijV1OIfkfRCQh+lpi2MfHR6V88uTJCA8PVzs+IyMDZ8+exfjx45VlZmZmaNWqFY4fP/7W66SkpKBMmTJQKBSoVasWZsyYgSpVqmgd99v0798f9+7dw8SJE+Hp6am3lgcmAkREVKTFxsbC0dFRuf/mqPs3PX78GHK5XO0bvbu7O65du5brORUrVsSqVatQvXp1JCUlYd68eWjQoAGuXLkCb29v/f0QAI4ePYojR44gMDBQr/UyESAiIkkSRQGiqEOLwH/nOjo6qiQC+lS/fn3Ur19fud+gQQNUrlwZ33//Pb755hu9XsvHxweiKOq1ToBjBIiISLLMstYS0HIr6EdcqVKlIJPJkJCQoFKekJAADw8PjeqwsLBAzZo1cevWrQJdWxMREREYN24c7ty5o9d6mQgQEREha05+7dq1ERkZqSxTKBSIjIxU+dafF7lcjkuXLsHT01Pv8fXo0QNRUVEoV64cHBwc4OzsrLJpi10DREQkSaZYUCgsLAzBwcGoU6cO6tati4iICKSmpirXCujXrx9Kly6NmTNnAgCmTp2K9957D+XLl8fz588xd+5c3L17F5988onWcb9NRESE3usEmAgQEZFEmSIR6NGjBx49eoRJkyYhPj4egYGB2LNnj3IA4b1792Bm9v/G9GfPnmHQoEGIj49HyZIlUbt2bRw7dgwBAQFax/02wcHBeq8TYCJARESkYujQoRg6dGiur0VFRansL1y4EAsXLjRCVFlu376N1atX4/bt21i0aBHc3Nywe/du+Pr6aj1lkWMEiIhIkvgYYlWHDh1CtWrVcPLkSWzduhUpKSkAgAsXLui06iATASIikiQmAqrGjRuHadOmYd++fbC0tFSWt2jRAidOnNC6XiYCREREhcClS5fwwQcfqJW7ubnh8ePHWtfLRICIiCQpe0EhXbaipESJEnj48KFa+fnz51G6dGmt62UiQEREksSuAVU9e/bE2LFjER8fD0EQoFAo8Pfff+PLL79Ev379tK6XiQAREUkSEwFVM2bMQKVKleDj44OUlBQEBASgSZMmaNCgAb7++mut6+X0QSIJkssF/H3FHfFPbeHh/BINqyRAJtP/GuMFjAqujkdgbfEQaa898Si5MQDtH31adGMiMgxLS0usXLkSEydOxOXLl5GSkoKaNWuiQoUKOtXLRIBIYrb/XQajl7+HuMf2yrLSpVIwd/AJdGl41yQxlXbeikC/kbC1uq8se5nujeg7CxH3tCtjIoMwxYJChYGvry98fX31Vh8TASIJ2f53GfSZ1hI5v/s/eGyHPtNaYv3XkUZPBko7b0X9d7oDOaKysYxD/Xe64/iNzUb/4JViTKR/InR8+mARSwREUcRvv/2GgwcPIjExEQqFQuX1rVu3alUvxwgQSYRcLmD08vf++2hT/QOW/QdtzPfvQS435h83OQL9RmZFkOOygpAVaaBfGAB5MY+JyPBCQ0Px8ccfIyYmBvb29nByclLZtMUWASKJ+PuKu0p3QE4iBNx/ZI+/r7ijSfV4o8Tk6nhEpek9J0EQYWsVi061vaAQrYwSk5mQDmvLt8+Zzo7J1fEIHiU3M0pMZBgKCFDo8K1el3OlaN26ddi6dSvat2+v13qZCBBJRPxTW70epw/WFupzlnM9Lo8PZlPRNHaSLo4RUOXk5ISyZcvqvV4mAkQS4eH8Uq/H6UPaa82eqZ6WUUoyLQLZNI2dqLAIDw/HlClTsGrVKtjY2OitXiYCRBLRsEoCSpdKwYPHdrl+kxEgorRrKhpWSTBaTI+SG+NlujdsLOOU/e9vEkUBrzK88ce52zDetD05OtQqm29MWVMJqTDTdXXAorayYPfu3fHLL7/Azc0Nfn5+sLCwUHn93LlzWtXLRIBIImQyEXMHn0CfaS0hQFRJBoT/hhDO+eyEkdcTkCH6zkLUf6c7RFFQ+eDN/iMbfWcBjDt3X4oxkSGI0K1539Qrb+hbcHAwzp49i759+8Ld3R1CztGyWmIiQCQhXRrexfqvI9XXEXBNxZzPTLOOQNzTrjh+Y7PanP1XGd6IvrPAJNP0pBgTkaH98ccf2Lt3Lxo1aqTXepkIEElMl4Z30em9e5JaWTDuaVfEPX1fUqv4ZcfUqbYXrC0fIy2jlJG7KMjQ2DWgysfHB46Ojnqvl4kAkQTJZKLRpghqTibB6Xgy5SDFrP8yCShKOGtA1fz58zFmzBgsX74cfn5+equXiQAREUkSWwRU9e3bFy9fvkS5cuVga2urNljw6dOnWtXLRICIiKgQiIiIMEi9TASIiEiSRACKfI/K+/yiJDg42CD1MhEgIiJJYteAOoVCgVu3buX60KEmTZpoVScTASIiokLgxIkT6N27N+7evQtRVG3vEAQBcrl2D9piIkBERJLEWQOqBg8ejDp16uCPP/6Ap6cnFxQiIqKijV0Dqm7evInffvsN5cuX12u9ZnqtjYiIiAyiXr16uHXrlt7rZYsAERFJErsGVA0bNgyjRo1CfHw8qlWrpraOQPXq1bWql4kAERFJkkLM2nQ5vyj58MMPAQADBgxQlgmCAFEUOViQiIioqIuJiTFIvUwEiAxgl1OIqUNQEzHjiKlDUBP6VWNTh0ASxq4BVWXKlDFIvUwEiIhIkjhrQN3t27cRERGBq1evAgACAgIwYsQIlCtXTus6OWuAiIgkSRR134qSvXv3IiAgAKdOnUL16tVRvXp1nDx5ElWqVMG+ffu0rpctAkRERIXAuHHjMHLkSMyaNUutfOzYsWjdurVW9bJFgIiIJEkBQeetKLl69SoGDhyoVj5gwAD8888/WtfLRICIiCQpe4yALltR4urqiujoaLXy6OhouLm5aV0vuwaIiIgKgUGDBuHTTz/Fv//+iwYNGgAA/v77b8yePRthYWFa18tEgIiIJEnXAX9FbbDgxIkT4eDggPnz52P8+PEAAC8vL4SHh2P48OFa18tEgIiIJInrCPxfZmYmNmzYgN69e2PkyJF48eIFAMDBwUHnujlGgIiISOLMzc0xePBgpKWlAchKAPSRBABMBIiISKKynzWgy1aU1K1bF+fPn9d7vewaICIiadJ15H8RmzXwxRdfYNSoUbh//z5q164NOzs7ldf59EEiIqIirGfPngCgMjCQTx8kIqIii7MGVPHpg0RkUmaiHDWeXIRL+lM8sXLGBZfqUAgyE0clh5mQnhWfkA5ADsD0Mbk6HoG1xUOkvfbEo+TGEoipcNJ1dcCitrKgZJ4+GBcXh7Fjx2L37t14+fIlypcvj9WrV6NOnTqGiI+IJKDpw8MYcWUx3NMeKcsSrF2xqMowHPJsYpKYSjtvRaDfSFhbPgYAWFs+RodaZRF9ZyHinnY1aUy2VveVZS/TvU0aU2HGFgFg586daNeuHSwsLLBz5848j+3cubNW1yhQIvDs2TM0bNgQzZs3x+7du+Hq6oqbN2+iZMmSWl2ciKSv6cPDmH52EnL+TXVNe4TpZydhQu2pRk8GSjtvRf13ugM5orKxjEP9d7rj+I3NRv/glWJMVPh16dIF8fHxcHNzQ5cuXd56nNHGCMyePRs+Pj5YvXq1sszf31+rCxOR9JmJcoy4shgi1OcamwFQABhxZQmOeDQ0YjeBHIF+IwGIEHK0/AqCCFEUEOgXhrin78N4TfJSjKnw0/V5AUXhWQMKhSLX/9enAiUCO3fuRFBQELp164ZDhw6hdOnS+OKLLzBo0KC3npOeno709HTlfnJysvbREpFR1XhyUaU7ICczAO5piajx5CLOl6pplJhcHY+oNL3nJAgibK1i0am2FxSilVFiMhPSlV0UecXk6ngEj5KbGSWmokDXtQCK2joCsbGx8PHx0Xu9BUoE/v33XyxbtgxhYWH46quvcPr0aQwfPhyWlpYIDg7O9ZyZM2diypQpegmWiIzLJf2pXo/TB2uLh5odl8cHs6loGjtRbvz8/NCoUSP07dsXH330kd665QuUCCgUCtSpUwczZswAANSsWROXL1/G8uXL35oIjB8/XuWpSMnJyQbJaIhI/55YOev1OH1Ie+2p2XEZpSTTIpBN09gpCwcLqjpz5gw2bNiAqVOnYtiwYWjbti369u2LTp06wcpK+/d6gRIBT09PBAQEqJRVrlwZW7Zsees5VlZWOgVIRKZzwaU6Eqxd4Zr2KNf1yBUAHlm74YKLdiuaaeNRcmO8TPeGjWUcBEH9L70oCniV4Y0/zt2GMccIdKhVNt+YsqYSkqZM9dChpUuXYu7cuYiPj0eNGjWwePFi1K1b963H//rrr5g4cSLu3LmDChUqYPbs2Wjfvr22Yb9VzZo1UbNmTcyZMwdRUVHYsGEDPv30UygUCnTt2hWrVq3Sqt4CPWugYcOGuH79ukrZjRs3DDa3kYhMSyHIsKjKMAjI+tBXeQ2AAGBRlaFGXk9Ahug7CwGoDwbL3o++swDGHZQnxZhIG5s2bUJYWBgmT56Mc+fOoUaNGggKCkJiYmKuxx87dgy9evXCwIEDcf78eXTp0gVdunTB5cuXDRajIAho3rw5Vq5cif3798Pf3x9r167Vur4CJQIjR47EiRMnMGPGDNy6dQsbNmzAihUrMGTIEK0DICJpO+TZBBNqT8Uja1eV8kfWbiaZOggAcU+74viNzXiVUVql/FWGt8mm6UkxpsJOAR0fOqTFNRcsWIBBgwYhJCQEAQEBWL58OWxtbd/6bXvRokVo27YtRo8ejcqVK+Obb75BrVq1sGTJEp1+9rzcv38fc+bMQWBgIOrWrQt7e3ssXbpU6/oK1DXw7rvvYtu2bRg/fjymTp0Kf39/REREoE+fPloHQETSd8izCY54NJTUyoJxT7si7un7klrFLzumTrW9YG35GGkZpYzcRVG06GuMQM7Zam/rss7IyMDZs2cxfvx4ZZmZmRlatWqF48eP53qN48ePq4yDA4CgoCBs375d+8Df4vvvv8eGDRvw999/o1KlSujTpw927Nihc6t8gVcW7NixIzp27KjTRYmo8FEIMqNNEdScTILT8WTKQYpZ/2USYGo5B6hPnjwZ4eHhasc9fvwYcrkc7u7uKuXu7u64du1arnXHx8fnenx8fLxuQedi2rRp6NWrF7799lvUqFFDb/XyWQNERCRJ+moRiI2NhaOjo7K8sA5gv3fvHoScK1bpARMBIiKSJIUoQKHD6oDZ5zo6OqokAm9TqlQpyGQyJCQkqJQnJCTAw8Mj13M8PDwKdLwuBEHA8+fPcerUKSQmJqqtNNivXz+t6mUiQEREkmTsdQQsLS1Ru3ZtREZGKtf1VygUiIyMxNChQ3M9p379+oiMjERoaKiybN++fahfv76WUb/d77//jj59+iAlJQWOjo4qrQOCIGidCBRo1gAREVFRFhYWhpUrV2Lt2rW4evUqPv/8c6SmpiIkJARA1rfuNwcTjhgxAnv27MH8+fNx7do1hIeH48yZM29NHHQxatQoDBgwACkpKXj+/DmePXum3J4+1X51T7YIEBGRJJliZcEePXrg0aNHmDRpEuLj4xEYGIg9e/YoBwTeu3cPZmb//w7doEEDbNiwAV9//TW++uorVKhQAdu3b0fVqlW1D/wt4uLiMHz4cNja2uq1XiYCREQkSaKODx3SNokYOnToW7/RR0VFqZV169YN3bp10+5iBRAUFIQzZ86gbNmyeq2XiQAREVEh0KFDB4wePRr//PMPqlWrBgsLC5XXO3furFW9TASIiEiSRFFQW7K5oOcXJYMGDQIATJ06Ve01QRAgl8u1qpeJABERSRKfPqgq53RBfeGsASIiomKMiQAREUmSTg8c0nGgoZS0b98eSUlJyv1Zs2bh+fPnyv0nT54gICBA6/rZNUBUTIR+1djUIaiJmHHE1CGokeJ9Kq7YNZBl7969SE9PV+7PmDED3bt3R4kSJQAAmZmZuH79utb1s0WAiIhIwsQcGU3OfV2xRYCIiCSJLQLGwUSAiIgkSdd+/qIyRkAQBLWnDurzKYRMBIiISJLYIpBFFEX0799f+fjktLQ0DB48GHZ2dgCgMn5AG0wEiIiIJCw4OFhlv2/fvmrHaPvkQYCJABERSZRCkbXpcn5RsHr1aoPWz0SAiIgkiV0DxsHpg0RERMUYWwSIiEiS2CJgHEwEiIhIkhTQcfqg3iIp2tg1QEREVIyxRYCIiCRJFEWdltPV91K8RRUTASIikiSOETAOJgJEVGiZiXLUeHIRLulP8cTKGRdcqkMhyEwclRxmQtZKb1n/lQMwdUxEb8dEgIgKpaYPD2PElcVwT3ukLEuwdsWiKsNwyLOJSWIq7bwVgX4jYW35GABgbfkYHWqVRfSdhYh72tUkMRVmoo4LCokcLagRDhYkokKn6cPDmH52ElzfSAIAwDXtEaafnYSmDw8bPabSzltR/53usLG8r1JuYxmH+u90R2nnrUaPqbDL7hrQZaP8MREgokLFTJRjxJXFEKH+B8wMgAhgxJUlMBPlRoxKjkC/kQBE5HwonCBkfRoF+oUhq5uANJX99EFdNsofEwEiKlRqPLkI97RHb/3jZQbAPS0RNZ5cNFpMro5HYGt1Xy0JyCYIImytYuHqeMRoMRFpimMEiKhQcUl/qtfj9MHa4qFej6MsnDVgHEwEiKhQeWLlrNfj9CHttadej6MsokKEqEP7vi7nFifsGiCiQuWCS3UkWLu+dflYBYAEazdccKlutJgeJTfGy3RviGLufQOiKOBlug8eJTc2WkxEmmIiQESFikKQYVGVYRCgvpa8AoAAYFGVoUZeT0CG6DsLAUAtGcjej76zAFxPoGA4WNA4mAgQUaFzyLMJJtSeikfWrirlj6zdMKH2VJOsIxD3tCuO39iMVxmlVcpfZXjj+I3NXEdAC5w+aBwcI0BEhdIhzyY44tFQUisLxj3tirin76NTbS9YWz5GWkYp/HHuNtgSQFLGRICICi2FIMP5UjVNHUYOMihEKwD4779MArSlUIhQ6NC+r8u5xQkTASIikiROHzQOjhEgIiIqxtgiQEREksQWAeNgIkBERJKkEEUodPg01+Xc4oSJABERSZKo0O1RwnwMsWY4RoCIiKgYY4sAERFJkggRog7N+yLYNaAJJgJERCRJogJQsGvA4Ng1QEREVIyxRYCIiCRJFHXsGuCsAY0wESAiIknS9QmCXGFYM0wEiMhkQr9qbOoQ1Ng0rqxzHcKdBMAbEB4l6KW+V0eu6lwH0dswESAiIkkSFSJEHb7W63JuccJEgIiIJIlLDBsHZw0QEREVY2wRICIiSVIoRCh0aN7X5dzihIkAERFJEqcPGgcTASIikiQ+dMg4OEaAiIioGGOLABERSZJCFKHQoXlfl3OLE7YIEBGRJGWPEdBlM6SnT5+iT58+cHR0RIkSJTBw4ECkpKTkeU6zZs0gCILKNnjwYIPGmR+2CBAREWmhT58+ePjwIfbt24fXr18jJCQEn376KTZs2JDneYMGDcLUqVOV+7a2toYONU9MBIiISJKkPH3w6tWr2LNnD06fPo06deoAABYvXoz27dtj3rx58PLyeuu5tra28PDwMFhsBcWuASIikqTslQV12QAgOTlZZUtPT9c5tuPHj6NEiRLKJAAAWrVqBTMzM5w8eTLPc9evX49SpUqhatWqGD9+PF6+fKlzPLpgiwARERVpPj4+KvuTJ09GeHi4TnXGx8fDzc1Npczc3BzOzs6Ij49/63m9e/dGmTJl4OXlhYsXL2Ls2LG4fv06tm7dqlM8umAiQESkR3KZAgqbrAnsChsF5DIFZHI2vmpDFHV86NB/TQKxsbFwdHRUlltZWb31nHHjxmH27Nl51nv1qvZPg/z000+V/1+tWjV4enqiZcuWuH37NsqVK6d1vboo0LtTLpdj4sSJ8Pf3h42NDcqVK4dvvvmGqzcREQFIGpqIOgm3YOeSlQjYuShQJ+EWkoYmmjiywkn8b/qgtlv2Z5Ojo6PKllciMGrUKFy9ejXPrWzZsvDw8EBiourvNTMzE0+fPi1Q/3+9evUAALdu3dLiDulHgVoEZs+ejWXLlmHt2rWoUqUKzpw5g5CQEDg5OWH48OGGipGISPKShiai18LnauWeTkCvhc/xCwCnJW5qr5O0uLq6wtXVNd/j6tevj+fPn+Ps2bOoXbs2AODAgQNQKBTKD3dNREdHAwA8PT21ilcfCtQicOzYMbz//vvo0KED/Pz88NFHH6FNmzY4deqUoeIjIpI8uUyBZuHPAQBmgupr2ftNJz+HXMY1bwtCVIg6b4ZSuXJltG3bFoMGDcKpU6fw999/Y+jQoejZs6dyxkBcXBwqVaqk/Iy8ffs2vvnmG5w9exZ37tzBzp070a9fPzRp0gTVq1c3WKz5KVAi0KBBA0RGRuLGjRsAgAsXLuDo0aNo167dW89JT09XG7FJRFSUpHz4HKVLqCcB2cwEwLtk1nGkOSknAkDW6P9KlSqhZcuWaN++PRo1aoQVK1YoX3/9+jWuX7+unBVgaWmJ/fv3o02bNqhUqRJGjRqFDz/8EL///rtB48xPgboGxo0bh+TkZFSqVAkymQxyuRzTp09Hnz593nrOzJkzMWXKFJ0DJSKSLJ/X+j2OAAAKMWvT5XxDcnZ2znPxID8/P5UxdD4+Pjh06JBhg9JCgVoENm/ejPXr12PDhg04d+4c1q5di3nz5mHt2rVvPWf8+PFISkpSbrGxsToHTUQkKbEW+j2OyIgK1CIwevRojBs3Dj179gSQNfXh7t27mDlzJoKDg3M9x8rKKs8RmkREhZ39lhKIe/4Ynk65dw8oRODB86zjSHO6Nu8bumugqChQi8DLly9hZqZ6ikwmg0LBATBEVHzJ5GaICi8BQL05Onv/0JQSXE+ggKT+0KGiokAtAp06dcL06dPh6+uLKlWq4Pz581iwYAEGDBhgqPiIiAoFpyVu+AVAs/CsgYPZHjzPSgI4dZCkqkCJwOLFizFx4kR88cUXSExMhJeXFz777DNMmjTJUPERERUaTkvccGZZKUR9+DxrYGCsBey3lIATWwK0olDo9uAgNlZrpkCJgIODAyIiIhAREWGgcIiICjeZ3AxOm51NHUaRoGvzPrsGNMM0lYiIqBjjQ4eIiEiSOGvAOJgIEBGRJDERMA52DRARERVjbBEgIiJJUiDrccK6nE/5YyJARESSxK4B42AiQEREksTpg8bBMQJERETFGFsEiIhIkkSFqNPKguwa0AwTASIikiSOETAOdg0QEREVY2wRICJ6w6sjV00dAv2HgwWNg4kAERFJkqhQQNThEYK6nFucsGuAiIioGGOLABERSZJCx1kDupxbnDARICIiSeIYAeNg1wAREVExxhYBIiKSJK4jYBxMBIiISJKYCBgHEwEiIpIkBRRQiNpPAVSA0wc1wTECRERExRhbBIiISJJEhW7N+zo0JhQrTASIiEiSOEbAONg1QEREVIyxRYCIiCSJCwoZBxMBIiKSJIVCAYUODw7S5dzihF0DRERExRhbBIiISJI4WNA4mAgQEZEkiaICog5zAHU5tzhh1wAREVExxhYBIiKSJHYNGAcTASIikiYdEwEwEdAIEwEiIpIkhajjQ4c4RkAjHCNARERUjLFFgIiIJIljBIyDiQAREUmSKCog6rA6IKcPaoZdA0RERMUYWwSIiEiS2DVgHEwEiIhIkriyoHGwa4CIiKgYY4sAERFJkkIBKHRo3udTiDXDRICIiCRJVOg4a4CZgEbYNUBERFSMsUWAiIgkibMGjIMtAkREJEnZswZ02Qxp+vTpaNCgAWxtbVGiRAkNfyYRkyZNgqenJ2xsbNCqVSvcvHnToHHmh4kAERFJUnaLgC6bIWVkZKBbt274/PPPNT5nzpw5+Pbbb7F8+XKcPHkSdnZ2CAoKQlpamgEjzRu7BoiIiLQwZcoUAMCaNWs0Ol4URURERODrr7/G+++/DwD46aef4O7uju3bt6Nnz56GCjVPRk8ERDErQ3uVmmzsSxMRkY6y/3Zn/y03pMyMFzqN/JdnpgIAkpNVP2+srKxgZWWlU2zaiImJQXx8PFq1aqUsc3JyQr169XD8+PHikwi8ePECAPB5lzLGvjQREenJixcv4OTkZJC6LS0t4eHhgTOR3XWuy97eHj4+PiplkydPRnh4uM51F1R8fDwAwN3dXaXc3d1d+ZopGD0R8PLyQmxsLBwcHCAIgtb1JCcnw8fHB7GxsXB0dNRjhEUL75NmeJ80w/ukmaJ8n0RRxIsXL+Dl5WWwa1hbWyMmJgYZGRk61yWKotpnTV6tAePGjcPs2bPzrPPq1auoVKmSzrFJhdETATMzM3h7e+utPkdHxyL3D80QeJ80w/ukGd4nzRTV+2SoloA3WVtbw9ra2uDXyWnUqFHo379/nseULVtWq7o9PDwAAAkJCfD09FSWJyQkIDAwUKs69YGDBYmIiP7j6uoKV1dXg9Tt7+8PDw8PREZGKj/4k5OTcfLkyQLNPNA3Th8kIiLSwr179xAdHY179+5BLpcjOjoa0dHRSElJUR5TqVIlbNu2DQAgCAJCQ0Mxbdo07Ny5E5cuXUK/fv3g5eWFLl26mOinKMQtAlZWVpg8ebJJRn4WJrxPmuF90gzvk2Z4n4qHSZMmYe3atcr9mjVrAgAOHjyIZs2aAQCuX7+OpKQk5TFjxoxBamoqPv30Uzx//hyNGjXCnj17TNINkk0QjTEHhIiIiCSJXQNERETFGBMBIiKiYoyJABERUTHGRICIiKgYYyJARERUjBXaRGDp0qXw8/ODtbU16tWrh1OnTpk6JEmZOXMm3n33XTg4OMDNzQ1dunTB9evXTR2WpM2aNUs5z5dUxcXFoW/fvnBxcYGNjQ2qVauGM2fOmDosSZHL5Zg4cSL8/f1hY2ODcuXK4ZtvvjHKw3mIdFEoE4FNmzYhLCwMkydPxrlz51CjRg0EBQUhMTHR1KFJxqFDhzBkyBCcOHEC+/btw+vXr9GmTRukpqaaOjRJOn36NL7//ntUr17d1KFIzrNnz9CwYUNYWFhg9+7d+OeffzB//nyULFnS1KFJyuzZs7Fs2TIsWbIEV69exezZszFnzhwsXrzY1KER5alQriNQr149vPvuu1iyZAkAQKFQwMfHB8OGDcO4ceNMHJ00PXr0CG5ubjh06BCaNGli6nAkJSUlBbVq1cJ3332HadOmITAwEBEREaYOSzLGjRuHv//+G0eOHDF1KJLWsWNHuLu748cff1SWffjhh7CxscHPP/9swsiI8lboWgQyMjJw9uxZlec5m5mZoVWrVjh+/LgJI5O27JWtnJ2dTRyJ9AwZMgQdOnRQeU/R/+3cuRN16tRBt27d4Obmhpo1a2LlypWmDktyGjRogMjISNy4cQMAcOHCBRw9ehTt2rUzcWREeSt0Sww/fvwYcrk81+c5X7t2zURRSZtCoUBoaCgaNmyIqlWrmjocSdm4cSPOnTuH06dPmzoUyfr333+xbNkyhIWF4auvvsLp06cxfPhwWFpaIjg42NThSca4ceOQnJyMSpUqQSaTQS6XY/r06ejTp4+pQyPKU6FLBKjghgwZgsuXL+Po0aOmDkVSYmNjMWLECOzbt8+k63xLnUKhQJ06dTBjxgwAWeupX758GcuXL2ci8IbNmzdj/fr12LBhA6pUqYLo6GiEhobCy8uL94kkrdAlAqVKlYJMJkNCQoJKeUJCgvJZz/R/Q4cOxa5du3D48GF4e3ubOhxJOXv2LBITE1GrVi1lmVwux+HDh7FkyRKkp6dDJpOZMEJp8PT0REBAgEpZ5cqVsWXLFhNFJE2jR4/GuHHj0LNnTwBAtWrVcPfuXcycOZOJAElaoRsjYGlpidq1ayMyMlJZplAoEBkZifr165swMmkRRRFDhw7Ftm3bcODAAfj7+5s6JMlp2bIlLl26pHx0aHR0NOrUqYM+ffogOjqaScB/GjZsqDb19MaNGyhTpoyJIpKmly9fwsxM9U+qTCaDQqEwUUREmil0LQIAEBYWhuDgYNSpUwd169ZFREQEUlNTERISYurQJGPIkCHYsGEDduzYAQcHB8THxwMAnJycYGNjY+LopMHBwUFtzISdnR1cXFw4luINI0eORIMGDTBjxgx0794dp06dwooVK7BixQpThyYpnTp1wvTp0+Hr64sqVarg/PnzWLBgAQYMGGDq0IjyJhZSixcvFn19fUVLS0uxbt264okTJ0wdkqQAyHVbvXq1qUOTtKZNm4ojRowwdRiS8/vvv4tVq1YVraysxEqVKokrVqwwdUiSk5ycLI4YMUL09fUVra2txbJly4oTJkwQ09PTTR0aUZ4K5ToCREREpB+FbowAERER6Q8TASIiomKMiQAREVExxkSAiIioGGMiQEREVIwxESAiIirGmAgQEREVY0wEiIiIijEmAkRERMUYEwEiIqJijIkAERFRMfY/gp3hdMNykZ8AAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "**Visualization 3. Dynamic Environment Visualization with Drone Movement\n", + "If you want to visualize the drone moving step-by-step toward the target, this code will update the grid in real-time with each step taken. This approach is particularly helpful in seeing the drone's decision-making process as it progresses.**" + ], + "metadata": { + "id": "MGYh34-34Hyy" + } + }, + { + "cell_type": "code", + "source": [ + "import time\n", + "from IPython.display import clear_output\n", + "\n", + "def visualize_dynamic_path(drone_pos, target_pos, obstacles, path):\n", + " for step in path:\n", + " clear_output(wait=True)\n", + "\n", + " # Create environment grid\n", + " grid_size = (10, 10)\n", + " env_grid = np.zeros(grid_size)\n", + "\n", + " # Mark obstacles\n", + " for obs in obstacles:\n", + " env_grid[obs[0], obs[1]] = -1 # Obstacles marked as -1\n", + "\n", + " # Mark target\n", + " env_grid[target_pos[0], target_pos[1]] = 2 # Target marked as 2\n", + "\n", + " # Mark drone position\n", + " env_grid[step[0], step[1]] = 1 # Drone marked as 1\n", + "\n", + " # Plot grid\n", + " plt.imshow(env_grid, cmap=\"coolwarm\", origin=\"upper\")\n", + " plt.colorbar(label=\"Environment Elements\")\n", + " plt.scatter(step[1], step[0], color='blue', label=\"Drone\")\n", + " plt.scatter(target_pos[1], target_pos[0], color='green', label=\"Target\")\n", + " for obs in obstacles:\n", + " plt.scatter(obs[1], obs[0], color='red', label=\"Obstacle\" if obs == obstacles[0] else \"\")\n", + "\n", + " plt.legend(loc=\"upper right\")\n", + " plt.title(\"Drone Moving Toward Target\")\n", + " plt.show()\n", + "\n", + " time.sleep(0.5) # Adjust time as needed\n", + "\n", + "# Execute dynamic visualization\n", + "drone_pos = (5, 5)\n", + "target_pos = (8, 8)\n", + "obstacles = [(6, 6), (7, 7)]\n", + "path = a_star(start=drone_pos, goal=target_pos, obstacles=obstacles, grid_width=10, grid_height=10)\n", + "visualize_dynamic_path(drone_pos, target_pos, obstacles, path)\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 452 + }, + "id": "-wnrFh6u4C7N", + "outputId": "7ff0ab6d-edaa-46c6-e7c9-2804df2c540f" + }, + "execution_count": 11, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgsAAAGzCAYAAAChLlRLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABibklEQVR4nO3dd3xN9/8H8Ne5VxYyZRNJhCJWENKYValErLTaUpSgtIoiaJO2xCZWU+NH+dZoa7VqfakQsYm9aqW2GEmsbEnk3vP7Q3O/rkTkrtwTeT0fj/Oo+zmf8zmfc6LuO58piKIogoiIiOgVZMauABEREUkbgwUiIiIqFoMFIiIiKhaDBSIiIioWgwUiIiIqFoMFIiIiKhaDBSIiIioWgwUiIiIqFoMFIiIiKhaDBSoXJkyYAEEQjF2NN4qHhwdCQ0ONXQ0iKgUMFoxsxYoVEARBdZibm8PV1RWBgYGYN28eMjIyjF1FnXh4eEAQBAQEBBR5funSpapnP3HiRCnXzrD27t2r9rMt7ngThYaGlujZpRZwZGdnY8KECdi7d6+xq0IkGRWMXQF6btKkSfD09MSzZ8+QlJSEvXv3YuTIkZg7dy62bNmChg0bGruKWjM3N8eePXuQlJQEZ2dntXOrVq2Cubk5cnJyDFqH77//HuHh4Qa9x8vq1q2LX3/9VS0tIiIClStXxnfffVeqdTGGzz//XC1IvHHjBsaPH4/BgwejdevWqnQvLy9jVO+VsrOzMXHiRADAO++8Y9zKEEmFSEa1fPlyEYB4/PjxQufi4uJECwsL0d3dXczOzi62nMzMTENVUSfu7u5i+/btRSsrKzE6OlrtXGJioiiTycTu3bu/8h28aerVqye2bdvW2NUokdf9nXJ3dxf79etX4vKOHz8uAhCXL1+uW8X+Zai/8w8ePBABiJGRkQYpn6gsYjeEhL377rsYN24cbt26hd9++02VHhoaisqVK+PatWsIDg6GpaUlevfuDQDIysrC6NGj4ebmBjMzM9SuXRuzZ8+G+NLmooIgYNiwYdi0aRPq168PMzMz1KtXDzExMYXqcffuXQwYMABOTk6qfMuWLSvxc5ibm+ODDz7A6tWr1dLXrFkDW1tbBAYGFnnd7t270bp1a1SqVAk2Njbo1q0bLl26pDq/fv16CIKAffv2Fbr2p59+giAIOH/+PICixyxo8g727t0LX19fmJubw8vLCz/99JPexkFcv34dH330Eezs7FCxYkW8/fbb2LZtm+q8KIqwt7dHWFiYKk2pVMLGxgZyuRypqamq9KioKFSoUAGZmZkAgHPnziE0NBQ1atSAubk5nJ2dMWDAADx69EitDgXPcvHiRfTq1Qu2trZo1aqV6v5TpkxBtWrVULFiRbRr1w4XLlzQ+bn1VT+lUokJEybA1dVVVb+LFy8WOaYiNTUVI0eOVP3/UbNmTURFRUGpVAIAbt68CQcHBwDAxIkTVV0lEyZM0MvzEpVV7IaQuE8//RTffvstdu7ciUGDBqnS8/PzERgYiFatWmH27NmoWLEiRFFE165dsWfPHgwcOBA+Pj7YsWMHxo4di7t37+KHH35QK/vgwYPYsGEDvvzyS1haWmLevHno3r07bt++jSpVqgAAkpOT8fbbb6u+WB0cHLB9+3YMHDgQ6enpGDlyZImeo1evXujQoQOuXbumanZevXo1PvzwQ5iYmBTKv2vXLnTs2BE1atTAhAkT8PTpU8yfPx8tW7bEqVOn4OHhgU6dOqFy5cr4/fff0bZtW7Xr161bh3r16qF+/frF1qsk7+D06dMICgqCi4sLJk6cCIVCgUmTJqm+VHSRnJyMFi1aIDs7G1999RWqVKmClStXomvXrli/fj3ef/99CIKAli1bYv/+/arrzp07h7S0NMhkMhw6dAidOnUCABw4cACNGzdG5cqVAQCxsbG4fv06+vfvD2dnZ1y4cAFLlizBhQsXcOTIkULBzkcffYRatWph2rRpqgBz/PjxmDJlCoKDgxEcHIxTp06hQ4cOyMvL0/n59VG/iIgIzJw5E126dEFgYCDOnj2LwMDAQl1b2dnZaNu2Le7evYvPP/8c1atXx+HDhxEREYH79+8jOjoaDg4OWLRoEYYMGYL3338fH3zwAQCU6W5AIr0wZrMGFd8NUcDa2lps3Lix6nO/fv1EAGJ4eLhavk2bNokAxClTpqilf/jhh6IgCOLVq1dVaQBEU1NTtbSzZ8+KAMT58+er0gYOHCi6uLiIDx8+VCuzZ8+eorW19Wu7R9zd3cVOnTqJ+fn5orOzszh58mRRFEXx4sWLIgBx3759Rb4DHx8f0dHRUXz06JFa/WQymdi3b19V2ieffCI6OjqK+fn5qrT79++LMplMnDRpkiotMjJSfPmve0nfQZcuXcSKFSuKd+/eVaVduXJFrFChQqEyX+flboiRI0eKAMQDBw6o0jIyMkRPT0/Rw8NDVCgUoiiK4qxZs0S5XC6mp6eLoiiK8+bNE93d3cXmzZuL33zzjSiKoqhQKEQbGxtx1KhRqrKK+vmsWbNGBCDu37+/0Pv55JNP1PKmpKSIpqamYqdOnUSlUqlK//bbb0UAOndD6Fq/pKQksUKFCmJISIha+oQJEwrVb/LkyWKlSpXEf/75Ry1veHi4KJfLxdu3b4uiyG4IoqKwG6IMqFy5cpGzIoYMGaL2+a+//oJcLsdXX32llj569GiIoojt27erpQcEBKgNLmvYsCGsrKxw/fp1AM+bn//880906dIFoiji4cOHqiMwMBBpaWk4depUiZ5BLpfj448/xpo1awA8H9jo5uamNtCtwP3793HmzBmEhobCzs5OrX7vvfce/vrrL1Vajx49kJKSojZyff369VAqlejRo8dr6/W6d6BQKLBr1y6EhITA1dVVla9mzZro2LFjiZ69OH/99ReaN2+ualIHnv+8Bw8ejJs3b+LixYsAgNatW0OhUODw4cMAnrcgtG7dGq1bt8aBAwcAAOfPn0dqaqraO7WwsFD9OScnBw8fPsTbb78NAEX+7L744gu1z7t27UJeXh6GDx+u9lt+SVuUXkfX+sXFxSE/Px9ffvmlWvrw4cMLXfvHH3+gdevWsLW1Vfu7HBAQAIVCodZyQ0TqGCyUAZmZmbC0tFRLq1ChAqpVq6aWduvWLbi6uhbKW7duXdX5F1WvXr3QvWxtbfHkyRMAwIMHD5CamoolS5bAwcFB7ejfvz8AICUlpcTP0atXL1y8eBFnz57F6tWr0bNnzyL7/AvqWbt27ULn6tati4cPHyIrKwsAEBQUBGtra6xbt06VZ926dfDx8cFbb7312jq97h2kpKTg6dOnqFmzZqF8RaVp6tatW698zoLzANCkSRNUrFhRFRgUBAtt2rTBiRMnkJOTozr3YuDx+PFjjBgxAk5OTrCwsICDgwM8PT0BAGlpaYXuW3DuxfoBQK1atdTSHRwcYGtrq9Uzv0hf9Xv5Z2FnZ1eofleuXEFMTEyhv8sFMzY0+btMVN5wzILE3blzB2lpaYX+MTQzM4NMplusJ5fLi0wX/+0LLhj01adPH/Tr16/IvJr05fr5+cHLywsjR47EjRs30KtXLw1rXJiZmRlCQkKwceNG/N///R+Sk5Nx6NAhTJs2rUTXv+4dSIWJiQn8/Pywf/9+XL16FUlJSWjdujWcnJzw7NkzHD16FAcOHECdOnXUxlJ8/PHHOHz4MMaOHQsfHx9UrlwZSqUSQUFBqp/vi178Tb80lGb9lEol3nvvPXz99ddFni9JcElUXjFYkLiCefqvmjHwInd3d+zatQsZGRlqrQuXL19WndeEg4MDLC0toVAoXrmokqY++eQTTJkyBXXr1oWPj0+ReQrqmZCQUOjc5cuXYW9vj0qVKqnSevTogZUrVyIuLg6XLl2CKIol6oIoCUdHR5ibm+Pq1auFzhWVpil3d/dXPmfB+QKtW7dGVFQUdu3aBXt7e9SpUweCIKBevXo4cOAADhw4gM6dO6vyP3nyBHFxcZg4cSLGjx+vSr9y5YpG9Su4pkaNGqr0Bw8eqFpftKXP+l29elWt1eHRo0eF6ufl5YXMzMzX/l1+UxfJItIFuyEkbPfu3Zg8eTI8PT1VUyOLExwcDIVCgQULFqil//DDDxAEQeM+drlcju7du+PPP/9UTUF80YMHDzQqDwA+++wzREZGYs6cOa/M4+LiAh8fH6xcuVJtWuD58+exc+dOBAcHq+UPCAiAnZ0d1q1bh3Xr1qF58+aFmqu1JZfLERAQgE2bNuHevXuq9KtXrxYaA6KN4OBgHDt2DPHx8aq0rKwsLFmyBB4eHvD29lalt27dGrm5uYiOjkarVq1UX2qtW7fGr7/+inv37qmNVyhoNXm5lSQ6OrrE9QsICICJiQnmz5+vVo4mZbyKPurXvn17VKhQAYsWLVJLf/n/AeB5K0Z8fDx27NhR6Fxqairy8/MBABUrVlSlEdFzbFmQiO3bt+Py5cvIz89HcnIydu/ejdjYWLi7u2PLli0wNzd/bRldunRBu3bt8N133+HmzZto1KgRdu7cic2bN2PkyJFarZQ3Y8YM7NmzB35+fhg0aBC8vb3x+PFjnDp1Crt27cLjx481Ks/d3b1Ec9ZnzZqFjh07wt/fHwMHDlRNnbS2ti50vYmJCT744AOsXbsWWVlZmD17tkZ1ep0JEyZg586daNmyJYYMGaIKyOrXr48zZ87oVHZ4eDjWrFmDjh074quvvoKdnR1WrlyJGzdu4M8//1TravL390eFChWQkJCAwYMHq9LbtGmj+rJ8MViwsrJCmzZtMHPmTDx79gxVq1bFzp07cePGjRLXz8HBAWPGjMH06dPRuXNnBAcH4/Tp09i+fTvs7e11enZ91M/JyQkjRozAnDlz0LVrVwQFBeHs2bOq+r3YSjB27Fhs2bIFnTt3RmhoKJo2bYqsrCz8/fffWL9+PW7evAl7e3tYWFjA29sb69atw1tvvQU7OzvUr1//tdNwid5oRpuHQaIo/m/qZMFhamoqOjs7i++99574448/qqbKvahfv35ipUqViiwvIyNDHDVqlOjq6iqamJiItWrVEmfNmqU27U0Un08bHDp0aKHri1qVLzk5WRw6dKjo5uYmmpiYiM7OzmL79u3FJUuWvPb5CqZOFudV00d37doltmzZUrSwsBCtrKzELl26iBcvXiyyjNjYWBGAKAiCmJiYWOj8q6ZOlvQdxMXFiY0bNxZNTU1FLy8v8T//+Y84evRo0dzcvNhne1lRKzheu3ZN/PDDD0UbGxvR3NxcbN68ubh169Yir2/WrJkIQDx69Kgq7c6dOyIA0c3NrVD+O3fuiO+//75oY2MjWltbix999JF47969QlMDC97PgwcPCpWhUCjEiRMnii4uLqKFhYX4zjvviOfPn9fLCo76qF9+fr44btw40dnZWbSwsBDfffdd8dKlS2KVKlXEL774Qi1vRkaGGBERIdasWVM0NTUV7e3txRYtWoizZ88W8/LyVPkOHz4sNm3aVDQ1NeU0SiJRFAVRlNhILqIyIiQkBBcuXNCoj51KR2pqKmxtbTFlypRysQ8HkaFxzAJRCTx9+lTt85UrV/DXX39xoyEJePlnA/xv3AN/PkT6wZYFohJwcXFR7WFw69YtLFq0CLm5uTh9+nShNQiodK1YsQIrVqxAcHAwKleujIMHD2LNmjXo0KFDkYMZiUhzHOBIVAJBQUFYs2YNkpKSYGZmBn9/f0ybNo2BggQ0bNgQFSpUwMyZM5Genq4a9DhlyhRjV43ojcFuCKISWL58OW7evImcnBykpaUhJiYGTZo0MXa1CM9Xt9y1axcePnyIvLw8JCYmIjo6WrWZFpEm9u/fjy5dusDV1RWCIGDTpk2vvWbv3r1o0qSJaifTFStWFMqzcOFCeHh4wNzcHH5+fjh27Jj+K29ADBaIiIj+lZWVhUaNGmHhwoUlyn/jxg106tQJ7dq1w5kzZzBy5Eh89tlnal1g69atQ1hYGCIjI3Hq1Ck0atQIgYGBZWqJcY5ZICIiKoIgCNi4cSNCQkJemeebb77Btm3b1Bau69mzJ1JTUxETEwPg+VL3zZo1Uy0WplQq4ebmhuHDhyM8PNygz6AvpT5mQalU4t69e7C0tOSyqkREZYwoisjIyICrq6vO+9MUJycnB3l5eTqXI4pioe8aMzMzmJmZ6Vw2AMTHxxdaQjwwMFC1M2teXh5OnjyJiIgI1XmZTIaAgAC1lVulrtSDhXv37sHNza20b0tERHqUmJhYaOdbfcnJyYGrRWU8gULnsipXrozMzEy1tMjIyBKtJFsSSUlJcHJyUktzcnJCeno6nj59iidPnkChUBSZp2APmLKg1IOFgg2ODh7YzwFIRERlTGZmJlq1bqO2WZ2+5eXl4QkUWGleAxV1GFqXDSX6ZV5HYmIirKysVOn6alUoT0o9WChoDqpcubJB/7IREZHhlEY3ckXIUFEoehv5Evl3RJ6VlZVasKBPzs7OSE5OVktLTk6GlZUVLCwsIJfLIZfLi8zj7OxskDoZAmdDEBGRJAkVBMh0OIQKhg9o/P39ERcXp5YWGxsLf39/AICpqSmaNm2qlkepVCIuLk6VpyzgokxERCRJgokMgqD977SCFpP9MjMzcfXqVdXnGzdu4MyZM7Czs0P16tURERGBu3fv4pdffgEAfPHFF1iwYAG+/vprDBgwALt378bvv/+Obdu2qcoICwtDv3794Ovri+bNmyM6OhpZWVno37+/1s9W2hgsEBGRJMnkAmQy7VsHZErNrz1x4gTatWun+hwWFgYA6NevH1asWIH79+/j9u3bqvOenp7Ytm0bRo0ahR9//BHVqlXDf/7zHwQGBqry9OjRAw8ePMD48eORlJQEHx8fxMTEFBr0KGWlvs5Ceno6rK2tceb0KY5ZICoHRFFUHSR9giCojqJkZGTAp3ETpKWlGWwcQMH3xEb7Oqgk037MQpZSgfcfXjZoXcsLtiwQkcEolUrk5ORCKYrgqiplgwhAJggwNzcz6DoKJSGYCBB0aFkQtGhZoKIxWCAigxBFEdnZT2Fmbo4qVarApEIFLsQmcaIo4ll+Ph49eoTs7KeoVKmiUX9msgql3w1BRWOwQEQGoVQqAUGAk6MjLCwsjF0dKiFzABXkctxOTIRSqYRcrsPURXpjMFggIoMRAKM3ZZPmZDKZJLqN2A0hHQwWiIhIkmRyATK5Dt0QCgYL+sKQn4iIiIrFlgUiIpIkQS5A0KFlQZBEZ8qbQauWhYULF8LDwwPm5ubw8/PDsWPH9F0vIiKj+WzQIJhbWMDcwgKVLS1R3d0dwZ06YcXKlc8HblKpKOiG0OUg/dA4WFi3bh3CwsIQGRmJU6dOoVGjRggMDERKSooh6kdEBIUC2LdfhnXrZNi3XwaF7jsXv1aHDh1w88YNJFy+jM2bNqFt27YYM2YM3v/gA+Tn5xd5zbNnzwxfMSIj0DhYmDt3LgYNGoT+/fvD29sbixcvRsWKFbFs2TJD1I+IyrlNm2R4q7YZAgNN0S/UFIGBpnirthk2bTLskCszU1M4OzujatWqaNy4Mb75+mv88ccf2LFjB3759VcAgLmFBZYsWYLuH34IuypVMCMqCgCwZMkS1PX2hqWVFRo0bIhVq1erlW1uYYFly5fj448/hq2dHerVr4+tW7eq5blw4QK6duuGKvb2qO7ujv4DBuDhw4cGfWapEWSCzgfph0b/t+Xl5eHkyZMICAj4XwEyGQICAhAfH1/kNbm5uUhPT1c7iIhKYtMmGT7pZYK7d9XT790DPullYvCA4WXt3nkHDRs2xObNm1VpU6ZORdeuXXHixAn069sXmzdvxugxYzByxAicOnkSnw0ciMGDB2Pvvn1qZU2dOhXdu3fHiePHERQYiND+/fH48WMAQGpqKoI6dkSjRo1w+NAhbNm8GSkpKejdp0+pPq+xCXKZzgfph0Zv8uHDh1AoFIU2v3ByckJSUlKR10yfPh3W1taqw83NTfvaElG5oVAAo8eY4PmWEuq/IYri889jxpqUSpfEi2q/9RZu3bql+tzj44/Rr29f1PD0RPXq1fFDdDQ+/fRTfP7556hVqxZGjBiBkG7dEB0drVbOp59+ih49esDLywuTJk1CZmYmTpw4AQBYtHgxGjVqhMmTJqF27drw8fHBT4sXY9++fbhy5UppPq5RccyCdBg87IqIiEBaWprqSExMNPQtiegNcPCQDHfvCng5UCggigLu3BFw8FDp/vYoiqLaEshNmjRRO5+QkAB/f3+1NH9/f1y+fFktrUH9+qo/V6pUCVZWVkh58AAA8Pe5c9i3bx+q2NurjkY+PgCA69ev6/NxiEpEo6mT9vb2kMvlSE5OVktPTk6Gs7NzkdeYmZnBzMxM+xoSUbmUdF+/+fTlckICPDw8VJ8rVaqkVTkmJiZqnwVBUM20yMzKQqfgYEydOrXQda/6t/ZNJAhcwVEqNArJTU1N0bRpU8TFxanSlEol4uLiCkXSRES6cHbRbz592LN3L86fP4+QkJBX5qldu3ahMVzx8fGoW7duie/j4+ODi5cuwd3dHV5eXmqHtsFJWSTIdeuKELithd5ovChTWFgY+vXrB19fXzRv3hzR0dHIyspC//79DVE/IiqnWrVUompVEffu/W+MwosEQUTVqs/zGUJuXh6SkpKgUCiQkpKCnbGxmDVrFoKDg9Gnd+9XXhc2ahR69+kDn0aN8O6772Lbtm3YtHkz/vrrrxLf+4vPP8fy5cvRt29fhIWFwdbODtevXcPvf/yBxYsWcXMnKnUaBws9evTAgwcPMH78eCQlJcHHxwcxMTGFBj0SEelCLgfmzH6GT3qZQBBEtYBBEEQAwOxZz2Co782dO3fCw9MTFSpUgK2tLRo0aIA5c+bg0z59it0cq2vXrpgzezZ+iI7G6DFj4OHhgSVLlqBtmzYlvrerqyv27N6N7777Dp27dEFubi6qV6+ODu+9V6425tJ5BccigkzSjiCKz8cal5b09HRYW1vjzOlTsLS0LM1bE1EpUigUyMnJhbu7u07jljZtkmH0GJN/Bzs+V62aiNmzniEkhKspGkJubi5u3boFc3OzQq0YGRkZ8GncBGlpabCysjLI/Qu+J/a2ao7KFbTflSAzPx/vHDxm0LqWF9wbgogkLSREiS5dcnHwkAxJ95+PUWjVUmmwFgUiKozBAhFJnlwOtG3DVoTyRtdVGLmCo/4wWCAiIknSdWElGccs6E35GSlDREREWmHLAhERSRK7IaSDwQIREUmSIMgg6DBVVBDYeK4vDBaIiEiS2LIgHQy7iIiIqFhsWSAiIknSeTYEN5LSGwYLREQkSeyGkA52QxCR5CmUCuy7vR/rLq7Dvtv7oVAqDHYvcwuLYo/JU6YY7N4lqduWLVuMdn8qv9iyQESStilhE0bHjcHdjLuqtKqWVTGn/WyE1A7R+/1u3rih+vP69esxafJknDt7VpVWuXJljcrLy8uDqamp3upXnggyHWdDlKNNtwyNb5KIJGtTwiZ8sqmXWqAAAPcy7uGTTb2wKWGT3u/p7OysOqysrSEIgupzVnY2Qvv3R3V3d1Sxt0fLli0Rt3u32vVv1a6NadOnY8DAgXBwdMSXQ4cCAH5etgxeNWvC1s4OH3/8MX788Uc4OTurXfvf//4Xb/v7w9rGBnXq1sWUqVORn5+vKhcAPu7RA+YWFqrPb7KCbghdDtIPBgtEJEkKpQKj48ZAROGNcQvSxsSNNWiXxMuyMjMRGBiI7X/9haNHjuC9Dh3QvXt33L59Wy1fdHQ0GjZogCNHjiAiIgKHDx/G8OHDMWzoUBw7ehTt27dH1MyZatccPHgQAz/7DEOHDsXp06exYMEC/Prrr5gRFQUAOHTwIABgyZIluHnjhuozUWlgsEBEknTwzqFCLQovEiHiTsYdHLxzqNTq1LBhQwz67DPUq1cPNWvWxITISNSoUQPbtm1Ty/dO27YYOXIkvGrUgFeNGli0aBECAwMxatQo1KpVC59//jk6dOigds3UadMwZswYfNqnD2p4eiKgfXtERkbi5//8BwDg4OAAALCxtoazs7Pq85uMLQvSwTELRCRJSZn39ZpPHzIzMzFlyhRsj4lBUlIS8vPz8fTpUyQmJqrla9K0qdrnf65cQdeuXdXSmvn6Yvv27arPf//9N+Lj4xH1b0sCACgUCuTk5CA7OxsVK1Y0wBNJG2dDSAeDBSKSJOfKLnrNpw/hERGIi4vDjOnT4eXlBQsLC3zSqxfy8vLU8lXS4os9MzMT477/HiEhIYXOmZuba1tlIr1gNwQRSVKrai1R1bIqBBT926EAAdUsq6FVtZalVqf4+Hh8+umn6NatG+rXrw8nJyfcunXrtde9VasWTp48qZZ24qXPPj4++OfKFXh5eRU6ZP+O6jcxMYFCUXpjNIztecuCTIdDu5aFhQsXwsPDA+bm5vDz88OxY8demfedd96BIAiFjk6dOqnyhIaGFjofFBSkVd2MhS0LRCRJcpkcc9rPxiebekGAoDbQsSCAmN1+FuQyeanVqaaXFzZv3oxOwcEQBAETJ02CUql87XVDhgxBwHvv4ccff0SnTp2wZ+9e7Ny5E4Lwvy+z7779Fu9/8AHc3NzwwfvvQyaT4dy5c7hw8SImTpgAAHB3d8eevXvh7+8PMzMz2NraGupRJUGQ6baCo6DQ/Np169YhLCwMixcvhp+fH6KjoxEYGIiEhAQ4OjoWyr9hwwa1lqVHjx6hUaNG+Oijj9TyBQUFYfny5arPZmZmGtfNmNiyQESSFVI7BGtCVsPV0lUtvaplVawJWW2QdRaKEzVzJmxsbPBOu3b4oHt3vBcQAB8fn9de16JFC8yfPx/z5s1Ds+bNEbtzJ4YPH67WvfDee+9h44YN2LVrF1q2aoU2bdti/vz5qF69+v/uP2MG4uLiULNWLfi9/bYhHlFSjDHAce7cuRg0aBD69+8Pb29vLF68GBUrVsSyZcuKzG9nZ6c23TY2NhYVK1YsFCyYmZmp5StrgZ4gimLheUkGlJ6eDmtra5w5fQqWlpaleWsiKkXPB+flwt3dXeffohRKBQ7eOYSkzPtwruyCVtValmqLgiEM+fJLJCQkYHdcnLGrUkhubi5u3boFc3MzyOXq7zkjIwM+jZsgLS0NVlZWBrm/6nvikw6wNDXRupyMvGfwWbMTiYmJanU1MzMr8u9kXl4eKlasiPXr16uNHenXrx9SU1OxefPm196zQYMG8Pf3x5IlS1RpoaGh2LRpE0xNTWFra4t3330XU6ZMQZUqVbR+ttLGbggikjy5TI621dsYuxo6+eGHH9C+fXtUqlQJO3bswG+//YYff/zR2NWSNH2t4Ojm5qaWHhkZiQn/du286OHDh1AoFHByclJLd3JywuXLl197v2PHjuH8+fP4+eef1dKDgoLwwQcfwNPTE9euXcO3336Ljh07Ij4+vlAwJlUMFoiISsGJEycw94cfkJGRAU9PT8ydMwcD+vc3drUkTV9TJ4tqWTCEn3/+GQ0aNEDz5s3V0nv27Kn6c4MGDdCwYUN4eXlh7969aN++vUHqom8MFoiISsGqVauMXYVyy8rKqkRdJvb29pDL5UhOTlZLT05OhvNLS3O/LCsrC2vXrsWkSZNee58aNWrA3t4eV69eLTPBAgc4EhGRJJX2AEdTU1M0bdoUcS+MI1EqlYiLi4O/v3+x1/7xxx/Izc1Fnz59XnufO3fu4NGjR3BxKb01QnTFYIGIiCRJtzUWtBvvEBYWhqVLl2LlypW4dOkShgwZgqysLPT/t8uob9++iIiIKHTdzz//jJCQkEKDFjMzMzF27FgcOXIEN2/eRFxcHLp164aaNWsiMDBQuxdjBOyGICIi+lePHj3w4MEDjB8/HklJSfDx8UFMTIxq0OPt27dVi2QVSEhIwMGDB7Fz585C5cnlcpw7dw4rV65EamoqXF1d0aFDB0yePLlMrbXAYIGIiCTJWHtDDBs2DMOGDSvy3N69ewul1a5dG69ahcDCwgI7duzQqh5SwmCBiIgkSV9TJ0l3fJNERERULAYLRERaeqt2bcyfP9/Y1VBz89YtmFtY4OzZs8auiu4EQfeD9ILBAhFJn0IBYf9+yNatg7B/P1AKOy8mJiZi8Oefw9PTE5ZWVqj11lsYPXo0Hj16pLd7SDHYkBJB0HHqJIMFvWGwQESSJtu0Caa1a8M0MBAmoaEwDQyEae3akG3aZLB7Xr9xAy1btcLVq1ex8pdfcOH8eSyYPx979u5F23fewePHjw12b/ofY0ydpKLxTRKRZMk2bUKFXr2Au3fVT9y7hwq9ehksYBg5ciRMTEywbetWtGndGtWrV0dgYCD+2rYN9+7dQ+QL+wpkZGbi0759YVelCmrUqIHFixerzomiiMlTpqBmrVqwsraGp6cnwsLCAADvdeiA27dvY+zXX8PcwgLmFhYAnm9x/GnfvqhRowZs7ezQ1NcX69atU6ufUqnEnDlz4F2vHqysrVGzVi3MiIp65fNcuHABXbt1QxV7e1R3d0f/AQPw8OFDPb4xetMxWCAiaVIoUGHMGEAU8XJjsvDvNLUKY8fqvUvi8ePHiI2Nxeeffw6Lf7/ACzg7O6Nnz55Yv369aqrcDz/8gIYNGuDokSMYM2YMRo8Zg13/rgC4ceNGzJ8/HwsXLMD5v//G77//jnr16wMA1q1di6pVq2L8+PG4eeMGbt64AQDIyclBk8aNsXHjRpw8eRIDBwzAgIEDcfz4cVU9xo0bh9lz5iAiIgKnT5/GyhUr4OjoWOTzpKamIqhjRzRq1AiHDx3Cls2bkZKSgt4lWGnQ2IyxRTUVjVMniUiShEOHILzcovDieVEE7tyBcOgQxDb625Hy6tWrEEURdWrXLvJ8ndq18eTJEzx48AAA4O/vj7FjxwIAatWqhfj4eMyfPx8B7dsjMTERTk5OePfdd2FiYoLq1aujWbNmAAA7OzvI5XJYVq6stu9A1apVMWrUKNXnL7/8ErG7duHPP/9Es2bNkJGRgQULF+KHH37Ap/9+4XvVqIGWLVsWWd9FixejUaNGmPzCngU/LV6MmrVq4cqVK6hVq5YOb8uwOHVSOvgmiUiShPv39ZpPU69aZOdlfn5+hT4XbGf8wQcf4OnTp6hTty6GfPklNm/ejPz8/GLLUygUmDZ9Opr6+sLF1RVV7O0RGxuLxMREAMDly5eRm5uLdu3alah+f587h3379qGKvb3qaOTjAwC4fv16icogYssCEUmSWMJNdkqar6S8vLwgCAIuJySgWxHnLyckwNbWFg4ODq8ty83NDX+fO4fdu3cjLi4OI0aOxA8//IDY2FiYmJgUec3cuXOxcOFCzJo1C/Xr1UOlSpUwZuxY5OXlAUChrpHXyczKQqfgYEydOrXQudftpGhsgkz7VRgLrif94KskIkkSW7aEWLUqxFdMfxMFAWK1ahBf0fyurSpVqqB9+/ZY8tNPePr0qdq5pKQkrF27Fh9++KFqWt6xY8fU8hw9dgx16tRRfbawsECnTp0wd+5c7NyxA0eOHsX58+cBPN/lUPHSmIv4I0fQuXNn9PrkEzRs2BCenp64cuWK6nzNmjVhYWGBPXv2lOh5fHx8cPHSJbi7u8PLy0vtqFSpUslfjBFwzIJ0MFggImmSy5E/ezYAFAoYCj7nz5oFyOV6v3X0Dz8gNy8Pnbt0wYGDB5GYmIidO3eiU+fOcHV1xcQXZkPEx8djzpw5uHLlChYvXowNGzZg2NChAIBffv0Vy1eswIULF3D9xg2sXrMGFhYWqF69OgDA3d0dBw8dwt27d1WzE2p6eSEuLg7x8fG4fPkyhg4bhpSUFNX9zM3NMXr0aHz33Xf4bdUqXLt+HUePHsXyFSuKfJYvPv8cT548Qd++fXHixAlcu34dsbGxGDR4cKFAhehVGCwQkWQpQ0KQv3o14OqqfqJqVeSvXg1lSIhB7luzZk0cOngQnp6e6NOnD7zr1cOXQ4eibZs22Ld3L+zs7FR5R4wYgVOnTsHv7bcxIyoKM6Oi8N577wEAbKytsXzZMrR79100a9YMe3bvxp9//qnaxnj8uHG4desWvOvVQzU3NwBAeHg4Gvv4oEvXrugQGAgnJyd06dJFrX7fRkRgxIgRmDRpEnx8fNDn009VAy5f5urqij27d0OhUKBzly7w9fXFmLFjYWNtXWj3RMmRyXQ/SC8EsaSjePQkPT0d1tbWOHP6FCwtLUvz1kRUihQKBXJycuHu7q77VrwKxfPZEffvQ3Rxed71YIAWBXouNzcXt27dgrm5GeQvveeMjAz4NG6CtLQ0WFlZGeT+Bd8T18b0gqWZqdblZOTmwWv2aoPWtbzgAEcikj65HGKbNijV32yISIXBAhERSRLXWZAOBgtERCRJus5o4GwI/WGwQERE0iToOEiRCy3oDd8kERlUKY+hJj3gz4xexpYFIjIImUwGESKe5uTA3Nzc2NUhDTzNyYEI0fhTK3VdWIndEHrDYIGIDEIQBMjlctX8fwtzc9WqhyRNovg8uHvw4AHkcrnRf16CIIOgQ1eCLteSOgYLRGQw5mZmyMnNRUpKMoRCG02TFIkQIZfLYa7r2hj0RmGwQEQGIwgCLMzNIYoilEqlsatDJSCTyYzeoqAiE3TrSmA3hN4wWCAigyvokiDSBNdZkA6+SSIiIioWWxaIiEiSuCiTdDBYICIiaRIE3RZWksrYizcAuyGIiIioWGxZICIiSWI3hHQwWCAiImmS6bg3BGdD6A2DBSIikiRBEHRa80Ey60W8ARh2ERERUbHYskBERNLELaolg8ECERFJEgc4SgfDLiIiIiqWRsHC9OnT0axZM1haWsLR0REhISFISEgwVN2IiKg8E2S6H1pYuHAhPDw8YG5uDj8/Pxw7duyVeVesWKEaiFlwmJubq+URRRHjx4+Hi4sLLCwsEBAQgCtXrmhVN2PR6E3u27cPQ4cOxZEjRxAbG4tnz56hQ4cOyMrKMlT9iIiovCrYdVKXQ0Pr1q1DWFgYIiMjcerUKTRq1AiBgYFISUl55TVWVla4f/++6rh165ba+ZkzZ2LevHlYvHgxjh49ikqVKiEwMBA5OTka189YNBqzEBMTo/Z5xYoVcHR0xMmTJ9GmTRu9VoyIiKi0zZ07F4MGDUL//v0BAIsXL8a2bduwbNkyhIeHF3mNIAhwdnYu8pwoioiOjsb333+Pbt26AQB++eUXODk5YdOmTejZs6dhHkTPdBqzkJaWBgCws7N7ZZ7c3Fykp6erHURERK8jCDKdDwCFvoNyc3OLvF9eXh5OnjyJgIAAVZpMJkNAQADi4+NfWc/MzEy4u7vDzc0N3bp1w4ULF1Tnbty4gaSkJLUyra2t4efnV2yZUqN1sKBUKjFy5Ei0bNkS9evXf2W+6dOnw9raWnW4ublpe0siIipP9NQN4ebmpvY9NH369CJv9/DhQygUCjg5OamlOzk5ISkpqchrateujWXLlmHz5s347bffoFQq0aJFC9y5cwcAVNdpUqYUaT11cujQoTh//jwOHjxYbL6IiAiEhYWpPqenpzNgICKiUpOYmAgrKyvVZzMzM72V7e/vD39/f9XnFi1aoG7duvjpp58wefJkvd3H2LQKFoYNG4atW7di//79qFatWrF5zczM9PqDISKi8kGQySDosChTwbVWVlZqwcKr2NvbQy6XIzk5WS09OTn5lWMSXmZiYoLGjRvj6tWrAKC6Ljk5GS4uLmpl+vj4lKhMKdDopyCKIoYNG4aNGzdi9+7d8PT0NFS9iIiovBME3Q8NmJqaomnTpoiLi1OlKZVKxMXFqbUeFEehUODvv/9WBQaenp5wdnZWKzM9PR1Hjx4tcZlSoFHLwtChQ7F69Wps3rwZlpaWqv4Wa2trWFhYGKSCRERUTskEHXed1HzqZFhYGPr16wdfX180b94c0dHRyMrKUs2O6Nu3L6pWraoa9zBp0iS8/fbbqFmzJlJTUzFr1izcunULn332GYDnMyVGjhyJKVOmoFatWvD09MS4cePg6uqKkJAQ7Z+tlGkULCxatAgA8M4776ilL1++HKGhofqqExERkVH06NEDDx48wPjx45GUlAQfHx/ExMSoBijevn0bshcCmCdPnmDQoEFISkqCra0tmjZtisOHD8Pb21uV5+uvv0ZWVhYGDx6M1NRUtGrVCjExMYUWb5IyQRRFsTRvmJ6eDmtra5w5fQqWlpaleWsiItJRRkYGfBo3QVpaWonGAWij4Hvi/qIIWFlo/4Wa/jQHLkOmG7Su5QU3kiIiIknS1wBH0h3fJBERERWLLQtERCRNOmwGpbqe9ILBAhERSZOg3WZQateTXjDsIiIiomKxZYGIiCTpxc2gtL2e9IPBAhERSZNMx24IXa4lNQy7iIiIqFhsWSAiImnibAjJ4JskIiJpKuWNpN4EMTExOHjwoOrzwoUL4ePjg169euHJkydal8tggYiIpEkm0/0oZ8aOHYv09HQAwN9//43Ro0cjODgYN27cQFhYmNblshuCiIjoDXHjxg3VJlZ//vknOnfujGnTpuHUqVMIDg7WutzyF3YREVHZUDBmQZejnDE1NUV2djYAYNeuXejQoQMAwM7OTtXioA22LBARkTRx6qTGWrVqhbCwMLRs2RLHjh3DunXrAAD//PMPqlWrpnW55S/sIiIiekMtWLAAFSpUwPr167Fo0SJUrVoVALB9+3YEBQVpXS5bFoiISJoEQcepk+WvZaF69erYunVrofQffvhBp3LZskBERNLEqZMak8vlSElJKZT+6NEjyOVyrctlsEBERPSGEEWxyPTc3FyYmppqXS67IYiISJp0XSuhHK2zMG/ePACAIAj4z3/+g8qVK6vOKRQK7N+/H3Xq1NG6fAYLREQkTbp2JZSjboiCMQmiKGLx4sVqXQ6mpqbw8PDA4sWLtS6fwQIREVEZd+PGDQBAu3btsGHDBtja2uq1fAYLREQkTdxISmN79uwxSLkMFoiISJoEHccslMNgQaFQYMWKFYiLi0NKSgqUSqXa+d27d2tVLoMFIiKSJo5Z0NiIESOwYsUKdOrUCfXr14egp3fAYIGIiOgNsXbtWvz+++86bRpVFAYLREQkTRyzoDFTU1PUrFlT7+WWvzdJRERlA1dw1Njo0aPx448/vnJxJm2xZYGIiOgNcfDgQezZswfbt29HvXr1YGJionZ+w4YNWpXLYIGIiKSJKzhqzMbGBu+//77ey2WwQEREkiQKAkQduhJ0ubasWr58uUHKLX9hFxER0RssPz8fu3btwk8//YSMjAwAwL1795CZmal1mWxZICIiaRIEHWdDlL+WhVu3biEoKAi3b99Gbm4u3nvvPVhaWiIqKgq5ubla7w/BlgUiIpKmgqmTuhzlzIgRI+Dr64snT57AwsJClf7+++8jLi5O63LZskBERPSGOHDgAA4fPgxTU1O1dA8PD9y9e1frchksEBGRJHGAo+aUSiUUCkWh9Dt37sDS0lLrcstfGw0REZUNRuqGWLhwITw8PGBubg4/Pz8cO3bslXmXLl2K1q1bw9bWFra2tggICCiUPzQ0FIIgqB1BQUFa1e11OnTogOjoaNVnQRCQmZmJyMhInZaAZrBARETSZIQVHNetW4ewsDBERkbi1KlTaNSoEQIDA5GSklJk/r179+KTTz7Bnj17EB8fDzc3N3To0KFQk39QUBDu37+vOtasWaPVK3mdOXPm4NChQ/D29kZOTg569eql6oKIiorSulxB1PeakK+Rnp4Oa2trnDl9SqcmESIiKn0ZGRnwadwEaWlpsLKyMsg9Cr4n7m9fAatKFbUvJysbLh1DNaqrn58fmjVrhgULFgB43qzv5uaG4cOHIzw8/LXXKxQK2NraYsGCBejbty+A5y0Lqamp2LRpk9bPoon8/HysXbsW586dQ2ZmJpo0aYLevXurDXjUFMcsEBGRNOlpBcf09HS1ZDMzM5iZmRXKnpeXh5MnTyIiIuKFImQICAhAfHx8iW6ZnZ2NZ8+ewc7OTi197969cHR0hK2tLd59911MmTIFVapU0fSJSqRChQro06ePfsvUa2lERER6oq8Bjm5ubmrpkZGRmDBhQqH8Dx8+hEKhgJOTk1q6k5MTLl++XKJ7fvPNN3B1dUVAQIAqLSgoCB988AE8PT1x7do1fPvtt+jYsSPi4+Mhl8s1fKrXu3fvHg4ePIiUlBQolUq1c1999ZVWZTJYICKiN1piYqJaN0RRrQr6MGPGDKxduxZ79+6Fubm5Kr1nz56qPzdo0AANGzaEl5cX9u7di/bt2+u1DitWrMDnn38OU1NTVKlSBcILwZYgCAwWiIjoDaPrwkr/XmtlZVWiMQv29vaQy+VITk5WS09OToazs3Ox186ePRszZszArl270LBhw2Lz1qhRA/b29rh69areg4Vx48Zh/PjxiIiIgEyPG2lxNgQREUmSKMh0PjRhamqKpk2bqq10qFQqERcXB39//1deN3PmTEyePBkxMTHw9fV97X3u3LmDR48ewcXFRaP6lUR2djZ69uyp10ABYLBARESkEhYWhqVLl2LlypW4dOkShgwZgqysLPTv3x8A0LdvX7UBkFFRURg3bhyWLVsGDw8PJCUlISkpSbVpU2ZmJsaOHYsjR47g5s2biIuLQ7du3VCzZk0EBgbqvf4DBw7EH3/8ofdy2Q1BRETSpOVaCWrXa6hHjx548OABxo8fj6SkJPj4+CAmJkY16PH27dtqv7UvWrQIeXl5+PDDD9XKKRhEKZfLce7cOaxcuRKpqalwdXVFhw4dMHnyZIOMnZg+fTo6d+6MmJgYNGjQACYmJmrn586dq1W5DBaIiEiSRGjelfDy9doYNmwYhg0bVuS5vXv3qn2+efNmsWVZWFhgx44dWtVDG9OnT8eOHTtQu3ZtACg0wFFbDBaIiEiajNCyUNbNmTMHy5YtQ2hoqF7L5ZgFIiKiN4SZmRlatmyp93IZLBARkTQJgo4bSZW/loURI0Zg/vz5ei+X3RBERCRJ3KJac8eOHcPu3buxdetW1KtXr9AAxw0bNmhVLoMFIiKiN4SNjQ0++OADvZfLYIGIiKRJTys4lifLly83SLnl700SEVGZIELQ+SiP8vPzsWvXLvz000/IyMgA8HxzqYKForTBlgUiIqI3xK1btxAUFITbt28jNzcX7733HiwtLREVFYXc3FwsXrxYq3LZskBERJJU2ntDvAlGjBgBX19fPHnyBBYWFqr0999/X23PC02xZYGIiKSJYxY0duDAARw+fBimpqZq6R4eHrh7967W5Za/N0lERPSGUiqVUCgUhdLv3LkDS0tLrctlsEBERJJUsM6CLkd506FDB0RHR6s+C4KAzMxMREZGIjg4WOty2Q1BRESSpOu4g/I4ZmHOnDkIDAyEt7c3cnJy0KtXL1y5cgX29vZYs2aN1uUyWCAiImniRlIaq1atGs6ePYu1a9fi3LlzyMzMxMCBA9G7d2+1AY+aYrBARET0BqlQoQL69Omj3zL1WhoREZG+6Dr9sZx0Q2zZsqXEebt27arVPRgsEBGRJOm6CmN5WcExJCSkRPkEQShypkRJ6BR2zZgxA4IgYOTIkboUQ0RERFpSKpUlOrQNFAAdWhaOHz+On376CQ0bNtT65kRERK/C2RDSodWbzMzMRO/evbF06VLY2trqu05ERESAgP/NiNDqMPYDlJ7g4GCkpaWpPs+YMQOpqamqz48ePYK3t7fW5WsVLAwdOhSdOnVCQEDAa/Pm5uYiPT1d7SAiIiL92bFjB3Jzc1Wfp02bhsePH6s+5+fnIyEhQevyNe6GWLt2LU6dOoXjx4+XKP/06dMxceJEjStGRETlmwgZRB2G1ulybVkjimKxn3Wl0ZtMTEzEiBEjsGrVKpibm5fomoiICKSlpamOxMRErSpKRETlC5d7lg6NWhZOnjyJlJQUNGnSRJWmUCiwf/9+LFiwALm5uZDL5WrXmJmZwczMTD+1JSIiokIEQYDwUnD08mddaBQstG/fHn///bdaWv/+/VGnTh188803hQIFIiIibXE2RMmJoojQ0FDVL+c5OTn44osvUKlSJQBQG8+gDY2CBUtLS9SvX18trVKlSqhSpUqhdCIiIl1wUaaS69evn9rnopZ77tu3r9blcwVHIiKSJLYslNzy5csNWr7OwcLevXv1UA0iIiKSKrYsEBGRJOk6o4GzIfSHwQIREUkSxyxIR/np0CEiIiKtMFggIiJJKhjgqMtR3uzfvx/5+fmF0vPz87F//36tyy1/b5KIiMqEgm4IXY7ypl27dmp7QhRIS0tDu3bttC6XwQIREdEbQhTFIldufPTokWqBJm1wgCMREUmSCB3XWShHvw9/8MEHAJ4v8fziSo7A820Zzp07hxYtWmhdPoMFIiKSJM6GKDlra2sAz1sWLC0tYWFhoTpnamqKt99+G4MGDdK6fAYLREREL1i4cCFmzZqFpKQkNGrUCPPnz0fz5s1fmf+PP/7AuHHjcPPmTdSqVQtRUVEIDg5WnRdFEZGRkVi6dClSU1PRsmVLLFq0CLVq1dJbnQtWcPTw8MCYMWN06nIoSvlpoyEiojLl+aJMusyG0LxlYd26dQgLC0NkZCROnTqFRo0aITAwECkpKUXmP3z4MD755BMMHDgQp0+fRkhICEJCQnD+/HlVnpkzZ2LevHlYvHgxjh49ikqVKiEwMBA5OTlav5tXiYyM1HugAACCKIqi3kstRnp6OqytrXHm9ClYWlqW5q2JiEhHGRkZ8GncBGlpabCysjLIPf73PXFap++J53VtjMTERLW6mpmZqfXpv8jPzw/NmjXDggULAABKpRJubm4YPnw4wsPDC+Xv0aMHsrKysHXrVlXa22+/DR8fHyxevBiiKMLV1RWjR4/GmDFjADyfmeDk5IQVK1agZ8+eWj9fUZKTkzFmzBjExcUhJSUFL3/FKxQKrcplNwQREUmSvpZ7dnNzU0uPjIzEhAkTCuXPy8vDyZMnERERoUqTyWQICAhAfHx8kfeIj49HWFiYWlpgYCA2bdoEALhx4waSkpIQEBCgOm9tbQ0/Pz/Ex8frPVgIDQ3F7du3MW7cOLi4uBQ5M0IbDBaIiOiNVlTLQlEePnwIhUIBJycntXQnJydcvny5yGuSkpKKzJ+UlKQ6X5D2qjz6dPDgQRw4cAA+Pj56LZfBAhERSZIoChBFHVoW/r3WysrKYF0mUuPm5lao60EfOMCRiIgkSvZ8rQUtD02/4uzt7SGXy5GcnKyWnpycDGdn5yKvcXZ2LjZ/wX81KVMX0dHRCA8Px82bN/VaLoMFIiIiPF+PoGnTpoiLi1OlKZVKxMXFwd/fv8hr/P391fIDQGxsrCq/p6cnnJ2d1fKkp6fj6NGjryxTFz169MDevXvh5eUFS0tL2NnZqR3aYjcEERFJkjEWZQoLC0O/fv3g6+uL5s2bIzo6GllZWejfvz8AoG/fvqhatSqmT58OABgxYgTatm2LOXPmoFOnTli7di1OnDiBJUuWAHi+ouLIkSMxZcoU1KpVC56enhg3bhxcXV0REhKi9bO9SnR0tN7LBBgsEBGRRBkjWOjRowcePHiA8ePHIykpCT4+PoiJiVENULx9+zZksv81yrdo0QKrV6/G999/j2+//Ra1atXCpk2bUL9+fVWer7/+GllZWRg8eDBSU1PRqlUrxMTEwNzcXOtne5V+/frpvUyA6ywQEZEGSnOdhROnL6CyDt8TmRkZ8G1cz6B1laJr165h+fLluHbtGn788Uc4Ojpi+/btqF69OurVq6dVmRyzQEREksQtqjW3b98+NGjQAEePHsWGDRuQmZkJADh79iwiIyO1LpfBAhERSRKDBc2Fh4djypQpiI2NhampqSr93XffxZEjR7Qul8ECERHRG+Lvv//G+++/Xyjd0dERDx8+1LpcBgtERCRJBYsy6XKUNzY2Nrh//36h9NOnT6Nq1apal8tggYiIJIndEJrr2bMnvvnmGyQlJUEQBCiVShw6dAhjxoxB3759tS6XwQIREUkSgwXNTZs2DXXq1IGbmxsyMzPh7e2NNm3aoEWLFvj++++1LpfrLBAREb0hTE1NsXTpUowbNw7nz59HZmYmGjdujFq1aulULoMFIiKSJGMsyvSmqF69OqpXr6638hgsEBGRJInQcdfJchgsiKKI9evXY8+ePUhJSYFSqVQ7v2HDBq3KZbBARET0hhg5ciR++ukntGvXDk5OThAE/QRMDBaIiEiSlBCg1KF1QJdry6pff/0VGzZsQHBwsF7LZbBARESSxDELmrO2tkaNGjX0Xi6nThIREb0hJkyYgIkTJ+Lp06d6LZctC0REJEm6rsJYHldw/Pjjj7FmzRo4OjrCw8MDJiYmaudPnTqlVbkMFoiISJJE6NaVIOqvKmVGv379cPLkSfTp04cDHImIiKiwbdu2YceOHWjVqpVey2WwQEREksRuCM25ubnByspK7+VygCMREUkS94bQ3Jw5c/D111/j5s2bei2XLQtERCRJbFnQXJ8+fZCdnQ0vLy9UrFix0ADHx48fa1UugwUiIqI3RHR0tEHKZbBARESSJAJQvjZX8deXN/369TNIuQwWiIhIktgNoR2lUomrV68WuZFUmzZttCqTwQIREdEb4siRI+jVqxdu3boFUVRvWxEEAQqFQqtyGSwQEZEkcW8IzX3xxRfw9fXFtm3b4OLiwkWZiIjozcZuCM1duXIF69evR82aNfVaLtdZICIiekP4+fnh6tWrei+XLQtERCRJ7IbQ3PDhwzF69GgkJSWhQYMGhdZZaNiwoVblMlggIiJJUorPD12uL2+6d+8OABgwYIAqTRAEiKLIAY5EREQE3LhxwyDlMlggKic+HXnX2FUo5NfoqsauAkkYuyE05+7ubpByGSwQEZEkcTaEdq5du4bo6GhcunQJAODt7Y0RI0bAy8tL6zI5G4KIiCRJFHU/ypsdO3bA29sbx44dQ8OGDdGwYUMcPXoU9erVQ2xsrNblsmWBiIjoDREeHo5Ro0ZhxowZhdK/+eYbvPfee1qVy5YFIiKSJCUEnY/y5tKlSxg4cGCh9AEDBuDixYtal8tggYiIJKlgzIIuR3nj4OCAM2fOFEo/c+YMHB0dtS6XwQIREZEWHj9+jN69e8PKygo2NjYYOHAgMjMzi80/fPhw1K5dGxYWFqhevTq++uorpKWlqeUTBKHQsXbt2hLVadCgQRg8eDCioqJw4MABHDhwADNmzMDnn3+OQYMGaf2sHLNARESSpOsgRUMPcOzduzfu37+P2NhYPHv2DP3798fgwYOxevXqIvPfu3cP9+7dw+zZs+Ht7Y1bt27hiy++wL1797B+/Xq1vMuXL0dQUJDqs42NTYnqNG7cOFhaWmLOnDmIiIgAALi6umLChAn46quvtHtQMFggIiKJkvI6C5cuXUJMTAyOHz8OX19fAMD8+fMRHByM2bNnw9XVtdA19evXx59//qn67OXlhalTp6JPnz7Iz89HhQr/+0q2sbGBs7OzRnXKz8/H6tWr0atXL4waNQoZGRkAAEtLS20eUQ27IYiI6I2Wnp6uduTm5upcZnx8PGxsbFSBAgAEBARAJpPh6NGjJS4nLS0NVlZWaoECAAwdOhT29vZo3rw5li1bBrEEzSQVKlTAF198gZycHADPgwR9BAoAgwUiIpKogr0hdDkAwM3NDdbW1qpj+vTpOtctKSmp0IDBChUqwM7ODklJSSUq4+HDh5g8eTIGDx6slj5p0iT8/vvviI2NRffu3fHll19i/vz5JSqzefPmOH36dMkeQgPshiAiImnSdUbDv9cmJibCyspKlWxmZvbKS8LDwxEVFVVssQUrI+oiPT0dnTp1gre3NyZMmKB2bty4cao/N27cGFlZWZg1a1aJxhx8+eWXGD16NO7cuYOmTZuiUqVKaue56yQREVERrKys1IKF4owePRqhoaHF5qlRowacnZ2RkpKilp6fn4/Hjx+/dqxBRkYGgoKCYGlpiY0bNxbaRvplfn5+mDx5MnJzc4sNdACgZ8+eAKAWWHDXSSIiemMZYzaEg4MDHBwcXpvP398fqampOHnyJJo2bQoA2L17N5RKJfz8/F55XXp6OgIDA2FmZoYtW7bA3Nz8tfc6c+YMbG1tXxsoANx1koiMTCYq0OjROVTJfYxHZnY4W6UhlILc2NWiN5iuqzAacgXHunXrIigoCIMGDcLixYvx7NkzDBs2DD179lTNhLh79y7at2+PX375Bc2bN0d6ejo6dOiA7Oxs/Pbbb6oBl8DzIEUul+O///0vkpOT8fbbb8Pc3ByxsbGYNm0axowZU6J6SWbXybt37+Kbb77B9u3bkZ2djZo1a2L58uVqI0KJ6M3S9v5+jLgwH045D1RpyeYO+LHecOxzaWPEmtGbTOrrLKxatQrDhg1D+/btIZPJ0L17d8ybN091/tmzZ0hISEB2djYA4NSpU6qZEjVr1lQr68aNG/Dw8ICJiQkWLlyIUaNGQRRF1KxZE3Pnzi12QaUtW7agY8eOMDExwZYtW4qtc9euXbV6VkEsyXyMfz158gSNGzdGu3btMGTIEDg4OODKlSvw8vIq8daX6enpsLa2xpnTp/Q2pYOIXu/TkXe1uq7t/f2YenI8RKhPn1ICEAB813SS1gHDr9FVtbqOjCcjIwM+jZuopvwZQsH3xNq9j1Cxsvb3yM5MR893qhi0rlIgk8lUszNksldPciy1MQtRUVFwc3PD8uXLVWmenp5a3ZiIpE8mKjDiwvxCgQL+/awEMOLCAhxwbskuCdI7Xfd3KC97QyiVyiL/rE8arbOwZcsW+Pr64qOPPoKjoyMaN26MpUuXFntNbm5uoQUxiKhsaPToHJxyHrzyHwoZAKecFDR6dK40q0XlhL7WWShPEhMTDVKuRsHC9evXsWjRItSqVQs7duzAkCFD8NVXX2HlypWvvGb69Olqi2G4ubnpXGkiKh1Vch/rNR8RGZaHhwfatm2LpUuX4smTJ3orV6NgQalUokmTJpg2bRoaN26MwYMHq0aCvkpERATS0tJUh6GiHiLSv0dmdnrNR6SJggGOuhzlzYkTJ9C8eXNMmjQJLi4uCAkJwfr163Ve4lqjYMHFxQXe3t5qaXXr1sXt27dfeY2ZmZlqQQxNFsYgIuM7W6Uhks0d8KpeUCWAZHNHnK2i3apwRMUp2EhKl6O8ady4MWbNmoXbt29j+/btcHBwwODBg+Hk5IQBAwZoXa5GwULLli2RkJCglvbPP/8YbF4nERmXUpDjx3rDIQCFAoaC2RA/1hvGwY1EEiMIAtq1a4elS5di165d8PT0LHbIwOtoFCyMGjUKR44cwbRp03D16lWsXr0aS5YswdChQ7WuABFJ2z6XNviu6SQ8MFdf1e6BuaNO0yaJXkcJHQc4GvsBjOjOnTuYOXMmfHx80Lx5c1SuXBkLFy7UujyNpk42a9YMGzduREREBCZNmgRPT09ER0ejd+/eWleAiKRvn0sbHHBuyRUcqVRJfVEmKfrpp5+wevVqHDp0CHXq1EHv3r2xefNmnXsANF7BsXPnzujcubNONyWiskcpyHHavrGxq0FExZgyZQo++eQTzJs3D40aNdJbudwbgoiIJIktC5q7ffs2BEH/AzsZLBARkSQpRQFKHVZh1OXaskoQBKSmpuLYsWNISUkptKJj3759tSqXwQIREUkSWxY099///he9e/dGZmYmrKys1FoZBEHQOljQaDYEERERSdfo0aMxYMAAZGZmIjU1FU+ePFEdjx9rv9IqWxaIiEiS2LKgubt37+Krr75CxYoV9VouWxaIiEiSRB03kSqPwUJgYCBOnDih93LZskBERPSG6NSpE8aOHYuLFy+iQYMGMDExUTvftWtXrcplsEBERJIkigJEHWY06HJtWTVo0CAAwKRJkwqdEwQBCoVCq3IZLBARkSRxzILmXp4qqS8cs0BERETFYrBARESSpNMmUv8e5UVwcDDS0tJUn2fMmIHU1FTV50ePHsHb21vr8tkNQVRO/Bpd1dhVKOTTkXeNXYVCpPieyit2Q5Tcjh07kJubq/o8bdo0fPzxx7CxsQEA5OfnIyEhQevy2bJARERUxokvRUYvf9YVWxaIiEiS2LIgHQwWiIhIknQdd1CexiwIglBot0l97j7JYIGIiCSJLQslJ4oiQkNDYWZmBgDIycnBF198gUqVKgGA2ngGbTBYICIiKuP69eun9rlPnz6F8mi74yTAYIGIiCRKqXx+6HJ9ebF8+XKDls9ggYiIJIndENLBqZNERERULLYsEBGRJLFlQToYLBARkSQpoePUSb3VhNgNQURERMViywIREUmSKIo6LVus7yWPyzMGC0REJEkcsyAdDBaIqMySiQo0enQOVXIf45GZHc5WaQilIDd2tYjeOByzQERlUtv7+7E+ricWHBmFiacnY8GRUVgf1xNt7+83dtVIT0Tl/xZm0uYQDTzC8fHjx+jduzesrKxgY2ODgQMHIjMzs9hr3nnnHdU+DgXHF198oZbn9u3b6NSpEypWrAhHR0eMHTsW+fn5hnyU12KwQERlTtv7+zH15Hg45DxQS3fIeYCpJ8czYHhDFHRD6HIYUu/evXHhwgXExsZi69at2L9/PwYPHvza6wYNGoT79++rjpkzZ6rOKRQKdOrUCXl5eTh8+DBWrlyJFStWYPz48YZ8lNdisEBEZYpMVGDEhfkQUfgfMBkAEcCICwsgExWlXznSq4JdJ3U5DOXSpUuIiYnBf/7zH/j5+aFVq1aYP38+1q5di3v37hV7bcWKFeHs7Kw6rKysVOd27tyJixcv4rfffoOPjw86duyIyZMnY+HChcjLyzPcA70GgwUiKlMaPToHp5wHr/zHSwbAKScFjR6dK81qkYSlp6erHbruwAgA8fHxsLGxga+vryotICAAMpkMR48eLfbaVatWwd7eHvXr10dERASys7PVym3QoAGcnJxUaYGBgUhPT8eFCxd0rre2OMCRiMqUKrmP9ZqPpEtfsyHc3NzU0iMjIzFhwgTtCwaQlJQER0dHtbQKFSrAzs4OSUlJr7yuV69ecHd3h6urK86dO4dvvvkGCQkJ2LBhg6rcFwMFAKrPxZVraAwWiKhMeWRmp9d8JF2iUoSoQ19CwbWJiYlqTf1mZmavvCY8PBxRUVHFlnvp0iWt6/TimIYGDRrAxcUF7du3x7Vr1+Dl5aV1uYbGYIGIypSzVRoi2dwBDq/oilACeGDuiLNVGpZ21UiirKys1IKF4owePRqhoaHF5qlRowacnZ2RkpKilp6fn4/Hjx/D2dm5xHXz8/MDAFy9ehVeXl5wdnbGsWPH1PIkJycDgEbl6huDBSIqU5SCHD/WG46pJ8dDCfWBV0oAAoAf6w3jegtvAF0HKWpzrYODAxwcHF6bz9/fH6mpqTh58iSaNm0KANi9ezeUSqUqACiJM2fOAABcXFxU5U6dOhUpKSmqbo7Y2FhYWVnB29tbw6fRHw5wJKIyZ59LG3zXdBIemKv/o/7A3BHfNZ2EfS5tjFQz0icpT52sW7cugoKCMGjQIBw7dgyHDh3CsGHD0LNnT7i6ugIA7t69izp16qhaCq5du4bJkyfj5MmTuHnzJrZs2YK+ffuiTZs2aNjweUtYhw4d4O3tjU8//RRnz57Fjh078P3332Po0KHFdp8YGlsWiKhM2ufSBgecW3IFRzKaVatWYdiwYWjfvj1kMhm6d++OefPmqc4/e/YMCQkJqtkOpqam2LVrF6Kjo5GVlQU3Nzd0794d33//veoauVyOrVu3YsiQIfD390elSpXQr18/TJo0qdSf70UMFoiozFIKcpy2b2zsapCBKJUilDr0Q+hybUnY2dlh9erVrzzv4eGhtpmVm5sb9u3b99py3d3d8ddff+mljvrCYIGIiCSJG0lJB8csEBERUbHYskBERJLElgXpYLBARESSpBRFKHX4xtflWlLHYIGIiCRJ1HGbaUNvUV2ecMwCERERFYstC0REJEkiRLWph9pcT/rBYIGIiCRJVAJKdkNIArshiIiIqFhsWSAiIkkSRR27ITgbQm8YLBARkSQZY9dJKhqDBSIyml+jqxq7CoVcrN3J2FUoxDthm7GrQOUcgwUiIpIkUSlC1KF5QJdrSR2DBSIikiQu9ywdnA1BRERExWLLAhERSZJSKUKpQ1eCLteSOgYLREQkSZw6KR0MFoiISJK4kZR0cMwCERERFYstC0REJElKUYRSh64EXa4ldQwWiIhIkjhmQTrYDUFERETFYssCERFJEqdOSgeDBSIikiSu4Cgd7IYgIiKiYrFlgYhIj/IgYHt1N9yvbAKXzGfoeDsRpuCvuNoQRR03kmLTgt5oFCwoFApMmDABv/32G5KSkuDq6orQ0FB8//33EATBUHUkIioTlteugU2BZ6G03qVKW5bmgpAdjdA/4boRa1Y2iTpOnWSwoD8aBQtRUVFYtGgRVq5ciXr16uHEiRPo378/rK2t8dVXXxmqjkREkre8dg1s+GgH8FIrgtIqCRs+SgL+CGTAQGWWRsHC4cOH0a1bN3Tq1AkA4OHhgTVr1uDYsWMGqRwRUVmQBwGbAs8CEIGXG1kFERAFbAo8h94JluyS0ICo1LEbgrMh9EajAY4tWrRAXFwc/vnnHwDA2bNncfDgQXTs2PGV1+Tm5iI9PV3tICJ6k2yv7gal9f3CgUIBQYTS+h62V3cr1XqVdQXBgi4H6YdGLQvh4eFIT09HnTp1IJfLoVAoMHXqVPTu3fuV10yfPh0TJ07UuaJERFJ1v7KJXvPRc0rx+aHL9aQfGrUs/P7771i1ahVWr16NU6dOYeXKlZg9ezZWrlz5ymsiIiKQlpamOhITE3WuNBGRlLhkPtNrPiKp0ahlYezYsQgPD0fPnj0BAA0aNMCtW7cwffp09OvXr8hrzMzMYGZmpntNiYgkquPtRCxLc4HSKun5GIWXiQJk6S7oeJu/LGmCYxakQ6OWhezsbMhk6pfI5XIoldw0nIjKL1OICNnR6PkH8aWBC/9+DtnRkIMbNVSwkZQuB+mHRi0LXbp0wdSpU1G9enXUq1cPp0+fxty5czFgwABD1Y+IqEzon3Ad+CPw33UW7qvSZekuCNnRkNMmqUzTqGVh/vz5+PDDD/Hll1+ibt26GDNmDD7//HNMnjzZUPUjIioz+idcxx/zrPDZygB0+rMjPlsZgD/mWTJQ0JJS+b/NpLQ7DFu/x48fo3fv3rCysoKNjQ0GDhyIzMzMV+a/efMmBEEo8vjjjz9U+Yo6v3btWsM+zGto1LJgaWmJ6OhoREdHG6g6RERlmylEdLt929jVeCPo2pVg6G6I3r174/79+4iNjcWzZ8/Qv39/DB48GKtXry4yv5ubG+7fv6+WtmTJEsyaNavQEgTLly9HUFCQ6rONjY3e668J7g1BRESkoUuXLiEmJgbHjx+Hr68vgOet78HBwZg9ezZcXV0LXSOXy+Hs7KyWtnHjRnz88ceoXLmyWrqNjU2hvMbEXSeJiEiS9LUo08sLA+bm5upct/j4eNjY2KgCBQAICAiATCbD0aNHS1TGyZMncebMGQwcOLDQuaFDh8Le3h7NmzfHsmXLjD5Yky0LREQkSfqaOunmpr5yZmRkJCZMmKBL1ZCUlARHR0e1tAoVKsDOzg5JSUklKuPnn39G3bp10aJFC7X0SZMm4d1330XFihWxc+dOfPnll8jMzDTqHkwMFoiI6I2WmJgIKysr1efi1v4JDw9HVFRUseVdunRJ5zo9ffoUq1evxrhx4wqdezGtcePGyMrKwqxZsxgsEBERvUwJ3baoVv67roWVlZVasFCc0aNHIzQ0tNg8NWrUgLOzM1JSUtTS8/Pz8fjx4xKNNVi/fj2ys7PRt2/f1+b18/PD5MmTkZuba7RFDhksEBGRJBljBUcHBwc4ODi8Np+/vz9SU1Nx8uRJNG3aFACwe/duKJVK+Pn5vfb6n3/+GV27di3Rvc6cOQNbW1ujrobMYIGIiCRJylMn69ati6CgIAwaNAiLFy/Gs2fPMGzYMPTs2VM1E+Lu3bto3749fvnlFzRv3lx17dWrV7F//3789ddfhcr973//i+TkZLz99tswNzdHbGwspk2bhjFjxhjsWUqCwQIREZEWVq1ahWHDhqF9+/aQyWTo3r075s2bpzr/7NkzJCQkIDs7W+26ZcuWoVq1aujQoUOhMk1MTLBw4UKMGjUKoiiiZs2amDt3LgYNGmTw5ymOIJbyfIz09HRYW1vjzOlTsLS0LM1bExG91sXanYxdhUK8E7YZuwoqGRkZ8GncBGlpaSUeB6Cpgu+Jj0dfhomZ9t8Tz3Iz8PucOgata3nBlgUiIpIk7jopHVyUiYiIiIrFlgUiohdIqcm/vJPyAMfyhsECERFJkqhUQtRh60hdriV17IYgIiKiYrFlgYiIJEmpFKHUYZCiLteSOgYLREQkSRyzIB3shiAiIqJisWWBiIgkiessSAeDBSIikiQGC9LBYIGIiCRJCSWUovbTH5Xg1El94ZgFIiIiKhZbFoiISJJEpW5dCTo0StBLGCwQEZEkccyCdLAbgoiIiIrFlgUiIpIkLsokHQwWiIhIkpRKJZQ6bAaly7Wkjt0QREREVCy2LBARkSRxgKN0MFggIiJJEkUlRB3mP+pyLaljNwQREREViy0LREQkSeyGkA4GC0REJE06BgtgsKA3DBaIiEiSlKKOG0lxzILecMwCERERFYstC0REJEkcsyAdDBaIiEiSRFEJUYdVGDl1Un/YDUFERETFYssCERFJErshpIPBAhERSRJXcJQOdkMQERFRsdiyQEREkqRUAkoduhK4Q7X+MFggIiJJEpU6zoZgtKA37IYgIiKiYrFlgYiIJImzIaSDLQtERCRJBbMhdDkMaerUqWjRogUqVqwIGxubEj6TiPHjx8PFxQUWFhYICAjAlStX1PI8fvwYvXv3hpWVFWxsbDBw4EBkZmYa4AlKjsECERFJUkHLgi6HIeXl5eGjjz7CkCFDSnzNzJkzMW/ePCxevBhHjx5FpUqVEBgYiJycHFWe3r1748KFC4iNjcXWrVuxf/9+DB482BCPUGLshiAiItLCxIkTAQArVqwoUX5RFBEdHY3vv/8e3bp1AwD88ssvcHJywqZNm9CzZ09cunQJMTExOH78OHx9fQEA8+fPR3BwMGbPng1XV1eDPMvrlHqwIIrPIz1jN6kQEZHmCv7tLvi33JDy8zJ0mtGgyM8CAKSnp6ulm5mZwczMTKe6aePGjRtISkpCQECAKs3a2hp+fn6Ij49Hz549ER8fDxsbG1WgAAABAQGQyWQ4evQo3n///VKvN2CEYCEjIwMA0Kp1m9K+NRER6UlGRgasra0NUrapqSmcnZ1xIu5jncuqXLky3Nzc1NIiIyMxYcIEncvWVFJSEgDAyclJLd3JyUl1LikpCY6OjmrnK1SoADs7O1UeYyj1YMHV1RWJiYmwtLSEIAhal5Oeng43NzckJibCyspKjzV8s/A9lQzfU8nwPZXMm/yeRFFERkaGQZvDzc3NcePGDeTl5elcliiKhb5rimtVCA8PR1RUVLFlXrp0CXXq1NG5bmVJqQcLMpkM1apV01t5VlZWb9z/jIbA91QyfE8lw/dUMm/qezJUi8KLzM3NYW5ubvD7vGz06NEIDQ0tNk+NGjW0KtvZ2RkAkJycDBcXF1V6cnIyfHx8VHlSUlLUrsvPz8fjx49V1xsDBzgSERH9y8HBAQ4ODgYp29PTE87OzoiLi1MFB+np6Th69KhqRoW/vz9SU1Nx8uRJNG3aFACwe/duKJVK+Pn5GaReJcGpk0RERFq4ffs2zpw5g9u3b0OhUODMmTM4c+aM2gD+OnXqYOPGjQAAQRAwcuRITJkyBVu2bMHff/+Nvn37wtXVFSEhIQCAunXrIigoCIMGDcKxY8dw6NAhDBs2DD179jTaTAigDLcsmJmZITIy0igjWssSvqeS4XsqGb6nkuF7Kh/Gjx+PlStXqj43btwYALBnzx688847AICEhASkpaWp8nz99dfIysrC4MGDkZqailatWiEmJkaty2XVqlUYNmwY2rdvD5lMhu7du2PevHml81CvIIilMf+FiIiIyix2QxAREVGxGCwQERFRsRgsEBERUbEYLBAREVGxGCwQERFRscpssLBw4UJ4eHjA3Nwcfn5+OHbsmLGrJCnTp09Hs2bNYGlpCUdHR4SEhCAhIcHY1ZK0GTNmqOZBk7q7d++iT58+qFKlCiwsLNCgQQOcOHHC2NWSFIVCgXHjxsHT0xMWFhbw8vLC5MmTS2XDJSJDK5PBwrp16xAWFobIyEicOnUKjRo1QmBgYKElMsuzffv2YejQoThy5AhiY2Px7NkzdOjQAVlZWcaumiQdP34cP/30Exo2bGjsqkjOkydP0LJlS5iYmGD79u24ePEi5syZA1tbW2NXTVKioqKwaNEiLFiwAJcuXUJUVBRmzpyJ+fPnG7tqRDork+ss+Pn5oVmzZliwYAEAQKlUws3NDcOHD0d4eLiRaydNDx48gKOjI/bt24c2bbjj54syMzPRpEkT/N///R+mTJkCHx8fREdHG7takhEeHo5Dhw7hwIEDxq6KpHXu3BlOTk74+eefVWndu3eHhYUFfvvtNyPWjEh3Za5lIS8vDydPnlTbD1wmkyEgIADx8fFGrJm0FawgZmdnZ+SaSM/QoUPRqVMntb9T9D9btmyBr68vPvroIzg6OqJx48ZYunSpsaslOS1atEBcXBz++ecfAMDZs2dx8OBBdOzY0cg1I9JdmVvu+eHDh1AoFEXuB3758mUj1UralEolRo4ciZYtW6J+/frGro6krF27FqdOncLx48eNXRXJun79OhYtWoSwsDB8++23OH78OL766iuYmpqiX79+xq6eZISHhyM9PR116tSBXC6HQqHA1KlT0bt3b2NXjUhnZS5YIM0NHToU58+fx8GDB41dFUlJTEzEiBEjEBsba5StcMsKpVIJX19fTJs2DcDz9e/Pnz+PxYsXM1h4we+//45Vq1Zh9erVqFevHs6cOYORI0fC1dWV74nKvDIXLNjb20MulyM5OVktPTk52ah7fUvVsGHDsHXrVuzfvx/VqlUzdnUk5eTJk0hJSUGTJk1UaQqFAvv378eCBQuQm5sLuVxuxBpKg4uLC7y9vdXS6tatiz///NNINZKmsWPHIjw8HD179gQANGjQALdu3cL06dMZLFCZV+bGLJiamqJp06aIi4tTpSmVSsTFxcHf39+INZMWURQxbNgwbNy4Ebt374anp6exqyQ57du3x99//63aVvbMmTPw9fVF7969cebMGQYK/2rZsmWhabf//PMP3N3djVQjacrOzoZMpv5Pqlwuh1KpNFKNiPSnzLUsAEBYWBj69esHX19fNG/eHNHR0cjKykL//v2NXTXJGDp0KFavXo3NmzfD0tISSUlJAABra2tYWFgYuXbSYGlpWWgMR6VKlVClShWO7XjBqFGj0KJFC0ybNg0ff/wxjh07hiVLlmDJkiXGrpqkdOnSBVOnTkX16tVRr149nD59GnPnzsWAAQOMXTUi3Yll1Pz588Xq1auLpqamYvPmzcUjR44Yu0qSAqDIY/ny5caumqS1bdtWHDFihLGrITn//e9/xfr164tmZmZinTp1xCVLlhi7SpKTnp4ujhgxQqxevbpobm4u1qhRQ/zuu+/E3NxcY1eNSGdlcp0FIiIiKj1lbswCERERlS4GC0RERFQsBgtERERULAYLREREVCwGC0RERFQsBgtERERULAYLREREVCwGC0RERFQsBgtERERULAYLREREVCwGC0RERFSs/wdFpJolxRAtAgAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "**Visualization 4. Heatmap of Pathfinding Costs (A* Algorithm)**\n", + "\n", + "The following code displays the pathfinding costs generated by the A* algorithm as a heatmap. This can illustrate which areas are more costly to traverse, showing the effectiveness of the chosen path." + ], + "metadata": { + "id": "33jk_6OR5Pbm" + } + }, + { + "cell_type": "code", + "source": [ + "def visualize_cost_heatmap(start, goal, obstacles, grid_width, grid_height):\n", + " # Initialize cost grid with high values\n", + " cost_grid = np.full((grid_width, grid_height), np.inf)\n", + "\n", + " # Use A* to calculate cost to each cell from start\n", + " open_set = [(0, start)]\n", + " g_score = {start: 0}\n", + "\n", + " while open_set:\n", + " _, current = heapq.heappop(open_set)\n", + " cost_grid[current[0], current[1]] = g_score[current]\n", + "\n", + " # Explore neighbors\n", + " for direction in [(1, 0), (0, 1), (-1, 0), (0, -1)]:\n", + " neighbor = (current[0] + direction[0], current[1] + direction[1])\n", + " if neighbor in obstacles or not (0 <= neighbor[0] < grid_width and 0 <= neighbor[1] < grid_height):\n", + " continue\n", + "\n", + " tentative_g_score = g_score[current] + 1\n", + " if tentative_g_score < g_score.get(neighbor, np.inf):\n", + " g_score[neighbor] = tentative_g_score\n", + " heapq.heappush(open_set, (tentative_g_score, neighbor))\n", + "\n", + " # Plot cost heatmap\n", + " plt.imshow(cost_grid, cmap=\"hot\", origin=\"upper\")\n", + " plt.colorbar(label=\"Traversal Cost\")\n", + " plt.scatter(start[1], start[0], color='blue', label=\"Start\")\n", + " plt.scatter(goal[1], goal[0], color='green', label=\"Goal\")\n", + " for obs in obstacles:\n", + " plt.scatter(obs[1], obs[0], color='red', label=\"Obstacle\" if obs == obstacles[0] else \"\")\n", + "\n", + " plt.legend(loc=\"upper right\")\n", + " plt.title(\"Pathfinding Cost Heatmap\")\n", + " plt.show()\n", + "\n", + "# Visualize cost heatmap\n", + "start = (5, 5)\n", + "goal = (8, 8)\n", + "obstacles = [(6, 6), (7, 7)]\n", + "visualize_cost_heatmap(start, goal, obstacles, grid_width=10, grid_height=10)\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 452 + }, + "id": "tYzcqAOY4EuZ", + "outputId": "2e5ac3d0-5a8f-4360-a66c-cdea1ab2c6d7" + }, + "execution_count": 13, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAGzCAYAAADUlZUZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMlUlEQVR4nO3dd1hTZ/sH8G8IEiIyFGUJCCLuPSu4qqh1W1+1jvbnaNUqDkRbtX3dg9paxLq1dbTuOqqvrVrEbWudWG0dVUERBTdBUNDk/P6gRGNAD5kn8P1cV642T855zp0EuXnmkQmCIICIiIhskp21AyAiIiLDMZETERHZMCZyIiIiG8ZETkREZMOYyImIiGwYEzkREZENYyInIiKyYUzkRERENoyJnIiIyIYxkZOOKVOmQCaT4d69e2889vnz5/j000/h5+cHOzs7dO3aFQAgk8kwZcoUk8b1ap2rVq2CTCZDYmKiSa9DRGRrmMhtRG7iyn04OjqiYsWKGD58OFJTUwtc36xZs/DTTz8ZFdOKFSvw1VdfoXv37li9ejVGjx5tVH22Jj4+Hu+//z78/PygUChQqlQphIWFYeXKlVCr1Sa/3q1btzBlyhTEx8eLOj73Z+bkyZN5vt6iRQtUr17dhBHq++WXX0z+Rx0R6bK3dgBUMNOmTUNgYCCePn2KI0eOYPHixfjll19w/vx5FC9eXHQ9s2bNQvfu3bWtaEPs27cPZcuWxdy5c3XKnzx5Ant78/5offDBB+jVqxcUCoVZr5Ofb7/9Fh9//DE8PT3xwQcfIDg4GOnp6YiLi8OHH36I27dv47PPPjPpNW/duoWpU6ciICAAtWvXNmnd5vLLL79g4cKFTOZEZsREbmPatWuH+vXrAwA++ugjuLu7Izo6Gtu3b0fv3r0tGsudO3fg5uamV+7o6Gj2a8vlcsjlcrNfJy/Hjh3Dxx9/jMaNG+OXX36Bs7Oz9rWIiAicPHkS58+ft0psRFT0sGvdxrVs2RIAkJCQAACYM2cOQkJC4O7uDqVSiXr16mHz5s0658hkMmRkZGD16tXarvr+/fvrHPPo0SP0798fbm5ucHV1xYABA5CZmQkASExMhEwmw/79+/HXX39p6zhw4IC2/pdbYLnj7leuXMm3zlxZWVkYPXo0ypQpA2dnZ3Tu3Bk3b97Ue995jZEHBASgY8eOOHLkCBo2bAhHR0eUL18e33//vd75f/75J5o3bw6lUglfX1/MmDEDK1euFDXuPnXqVMhkMqxdu1YnieeqX7++zueZkZGBMWPGaLvgK1WqhDlz5uDVGw/GxsaiSZMmcHNzQ4kSJVCpUiVtq/7AgQNo0KABAGDAgAHaz3zVqlWvjdUQa9asQb169aBUKlGqVCn06tULSUlJOsccPnwYPXr0gL+/PxQKBfz8/DB69Gg8efJEe0z//v2xcOFCANAZFgJe/AzNmTMHCxcuRPny5VG8eHG0adMGSUlJEAQB06dPh6+vL5RKJbp06YIHDx7oxLB9+3Z06NABPj4+UCgUCAoKwvTp0/WGNXKHEE6dOoWQkBAolUoEBgZiyZIlJv/siKyBLXIbd/XqVQCAu7s7AGDevHno3Lkz+vbti+zsbGzYsAE9evTAzp070aFDBwDADz/8gI8++ggNGzbE4MGDAQBBQUE69fbs2ROBgYGIiorC6dOn8e2338LDwwOzZ89GmTJl8MMPP2DmzJl4/PgxoqKiAABVqlR5bayvqzPXRx99hDVr1qBPnz4ICQnBvn37tHGLceXKFXTv3h0ffvgh+vXrhxUrVqB///6oV68eqlWrBgBITk7G22+/DZlMhgkTJsDJyQnffvutqG76zMxMxMXFoVmzZvD393/j8YIgoHPnzti/fz8+/PBD1K5dG3v27MEnn3yC5ORk7bDEX3/9hY4dO6JmzZqYNm0aFAoFrly5gqNHjwLI+WynTZuGSZMmYfDgwWjatCkAICQk5I0xpKWl5Tl58dmzZ3plM2fOxMSJE9GzZ0989NFHuHv3LubPn49mzZrhzJkz2h6YH3/8EZmZmRg6dCjc3d1x/PhxzJ8/Hzdv3sSPP/4IABgyZAhu3bqF2NhY/PDDD3nGtnbtWmRnZ2PEiBF48OABvvzyS/Ts2RMtW7bEgQMHMG7cOFy5cgXz58/H2LFjsWLFCu25q1atQokSJRAZGYkSJUpg3759mDRpElQqFb766iud6zx8+BDt27dHz5490bt3b2zatAlDhw6Fg4MDBg4c+MbPkEjSBLIJK1euFAAIe/fuFe7evSskJSUJGzZsENzd3QWlUincvHlTEARByMzM1DkvOztbqF69utCyZUudcicnJ6Ffv35615k8ebIAQBg4cKBO+bvvviu4u7vrlDVv3lyoVq2aXh0AhMmTJxe4zvj4eAGAMGzYMJ3j+vTpo1dn7ueRkJCgLStXrpwAQDh06JC27M6dO4JCoRDGjBmjLRsxYoQgk8mEM2fOaMvu378vlCpVSq/OV509e1YAIIwaNSrfY172008/CQCEGTNm6JR3795dkMlkwpUrVwRBEIS5c+cKAIS7d+/mW9eJEycEAMLKlStFXTv3M3rd4+XvLzExUZDL5cLMmTN16jl37pxgb2+vU/7qz5kgCEJUVJQgk8mE69eva8vCw8OFvH7NJCQkCACEMmXKCI8ePdKWT5gwQQAg1KpVS3j27Jm2vHfv3oKDg4Pw9OnT18YwZMgQoXjx4jrHNW/eXAAgfP3119qyrKwsoXbt2oKHh4eQnZ2t/+ER2RB2rduYsLAwlClTBn5+fujVqxdKlCiBbdu2oWzZsgAApVKpPfbhw4dIS0tD06ZNcfr06QJd5+OPP9Z53rRpU9y/fx8qlcrg2N9U5y+//AIAGDlypM5xERERoq9RtWpVbWsVAMqUKYNKlSrh2rVr2rLdu3ejcePGOhPGSpUqhb59+76x/txY8+pSz8svv/wCuVyu957GjBkDQRCwa9cuANC2dLdv3w6NRiOqbrEWLlyI2NhYvUfNmjV1jtu6dSs0Gg169uyJe/fuaR9eXl4IDg7G/v37tce+/HOWkZGBe/fuISQkBIIg4MyZM6Jj69GjB1xdXbXPGzVqBAB4//33dSZMNmrUCNnZ2UhOTs4zhvT0dNy7dw9NmzZFZmYmLl68qHMde3t7DBkyRPvcwcEBQ4YMwZ07d3Dq1CnR8RJJEbvWbczChQtRsWJF2Nvbw9PTE5UqVYKd3Yu/x3bu3IkZM2YgPj4eWVlZ2vLcsUmxXu02LlmyJICcPw5cXFwMiv1NdV6/fh12dnZ63fyVKlUy+Bq513n48KH2+fXr19G4cWO94ypUqPDG+nPfe3p6uqh4rl+/Dh8fH73EnzsMcf36dQDAe++9h2+//RYfffQRxo8fj1atWqFbt27o3r27zvdriIYNG2onSL6sZMmSOl3u//zzDwRBQHBwcJ71FCtWTPv/N27cwKRJk7Bjxw6dzxbI6coX69XvKzep+/n55Vn+8rX++usv/Pe//8W+ffv0/sB8NQYfHx84OTnplFWsWBFAznj9W2+9JTpmIqlhIrcx+f1SBnImIHXu3BnNmjXDokWL4O3tjWLFimHlypVYt25dga6T34xw4ZUJWtau09LXqFChAuzt7XHu3DmT1JdLqVTi0KFD2L9/P37++Wfs3r0bGzduRMuWLfHrr79aZIa+RqOBTCbDrl278rxeiRIlAABqtRqtW7fGgwcPMG7cOFSuXBlOTk5ITk5G//79C9SjkN/7etP3+OjRIzRv3hwuLi6YNm0agoKC4OjoiNOnT2PcuHEm79UgkjIm8kJky5YtcHR0xJ49e3Qmbq1cuVLv2IK20C2hXLly0Gg0uHr1qk4r/NKlSya/zpUrV/TK8yp7VfHixdGyZUvs27cPSUlJei3HvK61d+9epKen67TKc7t+y5Urpy2zs7NDq1at0KpVK0RHR2PWrFn4/PPPsX//foSFhZn9OwsKCoIgCAgMDNS2VvNy7tw5XL58GatXr8b//d//actjY2P1jjVXzAcOHMD9+/exdetWNGvWTFueu3rjVbdu3UJGRoZOq/zy5csAclY7ENkyjpEXInK5HDKZTGf5TWJiYp47uDk5OeHRo0eWC06Edu3aAQC++eYbnfKYmBiTXqdt27b4/fffdXZIe/DgAdauXSvq/MmTJ0MQBHzwwQd4/Pix3uunTp3C6tWrAQDt27eHWq3GggULdI6ZO3cuZDKZ9j2/urQKgHYMP3eIJDcJmet769atG+RyOaZOnarXgyEIAu7fvw/gRWv55WMEQcC8efP06jRXzHnFkJ2djUWLFuV5/PPnz7F06VKdY5cuXYoyZcqgXr16Jo2NyNLYIi9EOnTogOjoaLzzzjvo06cP7ty5g4ULF6JChQr4888/dY6tV68e9u7di+joaPj4+CAwMFA70chaateujd69e2PRokVIS0tDSEgI4uLiRLWUC+LTTz/FmjVr0Lp1a4wYMUK7/Mzf3x8PHjx4YysyJCQECxcuxLBhw1C5cmWdnd0OHDiAHTt2YMaMGQCATp064e2338bnn3+OxMRE1KpVC7/++iu2b9+OiIgI7XyAadOm4dChQ+jQoQPKlSuHO3fuYNGiRfD19UWTJk0A5LSY3dzcsGTJEjg7O8PJyQmNGjVCYGCgST6XoKAgzJgxAxMmTEBiYiK6du0KZ2dnJCQkYNu2bRg8eDDGjh2LypUrIygoCGPHjkVycjJcXFywZcsWvbFyANokOXLkSLRt2xZyuRy9evUyOtaQkBCULFkS/fr1w8iRIyGTyfDDDz/kO4Ti4+OD2bNnIzExERUrVsTGjRsRHx+PZcuW6Yz9E9kkK8yUJwPkLiU6ceLEa4/77rvvhODgYEGhUAiVK1cWVq5cqV3+9bKLFy8KzZo1E5RKpQBAuxQt99hXl0HltdyroMvPxNT55MkTYeTIkYK7u7vg5OQkdOrUSUhKShK9/KxDhw568TRv3lxo3ry5TtmZM2eEpk2bCgqFQvD19RWioqKEb775RgAgpKSk6NWRl1OnTgl9+vQRfHx8hGLFigklS5YUWrVqJaxevVpQq9Xa49LT04XRo0drjwsODha++uorQaPRaI+Ji4sTunTpIvj4+AgODg6Cj4+P0Lt3b+Hy5cs619y+fbtQtWpVwd7e/o1L0d70M5Pf97dlyxahSZMmgpOTk+Dk5CRUrlxZCA8PFy5duqQ95u+//xbCwsKEEiVKCKVLlxYGDRqkXZr3ckzPnz8XRowYIZQpU0aQyWTan8Pc5WdfffWVzrX3798vABB+/PHHN76Xo0ePCm+99ZagVCoFHx8f4dNPPxX27NkjABD279+v9z5PnjwpNG7cWHB0dBTKlSsnLFiwIN/PjsiWyATBhDONiGxYREQEli5disePH1tt+1cyvRYtWuDevXvcNpcKLY6RU5H08laiAHD//n388MMPaNKkCZM4EdkUjpFTkdS4cWO0aNECVapUQWpqKr777juoVCpMnDjR2qERERUIEzkVSe3bt8fmzZuxbNkyyGQy1K1bF999953OUiYiIlvAMXIiIqJ/HTp0CF999RVOnTqF27dvY9u2bejatav2dUEQMHnyZCxfvhyPHj1CaGgoFi9enO+OiJbAMXIiIqJ/ZWRkoFatWtpb8L7qyy+/xDfffIMlS5bgjz/+gJOTE9q2bYunT59aONIX2CInIiLKg0wm02mRC4IAHx8fjBkzBmPHjgWQs6+/p6cnVq1aZZI9Egxh8TFyjUaDW7duwdnZWZLbhBIRUf4EQUB6ejp8fHyMvqHP6zx9+hTZ2dlG1yMIgl6uUSgUOttYi5WQkICUlBSEhYVpy1xdXdGoUSP8/vvvRSeR37p16437UxMRkbQlJSXB19fXLHU/ffoUgYGBSElJMbquEiVK6G2lPHnyZEyZMqXAdeXG4+npqVPu6elpklgNZfFEnnvjiKSkJINvh2ke31s7gDyssnYA+pIkeO/mA9YOIA+HrB1AHqQ4Ib+FtQPIg58U917vb+0AtFSqJ/Dz+1Tv1rymlJ2djZSUFCQlJRiVJ1QqFfz8AvXyjSGtcSmzeCLP7eJwcXGRWCJXWjuAPEhwYxLz/ds1nBS/Oilu3y3Fz0mKP08uEvx3J8EvzxJDo6bKE6aqx8vLCwCQmpoKb29vbXlqaqr2JkfWwFnrREQkUc9N8DCdwMBAeHl5IS4uTlumUqnwxx9/oHHjxia9VkFwQxgiIpIoY5Nxwc99/Pixzh0XExISEB8fj1KlSsHf3x8RERGYMWMGgoODERgYiIkTJ8LHx0dnrbmlMZETEZFEWT6Rnzx5Em+//bb2eWRkJACgX79+WLVqFT799FNkZGRg8ODBePToEZo0aYLdu3fD0dHRiDiNw0RORGYlQIbn9m5Q2zkDr46rmrbn0zSeer75GIuz3OQsuVwNe/vnel9VUdGiRYt872sP5MwNmDZtGqZNm2bBqF6PiZyIzCbbvgxuew9Fpkt9wM4ewCvZIcMqYb1egoO1I8iDpWYFCgAEFC+eBm/vFDg4PLPQdfOjhnF/7alNFYikMZETkVloZPZIKP815K6B8HFzhINcv0EOJ6uE9noO0pshDpS0yFUEQUB2thp37xZHQkJxBAdfhp2dNTf/tHzXui1iIicis8gu5g2NQ2n4uTuieH6NXCku51VIcTGP5dYzKpVAsWJyXL/+BNnZxeDoaPzuamReTOREZB4yO0Amg10RHWu1ZXZ2MuQMg1j7y2OLXAwmciIikigmcjGk2IdEREREIrFFTkREEqWGcTPPi8asdYNa5AsXLkRAQAAcHR3RqFEjHD9+3NRxERFZ1d27DzB06FT4+7eEQlELXl5N0bbtIBw9ehoAIJNVxU8/7TXJtRITkyGTVUV8/AWT1Fd45C4/M/RRNBJ5gVvkGzduRGRkJJYsWYJGjRohJiYGbdu2xaVLl+Dh4WGOGImoiFOrgcNHnHE7pRi8vZ6haZN0yM18b5P//GcUsrOfYfXqKJQv74vU1PuIizuG+/cfmfQ6prjnNhVtBU7k0dHRGDRoEAYMGAAAWLJkCX7++WesWLEC48ePN3mARFS0bf3JDaPG+ONm8os1bL5lszHv6xvo1vWRWa756JEKhw+fwoEDq9G8eQMAQLlyZdGwYU0AQEBAGADg3XdH/vuaDxIT9+Lq1RuIjJyNY8f+REZGJqpUCUJUVATCwkK0dQcEhOHDD/+Df/65jp9+ikO3bq2xevVPAIA6df4DAGjevAEOHFhtlvdmWzjZTYwCda1nZ2fj1KlTCAsLe1GBnR3CwsLw+++/53lOVlYWVCqVzoOISIytP7mhe+8g3EzWXUedfKsYuvcOwtaf3Mxy3RIliqNEieL46ac4ZGXpt5hPnNgEAFi5ciZu3z6off74cSbat2+GuLgVOHNmC955pwk6dQrHjRu3dM6fM2clatWqhDNntmDixI9x/PhGAMDevd/h9u2D2Lp1nlnel+2R1t3PpKpAifzevXtQq9Xw9NTdi9jT0xMpKSl5nhMVFQVXV1ftw8/Pz/BoiajIUKuBUWP8kbPtte56ZkHIeR4x1g9qMwyD2tvbY9WqWVi9+ie4uTVCaGhffPbZXPz55yUAQJkypQAAbm7O8PIqo31eq1ZlDBnyHqpXD0ZwcACmTx+JoCA/7NixX6f+li0bYcyYAQgK8kdQkL/2fHd3N3h5lUGpUm6mf1M2iYlcDLMvP5swYQLS0tK0j6SkJHNfkogKgcNHnP/tTs97UxJBkCHppgKHj5hnH/L//KcNbt06iB07FuKdd5rgwIETqFu3O1at2pbvOY8fZ2Ds2C9RpUpHuLk1QokS9XDhwjXcuHFb57j69auZJWYqmgo0Rl66dGnI5XKkpqbqlKempsLLyyvPcxQKBRQKKe7DSERSdjtF3LakYo8zhKOjAq1bh6B16xBMnDgUH300EZMnL0D//u/mefzYsV8hNvZ3zJnzCSpU8IdSqUD37hHIzta9+YiTU3GzxVy48KYpYhSoRe7g4IB69eohLi5OW6bRaBAXF4fGjRubPDgiKrq8vcTdeUvscaZQtWoQMjKeAACKFbOHWq3Ref3o0TPo378r3n03DDVqVISXV2kkJt7KqyodDg45f4y8Wh+xa12MAnetR0ZGYvny5Vi9ejUuXLiAoUOHIiMjQzuLnYjIFJo2SYdv2WzIZHnffUsmE+Dnm4WmTdJNfu379x+hZcsBWLNmB/788xISEm7ixx9348svv0OXLi0BAAEBZREXdwwpKXfx8GEaACA4uBy2bo1FfPwFnD17EX36fAqN5s3J2cOjFJRKR+zefRipqfeQlmb690SFV4ET+XvvvYc5c+Zg0qRJqF27NuLj47F79269CXBERMaQy4F5X98AAL1knvs8Zk6SWdaTlyhRHI0a1cDcud+jWbP/Q/XqXTBx4nwMGtQDCxb8FwDw9defIjb2N/j5tdIuG4uOHoeSJV0REtIXnToNQ9u2oahbt+obr2dvb49vvvkMS5dugo9PC3TpMtz0b8omsUUuhkwQBIvebFalUsHV1RVpaWlwcXGx5KXf4DtrB5CHZdYOQN8NCe7iZ5rNtUxrn7UDyENLy17uqaIcEiouQaBvaTjmN4wtYp5aXuvI/XyzEDMnyTzryBVSvEl6aYte7enTZ0hISEZg4CU4OmbpvKZSPYGr6wiz/g5/kSe2w8XF8O9DpcqAq2sXCeYb0+Je60Qkad26PkKXTo8svrMbka1gIiciyZPLgRbNOW5c9HBnNzGYyImISKK4/EwM3o+ciIjIhrFFTkREEsWudTGYyImISKKYyMVgIiciIoliIheDY+REREQ2jC1yIiKSKLbIxWCLnIjIigICwhAT8721w5Co3OVnhj64/IyISBLUGjUOXD+F9X/vwYHrp6DWmP8XdErKXYwaNQsVKrSFo2NteHo2RWhoXyxevAGZmU/Mfn0isazYtf49AKX1Lq+H+5qLwn3NxZHi52RpJQH4A3gMwIjtVLde3YdRh7/GzYw72jJfJw/MazoG3YLMsYF8Bq5du4nQlh/BzdUZs6YORY3qFaBwKIZzf13Fsu+2oayHCzp3bG6aywkC8DwLyMrI/xiFaS4lngZAOoBNAFJfec2SrVy1kdcrGi1yjpETkWRtvboP3XePw6t3dkrOuIPuu8dh8zuzzZLMh42aDXu5HCd/+x5OTi8aHOXL+6JLp+bIvdfUjRspGBH5FeL2n4CdnR3eadMY86PHwtPTHQBw9epNRI6bi2PHzyMj4wmqVA5A1LRwhLVqZPKYCyeOkYvBrnUikiS1Ro1Rh7/WS+IAtGURR6JN3s1+//4j/Lr3D4R/3EMnib9MJpNBo9GgS48xePBAhYOxSxH78wJcS0jGe+9/pj3ucUYm2rcNRdyuhTjzxxq807oxOv1nDG7cSDFpzFS0sUVORJJ0+Ha8Tnf6qwQASY9Tcfh2PFqUrWey6165ehOCIKBSxXI65aXLhuHp02wAQPjHPRD2dkOcO38VCRd/gp+fFwDg+++moFqd93Di5F9oUL8aatWsiFo1K2rrmD5lKLbtOIAdPx/C8KE9TRZz4cUWuRhM5EQkSbcz7pn0OGMdP7wKGkFA3/4TkZWVjQuXEuDn66lN4gBQtUp5uLk548LFRDSoXw2PH2diyoxl+HnXUdxOuYfnz9V48iQLN5LYIheHN00Rg4mciCTJ26m0SY8Tq0KQL2QyGS5dvq5TXr68LwBA6Sh+5tnY8fMQG/cH5nwxChWC/KBUKtC99zhkZz8zacxUtHGMnIgkqal3bfg6eUCWz+syAH4lPNHUu7ZJr+vu7obWrRphwZIfkZGR/zKzKpUCkXQzFUkvta7/vnANjx6lo2qVQADA0d/Pov8HHfFul7dRo3oFeHm6I/H6bZPGW7gZs4bc2G5528FETkSSJLeTY17TMQCgl8xzn8c0iYTczoi1bflYNG8cnj9/jvoh/4eNP/6KCxcTcOlyItas+wUXLydCLrdDWKuGqFE9CH37T8LpMxdx/MRf+L8Pp6B507qoX68qACC4gh+2bt+P+LOXcPbPy+jT77/QaPKavkd5YyIXg4mciCSrW1BLbH5nNso6eeiU+5bwNNvSMwAICvLFmWNrEdayISZMXIhaDfqgfkg/zF+8CWMj3sf0yUMhk8mw/cevUbKkM5qFDUZY+3CUDyyLjWtmaeuJnj0aJd1cENLiQ3TqFom2rd9C3dqVzBJz4cRELoZMyF0QaSEqlQqurq5IS5sPFxduCPNa3BBGHG4II06YZS/3tGQ5JPRcgkCv0nDMr9HsIq4utUaNw7fjcTvjHrydSqOpd22ztMQBAM7mqdYoCieLXu7pUw0SElIRGBgDR0fdDWFUKjVcXU8hLS0NLi4iv8ACepEnJsLFxdGIep7C1XW6WWOVAk52IyLJk9vJTbrEjGwFl5+JwUROREQSxeVnYnCMnIiIyIaxRU5ERBL1HEbdcYdd60RERNbERC4Gu9aJiIhsGFvkREQkUWyRi8FETkREEsVZ62Kwa52IiMiGMZETERkooGJnxMxfZ+0wdCQmJkMmq4r4+AvWDsUEuEWrGEzkRCR9ajVw9BSwdU/Of9Xm7zJNSkrBwMHT4BPYDg7OjVEuuBNGjZmD+/cfmewaUvxDQFqYyMXgGDkRSdvOfcDnXwO37rwo8/EAZo4BOprnpinXrt1E4xYfomIFf6xfPQOBAWXx14Wr+GTCN9i153ccO7QCpUq5muXa9LLnMK69WTQSOVvkRCRdO/cBA8fpJnEAuH0np3ynee6YEx7xJRyK2ePXn+ejebN68Pf3Qru2odj7y0Ik37qDzycv1h6bnp6J3h98DqdSTVG2fHssXLJJ+5ogCJgyfRn8K3SEwiUEPoHtMDJyDgCgReshuH7jNkZ/MhcyxwaQOTYAANy//wi9P/gcZcu3R/GSTVCjXi+sX/+zTnwajQZffvkdKlRoC4WiFvz9W2LmzCX5vp/z5/9Bu3aDUaJEPXh6NsUHH4zDvXsPTfmRkRUxkRORNKnVOS3xvO7PmFv232iTd7M/eJCGPbHHMGxIdyiVunfe8vIqjb693sHGzbHIvXHkV3PXoFbNYJz5Yw3Gj+2HUWOiEbv3DwDAlm37MHf+OixdOAH/nN+KnzbNQY1qQQCArRu/hG9ZD0ybNAS3E3fhduIuAMDTp9moV7cyft42F+dPbcDgD9/FBx+Mx/Hjf2rjmDBhLr74YjkmThyKv//+H9at+wqenqXzfD+PHqnQsuUA1KlTBSdP/ojdu5ciNfU+evaMNOnnZh5qEzwKP3atE5E0HYvXb4m/TACQnJpzXKjp7oz2z5UkCIKAKpUD83y9SuVAPHyowt27OS3a0MY1Mf6T/gCAisHlcPT3s5g7fx1ahzXCjaQUeHm6I6xlIxQrZg9/fy80bFANAFCqlCvkcjmcnYvDy+tFEi5b1gNjR3+gfT5i2HvYE3cCmzbtRsOGNZGenoF5837AggX/Rb9+XQEAQUH+aNIk789gwYJ1qFOnCmbNGq0tW7FiBvz8WuLy5URUrBhg6EdlAVx+JgZb5EQkTan3THtcAeW2uN+kcaMaes8vXEwEAPTo1gpPnmShfOUuGDR0BrZt34/nz1+fmNRqNabP+hY16vVCKe9WKOHeDHv2HMWNG7cBABcuXEVWVjZatXpLVHxnz17E/v1/oESJetpH5codAABXr94QVQdJG1vkRCRN+XQVG3ycSBWCfCGTyXDhYiLe7aL/+oWLCShZ0gVlypR8Y11+fl64dG4z9u47jti44xg2aja+mvsDDsYuQ7Fief/6/Sr6B8xbuAExX0WiRvUKcHJSIuLTecjOfgYAet39b/L4cSY6dXobs2frd6V7e5cpUF2W9xyAzMjzCz+2yIlImt6qnTM7Pb/f4zIAZT1zjjMhd3c3tG7VCIuWbcaTJ091XktJuYe1G3bjve6tIZPlBHbs+HmdY479cR5VKgdonyuVjujUoRm+iR6LA78uwe/HzuHc+SsAAAeHYlCrNTrnH/39LLp0bI73+7RHrZoVUT6wLC5fTtS+HhxcDkqlI+Lijol6P3XrVsVff11BQEBZVKhQTufh5FRc7MdiJVx+JgYTORFJk1yes8QM0E/muc9nROYcZ2ILYj5BVlY22nYciUOHTyMpKQW7f/0NrTsMR1kfD8ycOlR77NHfz+LLr7/H5X+uY+GSTfhxaxxGDe8FAFj1/f/w3crtOP/XFVy7dhNr1u2CUqlAOX8vAEBAOW8cOnIGycl3cO/eIwBAcAV/xMb9gd9+P4sLFxMwJHwWUlPva6/n6KjAuHEf4tNP5+D777fj6tUbOHbsLL77bkue7yU8vA8ePEhD795jceLEOVy9egN79hzBgAGfQW2B9fhkfuxaJyLp6tgSWDE7j3XknjlJ3EzryIMr+OPk0e8xefpS9Hx/Ah48UMHL0x1dO7fA5M8/0llDPmZUX5w8fQFTZy6Hi4sTor+MQNvWjQEAbm7O+GLOakSOmwu1WoMa1Svgf1ui4e7uBgCYNmkIhgyPQlDVd5GVlQ3h6Qn8d/xAXEtIRttOI1G8uCMGD+yKrl1bIS0tXXvNiROHwt5ejkmT5uPWrTvw9i6Djz9+L8/34uPjgaNH12DcuGi0aTMIWVnZKFfOB++80wR2dlJvy7FrXQyZIHZGh4moVCq4uroiLW0+XFyUlrz0GyyzdgD6bhy3dgT69lo7gDyYZymxcaT4OYVZ9nJPS5ZDQs8lCPQqDcf8Gs0uIitTq3Nmp6feyxkTf6u2WVriAABn81RrFIWTRS/39KkGCQmpCAyMgaNjqs5rKpUarq6nkJaWBhcXsV9gwbzIE63h4lLMiHqewdU11qyxSgFb5EQkfXK5SZeYERUmTORERCRRahjXtV405gAwkRMRkUQZO8ZdNMbIpT7TgYiIiizLLj9Tq9WYOHEiAgMDoVQqERQUhOnTp4veHMha2CInIvMQBEAQ8twqnaTtRd4qWt/e7NmzsXjxYqxevRrVqlXDyZMnMWDAALi6umLkyJHWDi9fTOREZBbFMu8D6mxkPgeUZppgTuaRmakB8AzFiqVZORLLdq3/9ttv6NKlCzp0yNnCNiAgAOvXr8fx4xJcQfQSKybyVQAk9K+bS73E4VIvUc6lvvkYS6th4c9Jjgy4Oe/Ana69ATc3FJflMW1JinORnlk7gDw4ZVjkMoIAZD4B7tx7BDf5JsiTD+sflK5fZD7G/oDknK9SqXRKFQoFFAqF3tEhISFYtmwZLl++jIoVK+Ls2bM4cuQIoqOjjYzDvNgiJyKz8dq0EgBwp01noJgD9FK5lLaSyFWwrcwtw2IxCYCQDbdiO+BVfKWlLmp2fn5+Os8nT56MKVOm6B03fvx4qFQqVK5cGXK5HGq1GjNnzkTfvn0tFKlhmMiJyGxkggDvjSvgsWMDnpUsDdi9ksgbWyeu1xJ3UzHLstjnJKCY3T3I7TItdcE3eA7jxulzWuRJSUk6G8Lk1RoHgE2bNmHt2rVYt24dqlWrhvj4eERERMDHxwf9+vUzIg7zYiInIrOTP8mE/Eket8x8aPlY3ijL2gHkocj+pjZNIndxcRG1s9snn3yC8ePHo1evnL3ya9SogevXryMqKkrSiZzLz4iIiABkZmbq7T8vl8uh0WjyOUMaiuzfeUREJHWmaZGL1alTJ8ycORP+/v6oVq0azpw5g+joaAwcONCIGMyPiZyIiCTKsol8/vz5mDhxIoYNG4Y7d+7Ax8cHQ4YMwaRJk4yIwfyYyImIiAA4OzsjJiYGMTEx1g6lQJjIiYhIotQwrkUu7bFtU2EiJyIiiWIiF4OJnIiIJOo5jFtcVTQSOZefERER2TC2yImISKLYIheDiZyIiCSKiVwMdq0TERHZsAIl8qioKDRo0ADOzs7w8PBA165dcenSJXPFRkRERZoaOa1yQx9SvE+u6RUokR88eBDh4eE4duwYYmNj8ezZM7Rp0wYZGZa5Vy4RERUlxiTx3EfhV6Ax8t27d+s8X7VqFTw8PHDq1Ck0a9bMpIERERHRmxk12S0tLQ0AUKpUqXyPycrKQlbWi/sCqlQqYy5JRERFxnMAsjcelT9jNpOxHQZPdtNoNIiIiEBoaCiqV6+e73FRUVFwdXXVPvz8/Ay9JBERFSnsWhfD4EQeHh6O8+fPY8OGDa89bsKECUhLS9M+kpKSDL0kERERvcKgrvXhw4dj586dOHToEHx9fV97rEKhgEKhMCg4IiIqwgSNcb3jRaNnvWCJXBAEjBgxAtu2bcOBAwcQGBhorriIiKio08C4PV2Kxn4wBUvk4eHhWLduHbZv3w5nZ2ekpKQAAFxdXaFUKs0SIBERFVFqGLcUvGgsIy/YGPnixYuRlpaGFi1awNvbW/vYuHGjueIjIiKi1yhw1zoREZFFsEUuCm+aQkRE0sQxclF40xQiIiIbxhY5ERFJE7vWRWEiJyIiaWLXuijsWiciIrJhbJETEZE0aWBc93gRaZEzkRMRkTRxjFwUdq0TERHZMLbIiYhImjjZTRQmciIikiZ2rYvCRE5ERNLERC6K9RJ50inA2WpX17fX2gHkYZ+1A8iDBD+nc6nWjkCfFL86SPBzqiHBnyd6gyfWDoBexRY5ERFJE8fIRWEiJyIiaWLXuihcfkZERGTD2CInIiJpEmBc97hgqkCkjYmciIikiV3rorBrnYiIyIaxRU5ERNLEFrkoTORERCRNXH4mCrvWiYiIbBhb5EREJE3sWheFiZyIiKSJiVwUJnIiIpImjpGLwjFyIiIiG8YWORERSZMGxnWPF5EWORM5ERFJE7vWRWHXOhERkQ1ji5yIiKSJs9ZFYSInIiJpYiIXhV3rRERENowtciIikiZOdhOFiZyIiKSJXeuisGudiIjIhrFFTkRE0sQWuShM5EREJE0CjBvnFkwViLQxkRMRkTSxRS4Kx8iJiIhsGBM5ERFJk8YEDwkpX7487t+/r1f+6NEjlC9f3uB62bVORETSVMi61hMTE6FW6weVlZWF5ORkg+tlIiciIjKjHTt2aP9/z549cHV11T5Xq9WIi4tDQECAwfUzkRMRkTQVkhZ5165dAQAymQz9+vXTea1YsWIICAjA119/bXD9TORERCRNhWSLVo0mJ5DAwECcOHECpUuXNmn9TOREREQWkJCQoFf26NEjuLm5GVUvZ60TEZE0qU3wkJDZs2dj48aN2uc9evRAqVKlULZsWZw9e9bgepnIiYhImjQwLokb0LWenJyM999/H+7u7lAqlahRowZOnjxp/HsBsGTJEvj5+QEAYmNjsXfvXuzevRvt2rXDJ598YnC97FonIiJpsvAY+cOHDxEaGoq3334bu3btQpkyZfDPP/+gZMmSRgTxQkpKijaR79y5Ez179kSbNm0QEBCARo0aGVwvEzkRERFyur79/PywcuVKbVlgYKDJ6i9ZsiSSkpLg5+eH3bt3Y8aMGQAAQRDyXF8ulvUS+QEASqtdXd8+aweQh73WDkDfuVRrR6CPX50Nk+DPUw1+ea/3zILXMtHyM5VKpVOsUCigUCj0Dt+xYwfatm2LHj164ODBgyhbtiyGDRuGQYMGGRHEC926dUOfPn0QHByM+/fvo127dgCAM2fOoEKFCgbXyzFyIiKSJhNt0ern5wdXV1ftIyoqKs/LXbt2DYsXL0ZwcDD27NmDoUOHYuTIkVi9erVJ3s7cuXMxfPhwVK1aFbGxsShRogQA4Pbt2xg2bJjB9bJrnYiICrWkpCS4uLhon+fVGgdy1nvXr18fs2bNAgDUqVMH58+fx5IlS/Q2cjFEsWLFMHbsWL3y0aNHG1UvEzkREUmTibrWXVxcdBJ5fry9vVG1alWdsipVqmDLli1GBKHr6tWriImJwYULFwAAVatWRUREhFE3TWHXOhERSZOF15GHhobi0qVLOmWXL19GuXLljHgTL+zZswdVq1bF8ePHUbNmTdSsWRN//PGHtqvdUGyRExERIaeLOyQkBLNmzULPnj1x/PhxLFu2DMuWLTNJ/ePHj8fo0aPxxRdf6JWPGzcOrVu3NqhetsiJiEiaLHw/8gYNGmDbtm1Yv349qlevjunTpyMmJgZ9+/Y1ydu5cOECPvzwQ73ygQMH4u+//za4XrbIiYhImnJ3djPm/ALq2LEjOnbsaMRF81emTBnEx8cjODhYpzw+Ph4eHh4G18tETkREZAGDBg3C4MGDce3aNYSEhAAAjh49itmzZyMyMtLgepnIiYhImgrJbUxzTZw4Ec7Ozvj6668xYcIEAICPjw+mTJmCkSNHGlwvEzkREUmTiZafSYVMJsPo0aMxevRopKenAwCcnZ2NrpeT3YiISJoKyW1Mnzx5gh07dmiTN5CTwJ2dnaFSqbBjxw5kZWUZXD8TORERkRktW7YM8+bNy7P17eLigm+++QbffvutwfUzkRMRkTRZePmZuaxduxYRERH5vh4REWHUfu4cIyciImkqJGPk//zzD2rVqpXv6zVr1sQ///xjcP1Gtci/+OILyGSy1/6lQUREVJQ9f/4cd+/ezff1u3fv4vnz5wbXb3AiP3HiBJYuXYqaNWsafHEiIqJ8FZLJbtWqVcPevfnf6P7XX39FtWrVDK7foET++PFj9O3bF8uXL0fJkiUNvjgREVG+BBg3Pi5YPuS8DBw4ENOnT8fOnTv1Xvvf//6HmTNnYuDAgQbXb9AYeXh4ODp06ICwsDDMmDHjtcdmZWXpTKtXqVSGXJKIiMgmDR48GIcOHULnzp1RuXJlVKpUCQBw8eJFXL58GT179sTgwYMNrr/ALfINGzbg9OnTiIqKEnV8VFQUXF1dtQ8/P78CB0lEREVQIelaB4A1a9Zgw4YNqFixIi5fvoxLly6hUqVKWL9+PdavX29U3QVqkSclJWHUqFGIjY2Fo6OjqHMmTJigs4esSqViMiciojcrZFu09uzZEz179jR5vQVK5KdOncKdO3dQt25dbZlarcahQ4ewYMECZGVlQS6X65yjUCigUChMEy0RERHpKFAib9WqFc6dO6dTNmDAAFSuXBnjxo3TS+JEREQGKyTryM2tQInc2dkZ1atX1ylzcnKCu7u7XjkREZFRmMhF4c5uREQkTYVsjNxcjE7kBw4cMEEYREREZAi2yImISJoKQdd6t27dRB+7detWg67BRE5ERNKkgXHJWAJd666urma/BhM5ERGRmaxcudLs12AiJyIiaeJkN1GYyImISJoKwRj5qzZv3oxNmzbhxo0byM7O1nnt9OnTBtVp1P3IiYiISJxvvvkGAwYMgKenJ86cOYOGDRvC3d0d165dQ7t27Qyul4mciIikyZhbmBrbLW8GixYtwrJlyzB//nw4ODjg008/RWxsLEaOHIm0tDSD62UiJyIiaSpEdz8DgBs3biAkJAQAoFQqkZ6eDgD44IMPjLoDGhM5ERGRBXh5eeHBgwcAAH9/fxw7dgwAkJCQAEEQDK6XiZyIiKSpkLXIW7ZsiR07dgDIueHY6NGj0bp1a7z33nt49913Da6Xs9aJiEiaCtnys2XLlkGjyQkqPDwc7u7u+O2339C5c2cMGTLE4Hqtl8gPAShmtavr22vtAPSdS7V2BPr2WTuAPEjwq5Pk50QiSfDfXQ0p/ZBbMjkWgp3dXmZnZwc7uxcd4b169UKvXr2Mr9foGoiIiOiNdu/ejSNHjmifL1y4ELVr10afPn3w8OFDg+tlIiciImkqZGPkn3zyCVQqFQDg3LlziIyMRPv27ZGQkIDIyEiD6+UYORERSVMhGyNPSEhA1apVAQBbtmxBp06dMGvWLJw+fRrt27c3uF62yImIiCzAwcEBmZmZAIC9e/eiTZs2AIBSpUppW+qGYIuciIikSQ3jmpsS61oPDQ1FZGQkQkNDcfz4cWzcuBEAcPnyZfj6+hpcL1vkREQkTYVsi9aFCxeiWLFi2Lx5MxYvXoyyZcsCAHbt2oV33nnH4HrZIiciIjKz58+f48CBA1i+fDm8vLx0Xps7d65RdbNFTkRE0lSIZq3b29vj448/RlZWlsnrZiInIiJpKkSJHAAaNmyIM2fOmLxedq0TERFZwLBhwzBmzBjcvHkT9erVg5OTk87rNWvWNKheJnIiIpImAcZNWDP8hmJmkbsd68iRI7VlMpkMgiBAJpNBrTasC4GJnIiIpEkNQGbk+RKSkJBglnqZyImISJoKWSIvV66cWerlZDciCRJgBzWa4zl6QY3mEPhPlahQ+OGHHxAaGgofHx9cv34dABATE4Pt27cbXCd/OxBJzHO8i6dIRBYOIBvrkYUDeIpEPMe71g6NyLIK2YYwixcv1t4o5dGjR9oxcTc3N8TExBhcLxM5kYQ8x7vIxmYIKKtTLqAssrGZyZyKlkK2/Gz+/PlYvnw5Pv/8c8jlcm15/fr1ce7cOYPrZSInkggBdniGef8+e/WfZs7zZ4hhNzuRjUpISECdOnX0yhUKBTIyMgyul78RiCRCg6YQ4If8/1naQYA/NGhqybCIrKeQda0HBgYiPj5er3z37t2oUqWKwfVy1jqRRAjwNulxRDavkM1aj4yMRHh4OJ4+fQpBEHD8+HGsX78eUVFR+Pbbbw2ul4mcSCJkuG3S44hIWj766CMolUr897//RWZmJvr06QMfHx/MmzdPu1mMIZjIiSTCDochQ9K/E93y6l7XQIabsMNhS4dGZB0aGNeqlljXOgD07dsXffv2RWZmJh4/fgwPDw+j6+QYOZFEyKBBMYz699mrv4FynhdDBGRS/O1EZA6FbIx8xowZ2t3dihcvbpIkDjCRE0mKPbbBAd0hQ7JOuQw34YDusMc2K0VGRMb68ccfUaFCBYSEhGDRokW4d++eSeplIieSGHtsgyMCoEALOKA3FGgBRwQyiVPRU8jWkZ89exZ//vknWrRogTlz5sDHxwcdOnTAunXrkJmZaXC9TOREEiSDBnIchD02QI6D7E6noqmQJXIAqFatGmbNmoVr165h//79CAgIQEREBLy8vAyuk5PdiIhImjQwbvmZxP/+dXJyglKphIODA9LT0w2uhy1yIiIiC0lISMDMmTNRrVo11K9fH2fOnMHUqVORkpJicJ1skRMRkTQZ2zUusa71t956CydOnEDNmjUxYMAA9O7dG2XLln3ziW/ARE5ERNJUyLrWW7VqhRUrVqBq1aomrZeJnIiIyAJmzpxplnqZyImISJqMbVFLrEUOADdv3sSOHTtw48YNZGdn67wWHR1tUJ1M5EREJE1qAIIR50sskcfFxaFz584oX748Ll68iOrVqyMxMRGCIKBu3boG18tZ60RERBYwYcIEjB07FufOnYOjoyO2bNmCpKQkNG/eHD169DC4XiZyIiKSJivvtf7FF19AJpMhIiLCuIr+deHCBfzf//0fAMDe3h5PnjxBiRIlMG3aNMyePdvgepnIiYhImqy4s9uJEyewdOlS1KxZ0/BKXuHk5KQdF/f29sbVq1e1rxmz7zoTORERFWoqlUrnkZWV9drjHz9+jL59+2L58uUoWbKkyeJ46623cOTIEQBA+/btMWbMGMycORMDBw7EW2+9ZXC91pvs1gyA0mpXtwk19lo7gjykWjsAMtT/BGNmDZnHOZkxi4TNo4antSPIQ5i1A3jJMwCbLHQtE0128/Pz0ymePHkypkyZku9p4eHh6NChA8LCwjBjxgwjAtAVHR2Nx48fAwCmTp2Kx48fY+PGjQgODjZ4xjrAWetERCRVJlp+lpSUBBcXF22xQqHI95QNGzbg9OnTOHHihJEX16VWq3Hz5k1tV72TkxOWLFlikrqZyImISJo0MK5F/u+5Li4uOok8P0lJSRg1ahRiY2Ph6OhoxIX1yeVytGnTBhcuXICbm5tJ6+YYOREREYBTp07hzp07qFu3Luzt7WFvb4+DBw/im2++gb29PdRq4zZvr169Oq5du2aiaF9gi5yIiKTJ2L3WC9iab9WqFc6dO6dTNmDAAFSuXBnjxo2DXC43IhhgxowZGDt2LKZPn4569erByclJ53UxvQZ5YSInIiJpUsOiidzZ2RnVq1fXKXNycoK7u7teeUFMmzYNY8aMQfv27QEAnTt3huyliZ6CIEAmkxnc4mciJyIiMqOpU6fi448/xv79+81SPxM5ERFJk4Vb5Hk5cOCA0XUI/y79bN68udF15YWJnIiIpMnCY+TmJDPjnglM5ERERGZWsWLFNybzBw8eGFQ3EzkREUmTBLrWTWXq1KlwdXU1S91M5EREJE2FKJH36tULHh4eZqmbG8IQERGZkTnHxwG2yImISKoESKpVbSjBzDcsYiInInHUauDwYeD2bcDbG2jaFDBypyui1zHyluJGnWtKGo2xd395vQJ3rScnJ+P999+Hu7s7lEolatSogZMnT5ojNiKSiq1bgYAA4O23gT59cv4bEJBTTmQmahM8ioICtcgfPnyI0NBQvP3229i1axfKlCmDf/75x6Q3Xiciidm6FejeHXi1ezA5Oad882agWzfrxEZEBUvks2fPhp+fH1auXKktCwwMNHlQRCQRajUwapR+EgdyymQyICIC6NKF3exkchoYd0ty83ZoS0eButZ37NiB+vXro0ePHvDw8ECdOnWwfPny156TlZUFlUql8yAiG3H4MHDzZv6vCwKQlJRzHJGJsWtdnAIl8mvXrmHx4sUIDg7Gnj17MHToUIwcORKrV6/O95yoqCi4urpqH35+fkYHTUQWcvu2aY8jIpMrUCLXaDSoW7cuZs2ahTp16mDw4MEYNGgQlixZku85EyZMQFpamvaRlJRkdNBEZCHe3qY9jqgANCZ4FAUFSuTe3t6oWrWqTlmVKlVw48aNfM9RKBRwcXHReRCRjWjaFPD1zRkLz4tMBvj55RxHZGLsWhenQIk8NDQUly5d0im7fPkyypUrZ9KgiEgi5HJg3ryc/381mec+j4nhRDciKypQIh89ejSOHTuGWbNm4cqVK1i3bh2WLVuG8PBwc8VHRNbWrVvOErOyZXXLfX259IzMSgPjWuNFpWu9QMvPGjRogG3btmHChAmYNm0aAgMDERMTg759+5orPiKSgm7dcpaYcWc3siAuPxOnwFu0duzYER07djRHLEQkZXI50KKFtaMgoldwr3UiIpKkwrLXurkxkRMRkSQxkYvDRE5ERJLEMXJxCnz3MyIiIpIOtsiJiEiS2LUuDhM5ERFJErvWxWHXOhERkQ1ji5yIiCQpd2c3Y84vCpjIiYhIkjhGLg671omIiGwYW+RERCRJnOwmjvUSeQsAzla7Ohmoxl5rR5CHVGsHYBvO5XdPcSuqIQjWDkHf+9L7nNDS2gG85AmATZa5FLvWxWHXOhERkQ1j1zoREUkSW+TiMJETEZEkcYxcHCZyIiKSJLbIxeEYORERkQ1ji5yIiCRJgHHd4xJcE2EWTORERCRJ7FoXh13rRERENowtciIikiS2yMVhIiciIkni8jNx2LVORERkw9giJyIiSWLXujhM5EREJElM5OIwkROR7VKrgcOHgdu3AW9voGlTQC63dlREFsVETkS2aetWYNQo4ObNF2W+vsC8eUC3btaLi0yGk93E4WQ3IrI9W7cC3bvrJnEASE7OKd+61TpxkUlp8KJ73ZAHEzkRkRSp1TktcSGPDThzyyIico4jm6YxwaMoYCInItty+LB+S/xlggAkJeUcR1QEcIyciGzL7dumPY4ki7PWxWEiJyLb4u1t2uNIspjIxWHXOhHZlqZNc2any2R5vy6TAX5+OccRFQFM5ERkW+TynCVmgH4yz30eE8P15IUAJ7uJw0RORLanWzdg82agbFndcl/fnHKuIy8UjFl6Zmy3vC3hGDkR2aZu3YAuXbizGxV5TOREZLvkcqBFC2tHQWbCyW7iMJETEZEkCTBunDuPLYMKJY6RExER2TC2yImISJLYtS4OEzkREUkS734mDhM5ERFJElvk4nCMnIiIyIaxRU5ERJLEFrk4TORERCRJHCMXh13rREREAKKiotCgQQM4OzvDw8MDXbt2xaVLl6wd1hsxkRMRkSRZeq/1gwcPIjw8HMeOHUNsbCyePXuGNm3aICMjwyTvx1zYtU5ERJKkgXHj3Lld6yqVSqdcoVBAoVDoHb97926d56tWrYKHhwdOnTqFZs2aGRGJeVkvkfvVA1wkdHODsOPWjoAMVGOvtSPIQ6q1A9BXw9PaEeTh/XzuKW5NLa0dQB7CrB3AS9KtHUDB+fn56TyfPHkypkyZ8sbz0tLSAAClSpUyR1gmwxY5ERFJkqkmuyUlJcHFxUVbnldrXO9cjQYREREIDQ1F9erVjYjC/JjIiYhIkky1/MzFxUUnkYsRHh6O8+fP48iRI0ZEYBlM5ERERC8ZPnw4du7ciUOHDsHX19fa4bwREzkREUmSpdeRC4KAESNGYNu2bThw4AACAwONuLrlMJETEZEkWXpnt/DwcKxbtw7bt2+Hs7MzUlJSAACurq5QKpVGRGJeXEdORESSZOl15IsXL0ZaWhpatGgBb29v7WPjxo0meT/mwhY5ERERcrrWbRETORERSRL3WheHiZyIiCTJVDu7FXYcIyciIrJhbJETEZEk8X7k4jCRExGRJHGMXBx2rRMREdkwtsiJiExILQCHs4DbasBbDjRVAHIJ3uTNFrBrXZwCtcjVajUmTpyIwMBAKJVKBAUFYfr06Ta79o6IyJS2ZgIBt4G37wJ9HuT8N+B2TjkVnMYEj6KgQC3y2bNnY/HixVi9ejWqVauGkydPYsCAAXB1dcXIkSPNFSMRkeRtzQS63wdebdYkq3PKNwPoVtwakVFhV6BE/ttvv6FLly7o0KEDACAgIADr16/H8ePHzRIcEZEtUAvAqEf6SRzIKZMBiHgEdFGym70g2LUuToG61kNCQhAXF4fLly8DAM6ePYsjR46gXbt2+Z6TlZUFlUql8yAiKkwOZwE3X5M1BABJ6pzjSDxL77VuqwrUIh8/fjxUKhUqV64MuVwOtVqNmTNnom/fvvmeExUVhalTpxodKBGRVN0WmTHEHkc5BBg3zl1UZm8VqEW+adMmrF27FuvWrcPp06exevVqzJkzB6tXr873nAkTJiAtLU37SEpKMjpoIiIp8Zab9jiigihQi/yTTz7B+PHj0atXLwBAjRo1cP36dURFRaFfv355nqNQKKBQKIyPlIhIopoqAF95zsS2vFqBMuS83pS/CguEY+TiFKhFnpmZCTs73VPkcjk0mqIyyZ+ISJ9cBsxzy/n/V+ey5T6PceNEt4LiGLk4BWqRd+rUCTNnzoS/vz+qVauGM2fOIDo6GgMHDjRXfERENqFb8ZwlZqMe6U5885XnJHEuPSNzKVAinz9/PiZOnIhhw4bhzp078PHxwZAhQzBp0iRzxUdEZDO6Fc9ZYsad3UyDe62LU6BE7uzsjJiYGMTExJgpHCIi2yaXAS0crR1F4cAxcnF40xQiIiIbxpumEBGRJLFrXRwmciIikiR2rYvDrnUiIiIbxhY5ERFJkgbGtarZtU5ERGRFHCMXh4mciIgkSQ3jxn85Rk5ERESSxxY5ERFJElvk4jCRExGRJHGMXBx2rRMREdkwK7bI+wNQWu/yr/K3dgB5CDtu7QjIQDX2WjuCPIRZO4A8tLR2AHmQ4ufk39DaEbygUgM4ZZFLsWtdHHatExGRJLFrXRx2rRMREdkwtsiJiEiSuLObOEzkREQkSWoAMiPPLwrYtU5ERGTD2CInIiJJ4mQ3cZjIiYhIkti1Lg4TORERSRITuTgcIyciIrJhbJETEZEkcYxcHCZyIiKSJHati8OudSIiIhvGFjkREUmSAOO6xwVTBSJxTORERCRJxnaNs2udiIiIJI8tciIikiS2yMVhIiciIknSwLhZ60Vl+Rm71omIiGwYW+RERCRJ7FoXh4mciIgkiYlcHCZyIiKSJI6Ri8MxciIiIhvGFjkREUmSsS3qotIiZyInIiJJYiIXh13rRERENowtciIikiQ1jLvxSVFpkTORExGRJDGRi8OudSIiIhvGFjkREUkSJ7uJw0RORESSxK51cdi1TkREZMPYIiciIknSwLgWuTHn2hK2yImISJI0JngYYuHChQgICICjoyMaNWqE48ePG/U+zI2JnIiIJEltgkdBbdy4EZGRkZg8eTJOnz6NWrVqoW3btrhz547R78dcmMiJiIj+FR0djUGDBmHAgAGoWrUqlixZguLFi2PFihXWDi1fFh8jF4ScUQuV6omlL/0GErxzbbq1A8iD1L42AHhm7QDyIMXpslL8nKT48yTFf3cq6fx+Uv0bS+7vcnNSw7jbmOZGqFKpdMoVCgUUCoXe8dnZ2Th16hQmTJigLbOzs0NYWBh+//13IyIxL4sn8vT0nH8lfn6fWvrSREXbJmsHkAcpxiRJp6wdgJ709HS4urqapW4HBwd4eXkhJSXF6LpKlCgBPz8/nbLJkydjypQpesfeu3cParUanp6eOuWenp64ePGi0bGYi8UTuY+PD5KSkuDs7AyZzPC/tVQqFfz8/JCUlAQXFxcTRli48HMSh5+TOPycxCnMn5MgCEhPT4ePj4/ZruHo6IiEhARkZ2cbXZcgCHq5Jq/WuC2zeCK3s7ODr6+vyepzcXEpdP9QzIGfkzj8nMTh5yROYf2czNUSf5mjoyMcHR3Nfp2XlS5dGnK5HKmpqTrlqamp8PLysmgsBcHJbkRERMjp0q9Xrx7i4uK0ZRqNBnFxcWjcuLEVI3s9bghDRET0r8jISPTr1w/169dHw4YNERMTg4yMDAwYMMDaoeXLZhO5QqHA5MmTC91Yh6nxcxKHn5M4/JzE4edku9577z3cvXsXkyZNQkpKCmrXro3du3frTYCTEplgiTUEREREZBYcIyciIrJhTOREREQ2jImciIjIhjGRExER2TAmciIiIhtms4nc1u4Xa2lRUVFo0KABnJ2d4eHhga5du+LSpUvWDkvSvvjiC8hkMkRERFg7FMlJTk7G+++/D3d3dyiVStSoUQMnT560dliSolarMXHiRAQGBkKpVCIoKAjTp0+3yM1FqGizyURui/eLtbSDBw8iPDwcx44dQ2xsLJ49e4Y2bdogIyPD2qFJ0okTJ7B06VLUrFnT2qFIzsOHDxEaGopixYph165d+Pvvv/H111+jZMmS1g5NUmbPno3FixdjwYIFuHDhAmbPno0vv/wS8+fPt3ZoVMjZ5DryRo0aoUGDBliwYAGAnC30/Pz8MGLECIwfP97K0UnT3bt34eHhgYMHD6JZs2bWDkdSHj9+jLp162LRokWYMWMGateujZiYGGuHJRnjx4/H0aNHcfjwYWuHImkdO3aEp6cnvvvuO23Zf/7zHyiVSqxZs8aKkVFhZ3Mt8tz7xYaFhWnLbOF+sdaWlpYGAChVqpSVI5Ge8PBwdOjQQednil7YsWMH6tevjx49esDDwwN16tTB8uXLrR2W5ISEhCAuLg6XL18GAJw9exZHjhxBu3btrBwZFXY2t0Wrrd4v1po0Gg0iIiIQGhqK6tWrWzscSdmwYQNOnz6NEydOWDsUybp27RoWL16MyMhIfPbZZzhx4gRGjhwJBwcH9OvXz9rhScb48eOhUqlQuXJlyOVyqNVqzJw5E3379rV2aFTI2Vwip4ILDw/H+fPnceTIEWuHIilJSUkYNWoUYmNjLX67RFui0WhQv359zJo1CwBQp04dnD9/HkuWLGEif8mmTZuwdu1arFu3DtWqVUN8fDwiIiLg4+PDz4nMyuYSua3eL9Zahg8fjp07d+LQoUMmvQ98YXDq1CncuXMHdevW1Zap1WocOnQICxYsQFZWFuRyuRUjlAZvb29UrVpVp6xKlSrYsmWLlSKSpk8++QTjx49Hr169AAA1atTA9evXERUVxUROZmVzY+S2er9YSxMEAcOHD8e2bduwb98+BAYGWjskyWnVqhXOnTuH+Ph47aN+/fro27cv4uPjmcT/FRoaqrd08fLlyyhXrpyVIpKmzMxM2Nnp/kqVy+XQaDRWioiKCptrkQO2eb9YSwsPD8e6deuwfft2ODs7IyUlBQDg6uoKpVJp5eikwdnZWW/OgJOTE9zd3TmX4CWjR49GSEgIZs2ahZ49e+L48eNYtmwZli1bZu3QJKVTp06YOXMm/P39Ua1aNZw5cwbR0dEYOHCgtUOjwk6wUfPnzxf8/f0FBwcHoWHDhsKxY8esHZKkAMjzsXLlSmuHJmnNmzcXRo0aZe0wJOd///ufUL16dUGhUAiVK1cWli1bZu2QJEelUgmjRo0S/P39BUdHR6F8+fLC559/LmRlZVk7NCrkbHIdOREREeWwuTFyIiIieoGJnIiIyIYxkRMREdkwJnIiIiIbxkRORERkw5jIiYiIbBgTORERkQ1jIiciIrJhTOREREQ2jImciIjIhjGRExER2bD/B4a0v6PqTbRxAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "**Visualization 5. 3D Surface Plot of Pathfinding Costs**\n", + "\n", + "For a different perspective, a 3D surface plot of traversal costs shows how costs vary across the grid, highlighting areas where pathfinding is more challenging due to obstacles or distance." + ], + "metadata": { + "id": "IHPLqUme5eAJ" + } + }, + { + "cell_type": "code", + "source": [ + "from mpl_toolkits.mplot3d import Axes3D\n", + "\n", + "def visualize_cost_surface(start, goal, obstacles, grid_width, grid_height):\n", + " # Generate cost grid with A* similar to previous heatmap code\n", + " cost_grid = np.full((grid_width, grid_height), np.inf)\n", + " open_set = [(0, start)]\n", + " g_score = {start: 0}\n", + "\n", + " while open_set:\n", + " _, current = heapq.heappop(open_set)\n", + " cost_grid[current[0], current[1]] = g_score[current]\n", + "\n", + " for direction in [(1, 0), (0, 1), (-1, 0), (0, -1)]:\n", + " neighbor = (current[0] + direction[0], current[1] + direction[1])\n", + " if neighbor in obstacles or not (0 <= neighbor[0] < grid_width and 0 <= neighbor[1] < grid_height):\n", + " continue\n", + " tentative_g_score = g_score[current] + 1\n", + " if tentative_g_score < g_score.get(neighbor, np.inf):\n", + " g_score[neighbor] = tentative_g_score\n", + " heapq.heappush(open_set, (tentative_g_score, neighbor))\n", + "\n", + " # Create 3D surface plot\n", + " x, y = np.meshgrid(range(grid_width), range(grid_height))\n", + " fig = plt.figure(figsize=(10, 7))\n", + " ax = fig.add_subplot(111, projection='3d')\n", + " ax.plot_surface(x, y, cost_grid.T, cmap=\"viridis\", edgecolor=\"none\")\n", + "\n", + " # Add start, goal, and obstacles\n", + " ax.scatter(start[1], start[0], g_score[start], color='blue', s=50, label=\"Start\")\n", + " ax.scatter(goal[1], goal[0], g_score.get(goal, np.inf), color='green', s=50, label=\"Goal\")\n", + " for obs in obstacles:\n", + " ax.scatter(obs[1], obs[0], 0, color='red', s=50, label=\"Obstacle\" if obs == obstacles[0] else \"\")\n", + "\n", + " ax.set_xlabel('X Coordinate')\n", + " ax.set_ylabel('Y Coordinate')\n", + " ax.set_zlabel('Pathfinding Cost')\n", + " ax.set_title(\"3D Pathfinding Cost Surface\")\n", + " plt.legend()\n", + " plt.show()\n", + "\n", + "# Test 3D cost surface visualization\n", + "start = (5, 5)\n", + "goal = (8, 8)\n", + "obstacles = [(6, 6), (7, 7)]\n", + "visualize_cost_surface(start, goal, obstacles, grid_width=10, grid_height=10)\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 654 + }, + "id": "kTl56T9u5VBY", + "outputId": "b6978a02-fdd4-488a-c420-7cf0ec27899f" + }, + "execution_count": 14, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/mpl_toolkits/mplot3d/proj3d.py:180: RuntimeWarning: invalid value encountered in divide\n", + " txs, tys, tzs = vecw[0]/w, vecw[1]/w, vecw[2]/w\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAJFCAYAAAA/C+bXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3hb5f327yPJljVsy3vFO07sOM5OSGxIGAkQaBqgFAptWW2hhbes0jJaWsav0JYWaEtZpWWUAqXQQAJlhEAgZC/vvfeUZFtbOud5/3CPkGzZPpKOhu3nc11cbSzpOY/WObe+62YIIQQUCoVCoVAo8wxJqDdAoVAoFAqFEgioyKFQKBQKhTIvoSKHQqFQKBTKvISKHAqFQqFQKPMSKnIoFAqFQqHMS6jIoVAoFAqFMi+hIodCoVAoFMq8hIocCoVCoVAo8xIqcigUCoVCocxLqMihUILE2WefjeXLlwu678DAAC6//HIkJCSAYRg8+eST2L9/PxiGwf79+0Xbk6c1r7vuOuTk5Ih2DIo4PPbYY8jLy4NUKsWqVatCvR0KZU5ARQ4lrKipqcE3v/lN5OXlQalUIjExEZs3b8aePXum3Pfss88GwzBgGAYSiQQxMTFYunQpvvvd72Lv3r2Cj3ndddc512EYBjExMVi5ciX+8Ic/wGq1erX/3t5ePPDAAygvL/fqcZO544478NFHH+Hee+/FP/7xD1x44YV+rTfX2LVrF7Zv347ExERERkYiPT0dV1xxBT799NOAHO/QoUN44IEHoNfrBT9mz5492LJlC5KTk6FUKpGXl4crrrgCH374oej7+/jjj/Gzn/0MZWVlePHFF/HII4+IfgwKZT4iC/UGKBRXOjo6MD4+jmuvvRbp6ekwmUx4++238fWvfx3PPfccbrzxRrf7L1q0CI8++igAwGg0orm5Gf/5z3/w6quv4oorrsCrr76KiIiIWY8rl8vxwgsvAAD0ej3efvtt3HXXXTh+/DjeeOMNwfvv7e3Fgw8+iJycHL9+bX/66afYuXMn7rrrLufflixZArPZjMjISJ/XFcJf//pXcBwX0GNMByEEN9xwA1566SWsXr0ad955J1JTU9HX14ddu3bhvPPOw8GDB1FaWirqcQ8dOoQHH3wQ1113HTQazaz3//3vf4+f/vSn2LJlC+69914olUo0Nzfjk08+wRtvvCG6KP30008hkUjwt7/9LeDvP4UyryAUSpjjcDjIypUrydKlS93+vmXLFlJcXOzx/jfffDMBQH72s5/Nuv61115LVCqV299YliXr1q0jAEhPT4/gvR4/fpwAIC+++OKU26bbrycYhiG33HKL4OP6ymeffUYAkM8++yzgxxLCY489RgCQ22+/nXAcN+X2V155hRw9ejRgx21ra5v1vna7ncTExJBt27Z5vH1gYEC0fRmNRkIIIddff/2UzyiFQpkdmq6ihD1SqRSZmZmCUwlSqRR/+tOfsGzZMjz11FMYHR31+pgSiQRnn302AKC9vR1arRZ33XUXSkpKoFarERMTg+3bt6OiosL5mP3792P9+vUAgOuvv96Z/nrppZfc1q6trcU555wDpVKJjIwM/O53v3Pe9tJLL4FhGBBC8Je//MW5Br/+5PoZvs5npjV5uru7cckll0ClUiE5ORl33HGHx3Tc5Jqc9vZ2MAyD3//+93j++eeRn58PuVyO9evX4/jx41Me/+9//xvLli1DVFQUli9fjl27dgmq8zGbzXj00UdRWFiI3//+987n7cp3v/tdbNiwwfnv1tZWfPOb30R8fDyUSiU2btyI999/f8rj/vznP6O4uBhKpRJxcXFYt24dXnvtNQDAAw88gJ/+9KcAgNzcXOdr3t7e7nGfw8PDGBsbQ1lZmcfbk5OTnf+ffz8nrzXTe3ny5Els3rwZSqUS9913HxiGwYsvvgij0TjlM/Xiiy/i3HPPRXJyMuRyOZYtW4ZnnnnG474++OADbNmyBdHR0YiJicH69eudrwHP0aNHceGFFyI2NhZKpRJbtmzBwYMHPa5HocwFaLqKEpYYjUaYzWaMjo5i9+7d+OCDD3DllVcKfrxUKsVVV12F+++/H19++SUuvvhir/fQ0tICAEhISEBrayveeecdfPOb30Rubi4GBgbw3HPPYcuWLaitrUV6ejqKiorw0EMP4Ze//CVuvPFGnHXWWQDgllrR6XS48MILcdlll+GKK67AW2+9hbvvvhslJSXYvn07Nm/ejH/84x/47ne/i23btuGaa66ZdZ+zrQlMCIjzzjsPnZ2duPXWW5Geno5//OMfXtW4vPbaaxgfH8dNN90EhmHwu9/9DpdddhlaW1udKcH3338fV155JUpKSvDoo49Cp9Phe9/7HjIyMmZd/8svv4RWq8Xtt98OqVQ66/0HBgZQWloKk8mEW2+9FQkJCXj55Zfx9a9/HW+99RYuvfRSABPpt1tvvRWXX345brvtNlgsFlRWVuLo0aO4+uqrcdlll6GxsRGvv/46nnjiCSQmJgIAkpKSPB43OTkZCoUCe/bswY9//GPEx8cLfQlnZWRkBNu3b8e3vvUtfOc730FKSgrWrVuH559/HseOHXOmVPnP1DPPPIPi4mJ8/etfh0wmw549e3DzzTeD4zjccsstznVfeukl3HDDDSguLsa9994LjUaD06dP48MPP8TVV18NYCIltn37dqxduxa/+tWvIJFInCLqwIEDbuKSQpkzhDqURKF44qabbiIACAAikUjI5ZdfTrRardt9Zkv/7Nq1iwAgf/zjH2c8Fp+uGhoaIkNDQ6S5uZk88sgjhGEYsmLFCkIIIRaLhbAs6/a4trY2IpfLyUMPPeT822zpKgDklVdecf7NarWS1NRU8o1vfMPtvgCmpKs8pZaErvnkk08SAOTNN990/s1oNJLFixdPWfPaa68l2dnZbs8TAElISHB7D959910CgOzZs8f5t5KSErJo0SIyPj7u/Nv+/fsJALc1PfHHP/6RACC7du2a8X48t99+OwFADhw44Pzb+Pg4yc3NJTk5Oc73a+fOnbOmCb1JVxFCyC9/+UsCgKhUKrJ9+3by61//mpw8eXLK/V588UWP6870Xj777LNT1vGUUiWEEJPJNOVvF1xwAcnLy3P+W6/Xk+joaHLGGWcQs9nsdl8+JchxHCkoKCAXXHCBW5rQZDKR3NzcaVNzFEq4Q9NVlLDk9ttvx969e/Hyyy9j+/btYFkWNpvNqzXUajUAYHx8fNb7Go1GJCUlISkpCYsXL8Z9992HTZs2YdeuXQAmCpMlkomvC8uyGBkZgVqtxtKlS3Hq1Cmv9vSd73zH+e/IyEhs2LABra2t3jw1r9f873//i7S0NFx++eXOvymVyimF3DNx5ZVXIi4uzvlvPlLFH6e3txdVVVW45pprnK89AGzZsgUlJSWzrj82NgYAiI6OFrSf//73v9iwYQPOPPNM59/UajVuvPFGtLe3o7a2FgCg0WjQ3d3tMbXmKw8++CBee+01rF69Gh999BF+/vOfY+3atVizZg3q6up8Xlcul+P6668XfH+FQuH8/6OjoxgeHsaWLVvQ2trqTNPu3bsX4+PjuOeeexAVFeX2eD4lWF5ejqamJlx99dUYGRnB8PAwhoeHYTQacd555+GLL74IWTE6heIPVORQwpLCwkJs3boV11xzDd577z0YDAbs2LEDhBDBaxgMBgDCLppRUVHYu3cv9u7diy+++AJdXV04ePAg8vLyAAAcx+GJJ55AQUEB5HI5EhMTkZSUhMrKSq9qfhYtWjSl1iQuLg46nU7wGr6s2dHRgcWLF0+539KlSwUfJysra8oxADiP09HRAQBYvHjxlMd6+ttkYmJiAAgTpfzxPO2/qKjIbT9333031Go1NmzYgIKCAtxyyy2i1JlcddVVOHDgAHQ6HT7++GNcffXVOH36NHbs2AGLxeLTmhkZGV51Tx08eBBbt26FSqWCRqNBUlIS7rvvPgBwfi75tOtMM5qampoAANdee61T7PP/vfDCC7BarT7VtlEooYbW5FDmBJdffjluuukmNDY2Cr4wV1dXAxB2gZVKpdi6deu0tz/yyCO4//77ccMNN+Dhhx9GfHw8JBIJbr/9dq9+4U5Xa+KNeAvGmqE4TmFhIQCgqqoKl1xyiShrAhOip6GhAe+99x4+/PBDvP3223j66afxy1/+Eg8++KDf68fExGDbtm3Ytm0bIiIi8PLLL+Po0aPYsmWLx+JpYCIa6AnXyMxstLS04LzzzkNhYSEef/xxZGZmIjIyEv/973/xxBNPePW55O/72GOPTTv6wDU6R6HMFajIocwJzGYzAAj+NcmyLF577TUolUq3dIavvPXWWzjnnHPwt7/9ze3ver3eWagKYNqLWqjJzs5GdXU1CCFue2xoaBD1GADQ3Nw85TZPf5vMmWeeibi4OLz++uu47777Zi0+zs7O9rj/+vp6t/0AgEqlwpVXXokrr7wSNpsNl112GX7961/j3nvvRVRUlGjv27p16/Dyyy+jr68PwFfRrsmdgXyUyR/27NkDq9WK3bt3u0XZPvvsM7f75efnA5gQ/dMJfv4+MTExM4p9CmWuQdNVlLBicHBwyt/sdjteeeUVKBQKLFu2bNY1WJbFrbfeirq6Otx6663ONIg/SKXSKRGLf//73+jp6XH7m0qlAjD1ohZqLrroIvT29uKtt95y/s1kMuH5558X7Rjp6elYvnw5XnnlFWeqEAA+//xzVFVVzfp4pVKJu+++G3V1dbj77rs9RoheffVVHDt2DMDEczp27BgOHz7svN1oNOL5559HTk6O87MyMjLitkZkZCSWLVsGQgjsdjsA7943k8nkdkxXPvjgAwBfpQF58fDFF18478OyrCivOy8CXV+n0dFRvPjii273O//88xEdHY1HH310ShqNf+zatWuRn5+P3//+927vHc/Q0JDf+6VQQgGN5FDCiptuugljY2PYvHkzMjIy0N/fj3/+85+or6/HH/7whykh89HRUbz66qsAJi4+/MTjlpYWfOtb38LDDz8syr6+9rWv4aGHHsL111+P0tJSVFVV4Z///KezZocnPz8fGo0Gzz77LKKjo6FSqXDGGWcgNzdXlH34yg9+8AM89dRTuOaaa3Dy5EmkpaXhH//4B5RKpajHeeSRR7Bz506UlZXh+uuvh06nw1NPPYXly5d7vHhO5qc//Slqamrwhz/8AZ999hkuv/xypKamor+/H++88w6OHTuGQ4cOAQDuuecevP7669i+fTtuvfVWxMfH4+WXX0ZbWxvefvttZ6H4+eefj9TUVJSVlSElJQV1dXV46qmncPHFFzvrtdauXQsA+PnPf45vfetbiIiIwI4dO5zixxWTyYTS0lJs3LgRF154oXOG0zvvvIMDBw7gkksuwerVqwEAxcXF2LhxI+69915otVrEx8fjjTfegMPh8Pu1Pv/88xEZGYkdO3bgpptugsFgwF//+lckJyc7I0nARHTmiSeewPe//32sX78eV199NeLi4lBRUQGTyYSXX34ZEokEL7zwArZv347i4mJcf/31yMjIQE9PDz777DPExMR4tFahUMKeULV1USieeP3118nWrVtJSkoKkclkJC4ujmzdupW8++67U+7Lt9zy/6nValJQUEC+853vkI8//ljwMadrz3XFYrGQn/zkJyQtLY0oFApSVlZGDh8+TLZs2UK2bNnidt93332XLFu2jMhkMrd28ula3ie3bBPiXQu50DU7OjrI17/+daJUKkliYiK57bbbyIcffii4hfyxxx6bchwA5Fe/+pXb39544w1SWFhI5HI5Wb58Odm9ezf5xje+QQoLC6c8fjreeustcv7555P4+Hgik8lIWloaufLKK8n+/fvd7tfS0kIuv/xyotFoSFRUFNmwYQN577333O7z3HPPkc2bN5OEhAQil8tJfn4++elPf0pGR0fd7vfwww+TjIwMIpFIZmwnt9vt5K9//Su55JJLSHZ2NpHL5USpVJLVq1eTxx57jFit1il73Lp1K5HL5SQlJYXcd999ZO/evYLfS0Km/4zu3r2brFixgkRFRZGcnBzy29/+lvz973/3uP/du3eT0tJSolAoSExMDNmwYQN5/fXX3e5z+vRpctlllzlfq+zsbHLFFVeQffv2edwXhRLuMISIXJ1IoVAok1i1ahWSkpK8Mk6lUCgUf6E1ORQKRTTsdvuUVMz+/ftRUVHhtMmgUCiUYEEjORQKRTTa29uxdetWfOc730F6ejrq6+vx7LPPIjY2FtXV1UhISAj1FikUygKCFh5TKBTRiIuLw9q1a/HCCy9gaGgIKpUKF198MX7zm99QgUOhUIIOjeRQKBQKhUKZl9CaHAqFQqFQKPMSKnIoFAqFQqHMS6jIoVAoFAqFMi+hIodCoVAoFMq8hIocCoVCoVAo8xIqcigUCoVCocxLqMihUCgUCoUyL6Eih0KhUCgUyryEihwKhUKhUCjzEmrrQKFQKJQ5C8uysNvtod4GRQARERGQSqVBPSYVORQKhUKZcxBC0N/fD71eH+qtULxAo9EgNTUVDMME5XhU5FAoFAplzsELnOTkZCiVyqBdNCm+QQiByWTC4OAgACAtLS0ox6Uih0KhUChzCpZlnQKHutvPHRQKBQBgcHAQycnJQUld0cJjCoVCocwp+BocpVIZ4p1QvIV/z4JVR0VFDoVCoVDmJDRFNfcI9ntGRQ6FQqFQKJR5CRU5FAqFQqFQ5iVU5FAoFAplQWM2AwMDE/8baIaGhvCjH/0IWVlZkMvlSE1NxQUXXICDBw8CmEjnvPPOO6Icq729HQzDoLy8XJT15iJU5FAoFAplQfLll8BllwFqNZCaOvG/l10G/E9vBIRvfOMbOH36NF5++WU0NjZi9+7dOPvsszEyMiLqcWw2m6jrzVUYQggJ9SYoFAqFQhGKxWJBW1sbcnNzERUV5dMazzwD3HILIJUCDsdXf5fJAJYFnn4a+OEPRdrw/9Dr9YiLi8P+/fuxZcuWKbfn5OSgo6PD+e/s7Gy0t7ejpaUFd955J44cOQKj0YiioiI8+uij2Lp1q9tjv/e976GpqQnvvPMOLrvsMrz88stu62/ZsgX79+8X90l5iRjvnTfQSA6FQqFQFhRffjkhcAhxFzjAxL8JAW6+WfyIjlqthlqtxjvvvAOr1Trl9uPHjwMAXnzxRfT19Tn/bTAYcNFFF2Hfvn04ffo0LrzwQuzYsQOdnZ1uj//973+PlStX4vTp07j//vtx7NgxAMAnn3yCvr4+/Oc//xH3Cc0BqMihUCgUyoLi8ccnIjgzIZUCTzwh7nFlMhleeuklvPzyy9BoNCgrK8N9992HyspKAEBSUhKAr6wP+H+vXLkSN910E5YvX46CggI8/PDDyM/Px+7du93WP/fcc/GTn/wE+fn5yM/Pdz4+ISEBqampiI+PF/cJzQGoyKFQKBTKgsFsBt59d2oEZzIOB7Brl/jFyN/4xjfQ29uL3bt348ILL8T+/fuxZs0avPTSS9M+xmAw4K677kJRURE0Gg3UajXq6uqmRHLWrVsn7mbnAVTkUCgUCmXBMDYGcJyw+3LcxP3FJioqCtu2bcP999+PQ4cO4brrrsOvfvWrae9/1113YdeuXXjkkUdw4MABlJeXo6SkZEpxsUqlEn+zcxwqcigUCoWyYIiJASQCr3wSycT9A82yZctgNBoBABEREWBZ1u32gwcP4rrrrsOll16KkpISpKamor29fdZ1IyMjAWDKegsJKnIoFAqFsmBQKICdOye6qGZCJgMuvXTi/mIxMjKCc889F6+++ioqKyvR1taGf//73/jd736HnTt3Apjoktq3bx/6+/uh0+kAAAUFBfjPf/6D8vJyVFRU4OqrrwYnIByVnJwMhUKBDz/8EAMDAxgdHRXvycwRqMihUCgUyoLizjsn2sRngmWBO+4Q97hqtRpnnHEGnnjiCWzevBnLly/H/fffjx/84Ad46qmnAAB/+MMfsHfvXmRmZmL16tUAgMcffxxxcXEoLS3Fjh07cMEFF2DNmjWzHk8mk+FPf/oTnnvuOaSnpzuF1EKCzsmhUCgUypxCjFkrzz470SYezDk5FDonh0KhUCiUgPPDHwIHDkykrvgaHYlk4t8HDlCBM1+YJStJoVAoFMr8pKxs4j+zeaKLKiZG3BocSuihIodCoVAoCxqFgoqb+QpNV1EoFAqFQpmXUJFDoVAoFAplXkJFDoVCoVAolHkJFTkUCoVCoVDmJVTkUCgUCoVCmZdQkUOhUCgUCmVeQkUOhUKhUCjzkJycHDz55JOh3kZIoSKHQqFQKAsas92MAcMAzHZzUI7X39+P2267DYsXL0ZUVBRSUlJQVlaGZ555BiaTKSh7WCjQYYAUCoVCWZB82fklHj/8ON5teBcc4SBhJNi5dCd+suknKMsqC8gxW1tbUVZWBo1Gg0ceeQQlJSWQy+WoqqrC888/j4yMDHz9618PyLEXIjSSQ6FQKJQFxzPHn8HmFzdjT+MecIQDAHCEw57GPTjrxbPw7IlnA3Lcm2++GTKZDCdOnMAVV1yBoqIi5OXlYefOnXj//fexY8cOAEBnZyd27twJtVqNmJgYXHHFFRgYGHCu09LSgp07dyIlJQVqtRrr16/HJ598EpA9z2WoyKFQKBTKguLLzi9xy39vAQGBg3O43ebgHCAguPn9m3Gw86Coxx0ZGcHHH3+MW265BSqVyuN9GIYBx3HYuXMntFotPv/8c+zduxetra248sornfczGAy46KKLsG/fPpw+fRoXXnghduzYgc7OTlH3PNeh6SoKhUKhLCgeP/w4pBLpFIHjilQixRNHnhA1bdXc3AxCCJYuXer298TERFgsFgDALbfcgq1bt6KqqgptbW3IzMwEALzyyisoLi7G8ePHsX79eqxcuRIrV650rvHwww9j165d2L17N/7f//t/ou15rkMjORQKhUJZMJjtZrzb8O6MAgeYiOjsqt8VlGLkY8eOoby8HMXFxbBarairq0NmZqZT4ADAsmXLoNFoUFdXB2AiknPXXXehqKgIGo0GarUadXV1NJIzCRrJoVBCCCEEDocDFosFUqkUMpkMUqkUEokEDMOEensUyrxjzDrmrMGZDY5wGLOOQREhjkX54sWLwTAMGhoa3P6el5cHAFB4YYV+1113Ye/evfj973+PxYsXQ6FQ4PLLL4fNZhNlr/MFGsmhUEIEx3Gw2Wyw2+2w2+2wWCwwGo0YHx+HwWCA2WyG3W4Hx3EghIR6uxTKvCBGHgMJI+zSJ2EkiJHHiHbshIQEbNu2DU899RSMRuO09ysqKkJXVxe6urqcf6utrYVer8eyZcsAAAcPHsR1112HSy+9FCUlJUhNTUV7e7toe50vUJFDoQQZQghYloXNZgPLsmAYBlKpFBEREZBKpWAYBg6HA2azGQaDAWNjY1T0UCgioYhQYOfSnZBJZk5kyCQyXFp4qWhRHJ6nn34aDocD69atw7/+9S/U1dWhoaEBr776Kurr6yGVSrF161aUlJTg29/+Nk6dOoVjx47hmmuuwZYtW7Bu3ToAQEFBAf7zn/+gvLwcFRUVuPrqq8FxwiJUCwkqciiUIEIIgd1uh81mAyEEEon7V5BhGEgkEshksllFj8VicYoeCoUinDs33QmWY2e8D8uxuGPjHaIfOz8/H6dPn8bWrVtx7733YuXKlVi3bh3+/Oc/46677sLDDz8MhmHw7rvvIi4uDps3b8bWrVuRl5eHf/3rX851Hn/8ccTFxaG0tBQ7duzABRdcgDVr1oi+37kOQ+hPQgolKHAcB7vdDpZl3Wpu+LTVZMHjCUIICCFu0RxeFPH1PHxND4UyX7FYLGhra0Nubi6ioqJ8WuPZE8/i5vdvntJlJZPIwHIsnr74afxw3Q/F2jLlf4jx3nkDPRNSKAGGLy7m01P+FBVPjvTIZDIwDAO73Y7h4WGcOnWKRnooFAH8cN0PceD6A9i5dKezRoefeHzg+gNU4MwTaHcVhRJA+PQUy06ExsXummIYxil8AECn0wGAs5iZvw+N9FAoUynLKkNZVhnMdjPGrGOIkceIXoNDCS1U5FAoAYJlWWckZTZxI5bwIYRAKpW6/ZtPk9lsNqcochU9fDSIQlmoKCIUVNzMU6jIoVBEhk9PORwOZ3GxEBFBCPFLbHh6LN+55XqMyaJHIpG4dXfxxc4UCoUy16Eih0IREY7j4HA4vE5P+StwXNeZCaGiZ3J6i4oeCoUyF6Eih0IRAVexwAuWYAsDX47nKnp4gcR3e1mtVip6KBTKnIaKHArFT1zTUwBCInBc9+Ir/J6p6KFQKPMFKnIoFD+YbvZNKBD72DOJHqvV6vTIoaKHQqGEK1TkUCg+wFszOBwOQd1TwdxXoHAVPVKp1DmYkBAyRfTwRcwymSxsXhsKhbLwoMMyKBQv4Wff8PU3/l7EzWYzWltbMTQ05Jxt4wuhqAGa3JklkUhACHGajY6NjWFsbAwmk8k5DJEOWadQZicnJwdPPvlkqLfhRnt7OxiGQXl5eai3IhgqcigUL+BTNQ6Hw3mR90dc9PX14fDhwzAajWhra8OBAwdw7NgxNDU1YXh42FnnI5RQCojJooeP4vCih/fdoqKHEnaYzcDAwMT/BoGuri7ccMMNSE9PR2RkJLKzs3HbbbdhZGREtGOEo0gKBTRdRaEIgE9PiRW9YVkWdXV1GBgYQElJCTQaDYCJScU6nQ46nQ7Nzc0wm82Ijo6GRqNBXFwcNBqNWwu4K+GWEnItwJ6c3rJYLM778GktvqaHprcoQePLL4HHHwfefRfgOEAiAXbuBH7yE6CsLCCHbG1txaZNm7BkyRK8/vrryM3NRU1NDX7605/igw8+wJEjRxAfHx+QYy9EaCSHQpkF1/QU4L81w/j4OA4fPgyDwYDS0lIkJyc7b4uMjERKSgoKCwuxceNGlJaWYtGiRbDb7WhoaMAXX3yBkydPorW1FTqdzjmPB5gQDOEcFZku0sNHxwwGA8bHxzE+Pk4jPZTA88wzwObNwJ49EwIHmPjfPXuAs84Cnn02IIe95ZZbEBkZiY8//hhbtmxBVlYWtm/fjk8++QQ9PT34+c9/7rzv+Pg4rrrqKqhUKmRkZOAvf/mL8zZCCB544AFkZWVBLpcjPT0dt956KwDg7LPPRkdHB+644w63HxsjIyO46qqrkJGRAaVSiZKSErz++utu++M4Dr/73e+wePFiyOVyZGVl4de//vW0z6e6uhrbt2+HWq1GSkoKvvvd72J4eFjMl8wvqMihUGaAZVlYrVawLOt3eooQgq6uLhw5cgTJycnYsGEDFIqZR8nL5XKkpqaiqKgIpaWl2LhxI9LS0mA2m1FTU4MDBw7g9OnTaGtrw/j4+JwSBK6ih4/kMAzjfM2NRiMVPZTA8OWXwC23AIQAk1PCDsfE32++GTh4UNTDarVafPTRR7j55punfPdTU1Px7W9/G//617+cn/HHHnsMK1euxOnTp3HPPffgtttuw969ewEAb7/9Np544gk899xzaGpqwjvvvIOSkhIAwH/+8x8sWrQIDz30EPr6+tDX1wdgwgF87dq1eP/991FdXY0bb7wR3/3ud3Hs2DHnPu6991785je/wf3334/a2lq89tprSElJ8fh89Ho9zj33XKxevRonTpzAhx9+iIGBAVxxxRWivm7+QNNVFIoHxJ5943A4UF1dDa1Wi9WrVyMxMdGndRQKBRQKBdLT00EIgclkgk6ng16vR1dXFwCgvLwccXFxiIuLQ3R09JxJ/Uw2G+VTWyzLgmVZjIyMYHx8HJmZmVN8t+bKc6SECY8/DkilUwWOK1Ip8MQToqatmpqaQAhBUVGRx9uLioqg0+kwNDQEACgrK8M999wDAFiyZAkOHjyIJ554Atu2bUNnZydSU1OxdetWREREICsrCxs2bAAAxMfHQyqVIjo6Gqmpqc71MzIycNdddzn//eMf/xgfffQR3nzzTWzYsAHj4+P44x//iKeeegrXXnstACA/Px9nnnmmx/0+9dRTWL16NR555BHn3/7+978jMzMTjY2NWLJkiR+vljhQkUOhTIIffsf/mvLXsXt0dBTl5eVQKpUoKyuDXC4XY5tgGAYqlQoqlQqLFi2C2WzG4cOHER8fD71ej46ODgBw1vPExcVBpVLNGUEwWfRYLBYMDg4iLS0Ndrvdefvkmh4qeigzYjZ/VYMzEw4HsGvXxP1nibh6i9Bo5KZNm6b8my8m/uY3v4knn3wSeXl5uPDCC3HRRRdhx44dkMmmv6yzLItHHnkEb775Jnp6epxDPpVKJQCgrq4OVqsV5513nqD9VVRU4LPPPoNarZ5yW0tLCxU5FEo4wVszjI2N4YsvvsD555/vl8AhhKC9vR3Nzc3Iz89Hbm5uQC++/F4zMzORlZUFQgjGx8eh0+mg1WrR2toKiUTiJnqUSuWcEwT8SZyP9Dgcjimix9Vs1F+RSplnjI3NLnB4OG7i/iKJnMWLF4NhGNTV1eHSSy+dcntdXR3i4uKQlJQ061qZmZloaGjAJ598gr179+Lmm2/GY489hs8//xwREREeH/PYY4/hj3/8I5588kmUlJRApVLh9ttvd864mi19PhmDwYAdO3bgt7/97ZTb0tLSvForUFCRQ6Hgq+JivvbGX2w2G6qqqjA+Po5169YhLi5OhF0Kw9U7KyYmBjExMcjOzgbHcU7RMzQ0hObmZshkMqfgiYuLQ1RU1JwRPdOltyaLnsnTmKnoWeDExEx0UQkROhLJxP1FIiEhAdu2bcPTTz+NO+64w01U9Pf345///CeuueYa53fwyJEjbo8/cuSIW6pLoVBgx44d2LFjB2655RYUFhaiqqoKa9asQWRkpFtjAgAcPHgQO3fuxHe+8x0AE1HrxsZGLFu2DABQUFAAhUKBffv24fvf//6sz2fNmjV4++23kZOTM2MEKZTQbztlwcOnp/jZN5NtDLxFq9Xi4MGDkEgkKCsrC5rAmU2cSCQSxMbGIicnB6tXr8ZZZ52F4uJiKBQK9PX14ciRIzh8+DBqa2vR19fnbPMOJ2Z6jq6+Wnwkh2EY2O12mEwmjI+PY2xsDAaDARaLBXa7HZzQX/SU+YNCMdEmPttFWSYDLr1U9FTVU089BavVigsuuABffPEFurq68OGHH2Lbtm3IyMhw62Q6ePAgfve736GxsRF/+ctf8O9//xu33XYbAOCll17C3/72N1RXV6O1tRWvvvoqFAoFsrOzAUzMyfniiy/Q09Pj7HYqKCjA3r17cejQIdTV1eGmm27CwMCA83hRUVG4++678bOf/QyvvPIKWlpacOTIEfztb3/z+FxuueUWaLVaXHXVVTh+/DhaWlrw0Ucf4frrr58isEJFeEovCiUITGfNwF9IvRU5hBC0tLSgra0NS5cuRWZmZkiiIkL3LZVKnREcYCJfPzo6Cp1Oh56eHtTX1yMqKsot0hMZGRnIrc+It++Hp0gP7zVms9lopGchc+edwDvvzHwflgXuuEP0QxcUFODEiRP41a9+hSuuuAJarRapqam45JJL8Ktf/cptRs5PfvITnDhxAg8++CBiYmLw+OOP44ILLgAwUWv3m9/8BnfeeSdYlkVJSQn27NmDhIQEAMBDDz2Em266Cfn5+bBarSCE4Be/+AVaW1txwQUXQKlU4sYbb8Qll1yC0dFR5zHvv/9+yGQy/PKXv0Rvby/S0tLwwx/+0ONzSU9Px8GDB3H33Xfj/PPPh9VqRXZ2Ni688MKw+R4xhPZjUhYgrukpwL17yuFw4JNPPsF55503bW57MhaLBRUVFbDZbFi5ciVivAhxE0KcOXF/RJHdbseBAwewZcuWaQcGeoPD4YBer3cOJzQYDFCpVE7Bo9FoBL8+YsC3wq5Zs0aU9XjR43oKnCx6+O4tSnhhsVjQ1taG3NxcREVF+bbIs89OtIlP7rKSySYEztNPA9Nc3Cm+I8p75wU0kkNZcPCTi6cz1vQ2kjM0NITKykokJydj7dq1PuWmxRzkJ9Y6MpkMiYmJznZ3fhqzXq9Ha2srjEYj1Gq1m+gJ17y8J1xTk4DnSM/kOT7UYX0e8cMfAiUlE23iu3a5Tzy+446ATTymBJe5c0aiUPxk8uyb6Qb78X+brV6DL9rr6upCcXEx0tPTxd+0FwT64hsREYHk5GTnhGar1eqM9DQ1NcFisSA6OtopemJjY0WJKAULb0SPa/cWFT1zmLKyif/M5okuqpgY0WtwKKGFihzKgoC/WPHCZaZZKkIiOSaTCRUVFeA4DqWlpVCpVOJv2keClYGWy+VISUlxTkO1WCzO1FZdXR1sNhtiYmLcRE+45OmF4KkI3ZPomVzTQ0XPHEShoOJmnkJFDmVe4/prfLr01GR4ATSdWOjr60NNTQ3S09NRWFgYNhfuUF9co6KikJaWhrS0NKcJJy96ent74XA4EBsb6zaN2dvXLlTP0dVoFHAXPfxANSp6KJTwg4ocyrxlcnGxN75TDMNMSVdNdg6fzs8l1IRDLwHDMNNaUOh0OnR1dYHjODd39dksKMLhefHMJHqsVquzkJyKnsASTp8JijCC/Z5RkUOZl/DRG5ZlfTLVnBzJGR8fR0VFBWQyGUpLS72eDBoMwvniOdmCghACo9HoFD1tbW1gGGZOW1AAcAoZfjAhIYSKngDAd/WZTKaw/C5SpsdkMgFA0DozqcihzCumm33jLRKJxHmR6u7uRn19PbKzs7F48eKwSU9Nxtf5PqGAYRio1Wqo1WpkZma6WVCMjIw4LShcO7fmwvPica358iR6XNNbERERTtHjj8v9QkIqlUKj0WBwcBAA5qQ9yUKDj+YODg5Co9EErSmBihzKvMGf9NRk+Em5FRUVfjuHU2bHkwXF2NgYdDodBgYG0NTUBIlEAolEgt7eXsTFxc2pX/AziR5+sjQfPZTJZIiKiqKiZxZ4d21e6FDmBhqNxs0ZPdDQYYCUecFss2+8Zd++fZBIJFCr1VixYoVozuGe4MUZ7znlD59++ilKS0uDMmQrmLAsi9bWVgwNDUEul2NsbAxyudxtGnMg36NAwwue3t5eDA4OoqSkxKPDOhU9U+G/+5Twhx+9EExoJIcyp3GdfUMI8fsiQAhBR0cH7HY7MjMzsWzZsqBdVMQQOfw68w2pVAqVSgWj0YhVq1bB4XA4LSi6urpQW1sLpVLpVtMTSgsKb+EjPa4dWnxnIB/p4SNZVPS4w9c2USieoCKHMmfhOA4Oh0OU9BTg7hweGRmJ1NTUOXcBmWv79QZX8SaTyZCQkOD06XG1oOjo6EBNTU1ILSh8xdVB3lN6i2VZsCw7bcs6FT0UijtU5FDmHK6zb1wvCv6g1WpRUVEBjUaDsrIyHD58eM5GRObqvv1hsgWFzWZzip6WlhaYTCbnNGaNRhPWFhTTTeGebDY6nejhUwK87xYVPZSFTHh+yymUaZhszeDvSXw653C+u2quQS9oE0RGRk6xoOB9t8LZgkJoynIm0eNwOJy3e/Ldop8RykKCihzKnMF19o3rCd5XLBYLKisrYbVaccYZZ7g5h4tpmBls5uq+A4lcLkdqaqqzq8OTBQU/jVmj0YTMgsLXuqzpRI/D4YDdbncTPa6+W+E6DoFCEQsqcihhj1izb1xxdQ5fs2bNlNSFp4nHc4H5/itdrOc32YLCbDY7RU9PT48oFhS+IFbxORU9FMoEVORQwhoxZ98Awp3DaSRn4cAwDJRKJZRKJTIyMqZYUHR2doIQ4ta5pVarAyIoA/XezSZ6AM/TmKnoocx1qMihhC28+aFY0RtvnMNpTU74Eaz3w5MFhcFgCIoFhViRnNmYTvS4OqwzDENFD2XOQ0UOJezg01N895QYAsfVOXzp0qWzFpkGM5IjdjHoXBRn4QzDMIiOjkZ0dDSysrLAcZxT9IyMjKClpQVSqdRtMKFCofDpPQ2WyJmMJ9HD18DxkZ7Joofv3qJQwhkqcihhhdjpKV+dw+dquopedAKPRCKZ1YIiIiLCWcTsjQVFqETOZPh6HR5X0eMp0uPavUWhhBNU5FDCBtfojRjRDX+cw+dq4TFAIznBRiKROGfv5ObmgmVZjI6OQq/Xo6+vDw0NDYItKMJF5ExGiOiRSCRTCpnD8blQFhZU5FBCDl8AWVtbC41Gg5SUFL9n3/jrHE4jOeHJXHh+UqkU8fHxiI+PB4BpLShcpzG7WlDMhecoVPRMrumZC8+NMr+gIocSUvgTI8dxMBqNPtcy8DgcDlRXV/vtHB7swuOZnvOg9UvIJfGIjVgmaJ25KM7mM5MtKOx2O/R6PfR6Pdrb22EwGJwWFBaLZU4ajbqKHv7zxzcOTGdBQUUPJRhQkUMJCa6//PjuKalU6leKaHR0FOXl5VAqlSgrK/PrYhEuYoEQFk2GZ2DlRrA69jeIi1wV6i2FjHB4P8QgIiICSUlJSEpKAuBuQaHX6+FwODA2NuY2jTlcLSg84eq5BXgWPTabDSaTCSkpKVT0UALK3PnmUOYN0xUX+1oHwzuHNzU1IT8/H7m5uX6fLIMtcqY7Vp/lY5jYLgDAKf3PsCr2/5Ag3zDtOuEizijCmWxBAQCxsbHQ6XRoaGiA1WoNSwsKoXgSPXwrvkajgc1mA+B5Tg8VPRR/oSKHElRcrRkmd075kiJydQ5ft24d4uLiRNlnOBQec8SBVuPLX/0bFpSP3oeS2AeQLD9z2sdRkTN3IYQgIiLCzYLCbDY7Iz2TLSji4uIQExMzp+bX8N953kyUn9FDCIHVap3WbJQ6rFN8gYocSlAQYs0gkUi8EhaTncMjIiJE2284DAPstXwIM9fr9jcONlSO3o/lMfcjNercKY+hF4G5jafuKoVCAYVC4dGCoru7GyzLOru74uPjoVarw1708OcAwH1OlFQqdRM9FovFeR9e9PCRHip6KEKgIocScITOvhEaPZnOOVxMQp324YgdbS5RHFcIWFSPPQyOWJGu2D719nkcyZnvF7XZWsg9WVAYjUZnpCeYFhT+wA/59IRQ0TPZYZ2KHoonqMihBBR+9o0QawYh0ZOZnMPFJJgix2QyobKyEhzHIS4uDvHx8RiP/AwWbmDaxxCwqBn/DVhiRabyEuff6Ul+buPtnByGYaBWq6FWq2e0oHCd0aNUKkP+OeE4TvAephM9HMc5RY9EIplS00NFDwWgIocSIPjZNw6HA4CwycUSicQ5Qt4TvHN4UlKSR+dwMQlWTc7AwACqqqqQmpoKlUoFvV6P6tpyWHL+BsyafSOoNzwOFhbkKL/11V/naSRnvj4vV/wdBujJgmJ8fBw6nQ5DQ0Nobm6GTCZzi/T4O7bBF2aK5MzGTKLHarXCYrFQ0UNxQkUORXRcW8MB4d5M0wkLV+fwZcuWISMjQ/Q9C92LWHAch4aGBvT09GD58uVITEyEw+FARkYGOow1aDSOC16ryfA0WGJBvuo6ehKfB4j5HkokEsTGxiI2NhY5OTlTLCgaGxsRGRnpFumJiooS7fjT4U0kZzYmn1940cOyLFiWnbaQWWzPOEp4QkUORTRcZ9/4Ys3gKV3ljXO4mAQyXWU2m1FeXg6O47Bp0yaoVCpnxIslFrSbX/N6zVbj38ERC4DVCyLiMV8JtK3DdBYUOp0OPT09qK+vF2xB4Q+uhcdiM53DOt/4wN8+uaaHip75CRU5FFGYXFzsywljcneVt87hYhKo7qrBwUFneqqwsHDKc+oy7YKN0/q0drvpNcji2uFgbxdhp5RQEGzvKn8tKHzFn3SVt0wnehwOB+x2+7SiJ9w71CjCoCKH4jczzb7xBj5F5KtzuJiIHcnhOA5NTU3o7OxEcXEx0tPTpxzPQUxoN3kfxXHFoTmEaq0FnZ1XISE+cU4Oj5uJ+f5LO9QGndNZUPBFzEajEWq12k30+FIbJ2a6ylu8ET2uZqNU9MxNqMih+IyQ2TfewBceHz582CfncDERsybHYrGgoqICdrsdmzZtglqt9ni/LvPbsJNRv49H4k8BGiUs2qtQV9cPu93uHB4XHx+P6OjoeS8W5irhlmqcyYKiubkZJpPJbRqzRqMRJKiDGcmZjdlED+B5GnO47J8yM1TkUHxC6Owbb9bjT555eXk+OYeLiVjpquHhYVRUVCA5ORnLli2b9gJg5wzoNL/p9/F4RiVfQp4hwcbCX8Jitjtbijs7OwHA2V0THx8fFi3FQgg3ARAIQh3JmY3JFhRWq9X52eItKGJiYtymMXv6zAeyJsdfphM9rg7rDMNQ0TNHoCKH4jXezL4RAu8cPjw8DLVajSVLloi0U9/xN11FCEFzczPa29tRVFSERYsWzXj/duMbcBDhHVVCGLR+gQryc6yM/T8sUi1yzlHhW4qHh4fR0tICmUzmFDzB6q6heCbcRc5k5HL5FAsKXvT09vbC4XBMET187d1cSaF6Ej18ip6P9EwWPXz3FiX0UJFDEYzr7Bs+3OzvF3l0dBQVFRVQKBRYsmQJenp6RNqtf/gjcqxWKyoqKmC1WrFx40ZER0fPeH8bN4oOo3hRHFdGbEdRrr8bqzSPQspMzEOJiYlBTEwMsrOzwbIsxsbGoNVqnd01CoXCrbtGTLsMyszMNZEzGd6CIj09fUYLCrvdjujo6LCO6EwHX6/D4yp6PEV6XLu3KMGHihyKIDiOg8PhEDU9Ndk5fHBwMGxSEr6KnJGREVRWViI+Pl7wwMLW8dfgIEZftikIrf0UTup/gtWxv0OExL0eSCqVOsUMMBFVc52WW11d7VPNBcU35rrIcWU6Cwo+bdrf34+BgQHn5ypcLShmYzbRA0ycF1JSUiCXy6nDepChIocyI/7OvvHEdM7h3hp0BhJvC48JIWhtbUVra6tXflpWVod2Q2CiOK6M2qtxUn8H1mh+j0hJ7LT3k8lkboWmrjUX9fX1bg7YfBFzMH+JL4QLw3x9jq4WFHq9HjExMYiPj3cT1fwcn3CyoPCWyaLHbrejtrYWGo3GOafHUyHzXHuecwUqcijTMtmaQQyBM5NzeLCsFITgTSTHZrOhsrISJpPJaz+tlvF/gCVmX7fpFeOOBpzU3Yo1cU9ALokX9BjXmgvX9INWq0VXVxcIIW6pLZVKFbCTdbhE+QLJfIrkzAQhBFKpVJAFhWukJxQWFP7Cf24jIyOde+c4DjabzW0aMxU9gYGKHIpHXGffuBbd+YoQ5/BwiuQI7a7S6XQoLy+HRqPBpk2bvKpfsbDD6DC+7c82vcbAtuGE7sdYq3kCUdJkrx7rKf1gMBig1WoxMjLiVsTs6otEEc5CETme5uR4sqDgBxOG0oLCXzwNSOUjPfw5hoqewEFFDsUNsWffAF85h1sslhkjHYGaMuwLs0VyCCFob29Hc3MzlixZgqysLK9fp5bxl8ERq79b9RoT24Xjuv+HdXFPQiFNn/0B0+BqBpmdne12Uerr60NDQwOioqKcqS2xpuXOZxaSyJnth5NEInGrF/NkQcF/vvj/wvHzxXeSeXpfPYke/j+r1eqs6aGix3eoyKE4EXv2DeCdc3g4RXJmEjmuNUXr16+HRqPxen2zYxCdhnf93KXvWLh+HP9fREclyxJlzckXJYfDMe20XF700CJmd8JF5AcaX8ScJwsK/vPV2dmJmpoaqFQqt5qecOgM5CfBC2E6h3Ve9ExnNkod1qeHihwKgK/CpWJFb3xxDg+nmpzpBJder0d5eTmio6NRWlrq8y/H5vEXwcHm7zb9wsoN4YT+VqzR/AHRsnzR15fJZEhMTERiYiKACXHI1/O4Do7j5/PwM1QWMjSSI5zJn6/JFhTV1dWiWFD4iz/PdSbRY7FYnPfhRY+r79ZC+BwJgYqcBQ6fnuK7p8T4crg6h89kYzCZcE5Xuba8L168GDk5OT6/TiZHL7qMe8Taql/YOC1O6m7DGs0fEBOxNKDHioyMREpKitOLzGw2Q6vVOmeocBznNonZUxHzfD9xLxSREwhbB08WFHznVnNzM8xmM6Kjo52fsWBFEsUcfEhFj/dQkbOACUR6yh/ncD56Eg4neleRY7fbUV1dDb1e79by7itNYy+CwCHGNkXBTsZwUn8HVmt+C01ESdCOq1AokJGR4VbEPLmdmP8VHh8fHzYCOJCEw2c/GATDoHOyqPbVgsJfvElXeYtQ0ePJYX0hfM4AKnIWLCzLoru7GzabTfBMl9nW89c5nN9DOJzoeZEzNjaG8vJyKJVKlJWV+V3YaHR0ocf0X5F2KR4OYsAp/V1YFfsI4iPXBv34rkXMfDvx2NgYdDod+vv70djY6HSF5gfIhWORqb+Ew2c/GIRi0rEQC4rY2FhoNBpRZ0AF87lOJ3o4joPVaoXFYoFEIplSyDyfRQ8VOQsM19k3BoMBRqMRWVn+FZ4aDAaUl5f77Rzu6g0TDthsNhw9ehR5eXnIy8sT5STQNPY3ELAi7E58WGLGaf3dWBHzf0iK2hjSvfBD4TQaDXJzc+FwONDQ0IDx8XF0dHSgpqYmLOotAsF8vdi4Eg4u5JMtKEwmE3Q6HfR6vTN9yg++jIuLQ3R0tE/vDcuyISuwnzzbjBc9LMuCZdlpW9bnk+iZH2cFiiD42Td8QS2v9H2FEIKenh7U1dUhOzvbb+dw/rGhNu9zOBxobW2Fw+HA+vXrkZCQIMq6Bns7ekwfi7JWoOBgw78Hv0SpRoFVMStDvR0nMpnMOf122bJlbvUWTU1NsFgsbqmH2NjYkF9EfWEhRXLC6XkyDAOVSgWVSuU0suUtKHQ6HTo6OgDArXNL6ODLcPLnms5hnR8bwt/Op7dczUbD6f3yBipyFgCu1gyu3VNSqdRZj+MtDocDNTU1GBkZwerVq50dDv7gKnJCxfj4OMrLy52pEbEEDgA0jr0AIDy6x6bDRgpRa+xGvfFlfJdcjfWx60K9JY94KmLmL0g9PT1OI0i+c2uueCItFJETDpGcmXC1oMjMzAQhxDmNWavVorW1VbAFRah/tM3EdKLH4XDAbre7iR6JRIKTJ09i48aNcypVTEXOPGem4mJf59K4OoeXlZVBLpeLslfXmpxQ0N3djbq6OuTk5CA5ORknTpwQbe0xezP6zPtEWy9QtFjyAfSBA4dXev8JG2dHWdymUG9rVianHvhf4Vqt1s0TiRc94WoPsFBETjhFN4TAMAxiYmIQExPjHHw5nQWF6zRmhmECWngsNjOJntHRUWzZsgU6nY6KHEp44GrN4CnH6q3I8eQcLuYJmf+CBTuSw7IsamtrMTQ05IxKjY+Piyq2Gkf/CiA8ao2mw06WodHU5/w3AcEb/W/CTmw4O35LCHf2v/0IFACTf4XzFyStVutmD8ALnri4ONGEur+ESz1aoAm3dJW3TLagYFnWWSjPT/uWy+XQaDSw2+1hMZTQF1xFj9k84bGnUqlCvCvvoCJnHiLUmsEbkTOdc7jYBHvqMV80HRERgdLSUqcXjjcGnbMxaqvHgOVzUdYKJE3mXAB9bn8jIHhrYBesnA0XJG4Lzcb8xPWClJubC5ZlnUPjurq6UFtbC5VK5fYrPFRFzAshksN/r+ZKdEMIUql0WgsKrVYLm82G0dHRsLegmAmj0QiFQhG2qbfpoCJnnuHN7BuJRCKoJmcm53CxEVNczEZvby9qamqQlZWFgoICt5OumGLri5EjYIgUDBOeXVUAYCPFaDL3TXv7nqH3YeNs2JF8cRB3FRikUikSEhKc9VZ2u91taJzFYkF0dLRzPk8wi5gXgsjhv1fzSeRMxtWCwm63O0UQX8TMW1C4dgeGe7THYDAILrYOJ6jImUfwk4uFWjNIpdIZL+SuzuG+mlB6SzAiOa4zfVauXInk5Klu3GKJrVZjG/YMHkOR6iIskX8EMKG1cpiOJnMOJkdxJvPRyF7YiA3fSLk0KHsKFhEREUhOTnZ+DiwWi/MXeE1NjXN+Cp/e8rWVeDb4z9tcu4h4C//9nu/Pk4fjOMjl8ikWFHy7emtrq5uvW7iORDAajVAqlaHehteE16tI8QnX2TeA8MnFMwkKoc7hYhNokWM0GlFeXg6JRDLjTB+xBhPu7n8PAFBn7IGDnI8ixSdgYPF5vUBg45ajeYYojiufaT+HnbPjytRvztuLVFRUFNLS0pCWluacn8LbT/CtxK5ph+m6arxloYic+ZiumglPc3ImC2ur1epMofIjEfhoIj8SIdRpIl6IzbXPJxU5c5zJs2+8mWcwnaDwxjlcbAJZeNzf34/q6mpkZGRg6dKlM55kxRA5TYZm1Brqvvq3qRcsOQ/LlfvBwOjTmoGg0ZIFoF/w/b/UH4KN2PGdtKsgYeb3hcp1foprEbNrV01ERISb/YS/Rcxz7SLiLQsxkjOboJPL5W4jEfhook6nQ11dHWw2W8jnQBmNxjlXdAxQkTNncZ19w1+IvT1pTBY5vjiHi00gTDo5jkN9fT16e3sFW07wr6U/ra7v9k814Ww198GBzVilOAiGGfNpXTGxkRVoMQsXODzHRo/DztlxXcZ3IWWC8wszHOpVPHXV8AWm/AgCpVLpTG15U2uxkCI5c3m4nLf4MidncjTRVfS4WlC4TmMOtOjhIzlzDSpy5iCTi4t9PWG4Fh776hwuNmKnq/jnRQhBaWmp4JyyvxYT9eMNaDQ2ebyt0zwAlmzCGtUxSKDzaX2xqDcvgjdRHFdOj5fD3m3H9zKuR4RkYZ5KXAtM8/PzYbfbodfrodVq0dLSApPJNOUX+HQXvIUicubajBx/8XdODsMw01pQ8B2CHMe5uasHom6M1uRQgsJss2+8gbd18Mc5XGzETFcNDg6isrIS6enpKCws9OpE4+9gQk9RHFd6LENgyXpsUJ8Cg2GfjuEvFrISbT5EcVypNtTg2e7ncdOi7yNSMrdaYgNBREQEkpKSkJSUBGCi1oKv56mrq4Pdbnf+AudNICd/1haCyJnvz9EVsUXdbBYUbW1tYBjGJwuKmaCRHEpAETr7xts1AaCmpsZn53CxESNdxafduru7UVxcjLS0NK/X8EfkVI/VoMXUOuv9+q3DOExWYWN0DSSzdDYFggZTBnyN4ritY2zEXzqfxY8yb0SUNMr/jc0j5HL5lCJm/mLU2dkJ4Cs/pOjo6BDvNjiEu6WD2ATa1mEmC4qRkRGnBYVr55YvxfJU5FAChjezb4RiMBhw+vRpAMCGDRuC1j01G/6mq8xmMyoqKsCyLDZt2uRzoZw/IofvqBLCkE2LQ2NF2BQjgxRdXh/LVyzcarRb/Bc4PC3mVvy582nckvVDKKWBC2nP5QiAp1/g/MVoeHgYLS0tAID6+npnTQ8/nHI+sdAiOcG2dfBkQcFPYx4YGEBTU9MUC4rpukxdoYXHlIDg7eyb2XB1Ds/KykJbW1vYjLQH/EtX8V1hKSkpKCoq8uvXk2vhsTdUjFai3dzh1WNG7Hp8OZqPshgpZEy7V4/1lQZzKoABUdfssHTijx1P4f9l3Yxo2dz7xRdsJl+MTCYTjhw5gqioKPT09KC+vh4KhcLtYhTuA+OEsNBqckJt0Mn7tmk0GufEb08WFK6fM0/XBKPRiPj4+BA8A/+gIidMcZ19w4d3/RU4k53DExIS0NbW5rMTeSDwJV3FcRyam5vR0dEhaleYt3shhHgVxXFF7xjD56OZ2BIrhYxp8WkNoVi4NWi3iCtweHqsvfhjx5/x/7JuhiYiVtS157uvE//9zs/PBzDxfXWts6iurnabnaLRaEI+O8UXFlq6KtwMOidbUPDmm642J0ql0jkDSiKRICMjQ/R01RdffIHHHnsMJ0+eRF9fH3bt2oVLLrnEeTshBL/61a/w17/+FXq9HmVlZXjmmWdQUFDg1XGoyAlDOI6Dw+EQNT01nXP4bFOPg4236SqLxYKKigrYbDbRu8K8nXp8arQcXZZun49nYI3YP5qGzbERiGTqfV5nNurMKRA7iuNKv20AT3b8Gbdm34z4iLn3yy9UTG6Rl8lkU4qYedFTX18Pm802pYg5nC6m07GQ0lX8qI9wfl9kMpmbzYnD4XAOJty3bx9uv/12ZGVlITk5GQkJCdDpdKJ4FxqNRqxcuRI33HADLrvssim3/+53v8Of/vQnvPzyy8jNzcX999+PCy64ALW1tV6lcanICSPEmH3jac2ZnMODbYg5G96kq0ZGRlBRUYHExESsXbtW9KGF3ogcjnDYM+BbFMcVI2vCp7o4nKtZjkhJtd/rTcbMrUVngKI4rgzbh/FE+4TQSYpMCvjx5gszfd/lcjlSU1ORmpoKQgjMZrPTfqKrqwuEELeUQ7j6DC2kSA5//phLETeZTOa0oCgoKMAFF1yAvXv34rnnnsP777+Pv//971i1ahXOOeccnHvuuTjrrLN8Kprfvn07tm/f7vE2QgiefPJJ/OIXv8DOnTsBAK+88gpSUlLwzjvv4Fvf+pbg4yyMT9ocgE9P2Ww20QSOzWbDqVOn0N7ejnXr1iEvL2/KmuEmcoSkiAghaG5uxqlTp7BkyRKUlJQEZCqzN4LrhP4kei3idEhZiRV7RxTQGZeKsp4rdabgCQ6dQ4cnOv6MPqt4Bc7zGW+GHTIMA6VSiYyMDJSUlOCss87CmjVrEBsbi5GREZw4cQIHDx5ETU0Nent7YTabA7x74YR7ZENMXKPxc5W0tDRcc801kEqlePLJJ9Hd3Y277roLo6OjuPXWW/HWW2+Jfsy2tjb09/dj69atzr/FxsbijDPOwOHDh71ai0ZywgDX2TcMw4jyheCdw2NjY1FaWorISM8zTMJR5My0H6vVisrKSpjNZmzcuDGgbbdCa3Imojjvi3psh4TFIUssNpFixKtrRFnTzK1Hl3VQlLWEMuYYwx87/oxbsn6EzKhFfq8XjpEJsfBnojPDMIiOjkZ0dLSzo4avs+CLS6OiopypLY1GM+05IdAspHTVfHJc57ur0tLScNVVV+Gqq64C4H1zhhD6+yd+GE0ea5KSkuK8TShU5ISQQM2+8cY53HXqcTgwk8jhhVtcXBxWr14dcE8toemqI7pjGAiAeHDAgUM2Jc7hNkIlOeL3erWmeABD/m/MSwysEX/q+AtuzroJuYqcoB9/riCmbYXrXBTAvc6ira3NzfWaFz3BSqkspHSVmD9cQwk/48lTzWO4PzcqckJEIGbf+OIcHm6Fx55SRIQQtLW1oaWlBUuXLkVmZmZQfgkKETksYfH+wAcB2wNLWHyqIzgn7kyoJV/6vI6J24Bua/AFDo+ZM+Opzmfww0U/QIFqsU9rzPfuqkA+P9c6C2Ailc3X8zQ0NMBqtSImJsY5nycmJiZgF6+FlK6aT881mHNyUlNTAQADAwNuw1wHBgawatUqr9aiIicEcBwHm80mWvQG8N05PBzTVa6RJZvNhqqqKhgMBmzYsAGxseK2Jc+EEJFzSHsEQ7bAigcOHD7VmXG25mzESPf7tEatKQ6hiOK4YuWseLrrOfxg0Q1Ypi4K6V7CkWAakEZGRrq5XpvNZqf9RHd3t5sXUnx8vKhFzOFgtBosQj0jR0yMRmPQpnLn5uYiNTUV+/btc4qasbExHD16FD/60Y+8WouKnCDCp6f47ikxBI6/zuHhKHLsdjsAQKfTudUVBXsQ2myFxw7OEdAojisEBPv14zhLcx7ipPu8euzgWDF67KEVODx2Ysfz3S/ghozrsCK6JNTbCStCefFXKBTIyMhARkYGCCEwGAxuM3pc01/x8fGCJuROx3yKbsxGuM3I8RWbzQa73S6qyDEYDGhubnb+u62tDeXl5YiPj0dWVhZuv/12/N///R8KCgqcLeTp6elus3SEQEVOkAhEekoM5/BwEzkMw4BlWbS3t6OpqQkFBQXIzs4Oycl/tsLjL7UHobVrg7YfAoIv9DqcGbsNCbK9wh5DgFaSCoTY7dwVB2HxQveLuCb9O1gXuybU2wkbwiXC4VrEnJWV5WYL0N/fj8bGRueEXD695U0R80IrPJ4PkRyj0QgAoqarTpw4gXPOOcf57zvvvBMAcO211+Kll17Cz372MxiNRtx4443Q6/U488wz8eGHH3ptdUJFThBgWdYZAk5LSxPlC97f34/q6mq/ncPDrfCYEOIMm69fvx4ajSZke5kpXWXn7PjvwIdB3tEEX46OYFPMhUiOmP34JrIJA47wETg8HDi83PsP2IkdmzRnCH7cfL44hovImcxkWwB+Qq5Wq0VHRwdqamqcRcz8JOaZ0uULqfB4vkStDAYDAHFFztlnnz3jj0iGYfDQQw/hoYce8us4VOQEEFdrhtHRUTgcDqSnp/u1JsuyqK+vR19fnyjO4eEUyRkdHUVnZycYhkFZWVnIWlx5ZhI5n48cgN4xGuQdfcXhsUFsiLkIaRH/nfY+hDCoMUYDsAZvY15AQPBa3xuwOKQ4J3FdqLcTFoSjyJnM5Am5NpsNer0eWq0WTU1NsFgsiImJcYqe2NhYtwv9fLnwC2G+pKv4ouO5+FyoyAkQ/OwbXkBIpVJYrf5dbAwGA8rLyyGTyVBWVuZXXpwnHLqrCCHo7OxEY2MjEhISwHFcyAUOML3IsXI2fDj4cQh25M6xsX6sjb4YGRH/BcNM3aeJbEKfbTgEOxOOBDL8rvYEurMIvpuzfsb7hmukQyzm6vOLjIxEcnIykpOTAcA5iVmn06Gnpwcsy0Kj0ThTWyzLBnz8Q7gwXwSdwWAI2wnas7EwPmlBxNWawbV7yh8x4eocnp2djcWLF4v2xQl1JMfhcKC6uho6nQ5r166F0WjEwEDgbQeEMF3h8f7hzzHmGAvBjqZycrwPDvXFyI78Lxjmq70SwqDaqAJgCd3mBKDglmHEpsOfmw/AzNpxY35pqLcUMuaqyJmMQqGAQqFAeno6CCEwGo3OdvW2tjYQQhAVFeV0WFcoFPPieXuCZdl5UZNjMpmgVCpDvQ2foCJHRGYqLpZKpT7Vvkx2DufnXIhFKEXO2NgYysvLoVAoUFpaCrlcDrPZHPLIEo+nwmMLa8FHg8KKfoNFhaEXrOoi5Ms/AJiJz5iJlKHfNhLinc2MFBGoGPkquvlC2xFYOAduLdgcwl2FjvkiclxhGAZqtRpqtRqZmZngOA6VlZXgOA4DAwNobGxEZGSkM8oTFxfnNA+eD9BITuihIkckXK0ZPHVO+VLgO51zuJiEovCYEILu7m7U19cjNzcX+fn5ztfLG7+oQOMpXbVv+DMYWEOIdjQ91cZesGQ7Fss/AAMOVUYFAFOotzUjfBTHlVc7TsDK2nHX0nPn5AnVH+b7sENg4nwjk8mc9hMsyzonMXd1daG2thYqlcptEvNcTm3Np+4qX7p3w4G5++kJE4RaM3gTyXF1Ds/Ly/NorCkWEokENpstIGt7wuFwoLa2FsPDw1izZo2zeNF1P+EqckysGXuHvJtRE0zqTL0w285FCnQYcIR3FEcCmVsUx5V/d1fAwjrw82XnQ7KAhM58jOR4wrW7SiqVuhUx2+12Zz1Pc3MzzGYzoqOjnaJnchFzuDOfCo9pumoB4s3sG6E1OfyE3/Hxcaxbt87pPRMogll4PD4+jvLycsjlcpSWlnqcdyDUFDMYTI4qfTK0DyY2vKMj7XYtGnVFUMQ1g2WCJ169RckWT4niuLKnrwZWzoEHirdD5nKRmM8iYKGInJnm5ERERLgVMVssFmc9T01NDRwOB2JjY53prejo6LB+zeZLuopGchYg/ORiodYMQiI5Qp3DxSRYkZOenh7U1tYiJycH+fn5037xwzWSY3QY8cnQpyHe0ezIrYtxzGxAYUQx4qPr4AjHwmNOguP947Pe7eOBBlg5Bx4p+RoiJHM/5D8bC0nkCL3wR0VFIS0tDWlpaU6TSH6OVkdHBwA4a3ni4uKgVCrD6jVkWXZe1BhRkbOAcJ19AwifXDxT7Yu3zuFiEmhRwbIs6urqnMZqSUlJM94/nGpyXKNKHw3thYULQ8HgAkMkaBybEAP1YyNYzC1FSmwz7DCGeGfuqEkJxgVOYP58qAV3VbyL367YETYRvkCxUESOr8+TYRioVCqoVCpnEfP4+Dh0Oh2GhobQ3NyMiIgIN/uJUAsMGskJPVTkeMHk2TcMwwj+sk6XFvLFOVxMAilyJs/1ETKOO9zSVYQQjDvG8dnw/lBvZ1aiUYQB+1cRkmaDDg6Sj0WaNtgwe+QkGEggQ4XWu3lRh0facUf5LvxQWQzVPCjinImFIHLEuvBLJBLExsYiNjYWOTk5YFkWo6OjTpPRuro6KJVKZ2pLo9EE3f9uPhUeB8uBXGyoyBGA6+wb/leItycjT+mqoaEhVFVVITEx0SvncDHxtbV9Nvr6+lBdXY2srCwUFBQIPqmFY7rq/d4PYOXCt74FmIji1Hqw0Wo36sFy2ciJ74IVoZvQzKPkZq7FmY6Tum48OjaGnyZvmLcRj/n6vCYTKFsHqVSK+Ph4xMfHIz8/H3a73TmJuaWlBSaTacok5kALkPkUyeHrpOYaVOTMwuTiYl8EDvBVJIcQAkKIX87hYiK2qOBtJ/r7+7Fy5UqvvxjhJnJ6x4bxBQ4CYf5jLBrL0GvxPKCwyzwGdmQRFidIYUHwDEUnI4EMldN0VAmhlR3D//UdxM16HRbFJzsvaMH+dR4oForICZZBZ0REBJKSkpwpcqvV6qznqaurg91uR2xsrDO1FYgi5vnUXUXTVfOQ2WbfeAP/QTcYDKiurvbLOVxMxBQVJpMJ5eXlYBgGmzZt8qnlcCa/qGBCCIHBYMAbuhoMKwqRoGkI224lhkhQrZ35Pey1jMMxnIKiRCnMGArSztxRcsUY9iGK40oPzHietOBnTDzG/2cOGR0d7ZaSmKsXlYUickJl0CmXy6cUMfPt6p2dnQDgZj8hRhHzfEpXhfpa5StU5HhA6Owbb+A/6EePHvXbOVxMxBI5vCt6RkYGli5d6vNJLBwiOQ6HA1VVVegaG8FxMgK7iUOhrBjx0fVwwBzSvXlCTYrRb5k9FTVoNYIdSsCKJCmM6A/Czr7C3yiOKx0WPX6jPY6n13wTGibS2WJcW1sLh8PhdqFSq9VzRjiEg7gPBuGQwnEtYl60aNFE7d2kImaZTOaM8sTFxQmqKZzMfInkmEwmWpMzX/Bm9o1Q+A4jAM7uqXDBX1HBcRwaGhrQ09OD5cuXIzU11e/98Cm9UFycxsfHcfr0aSgUChyOGoPdMPHa1I+NoIAsRXJsE+wkfLqVGCJFtVZ4TdWIzYTTgzFYkyyBAb0B3Jk7YkRxXOky6XHjiX/h6TWXIyM1FampqW4txrxPkkQicaa1wqHbZiYWSiQnWOkqb2AYBjExMYiJiXFOYh4bG4NWq0VPTw/q6+udXlv8f0LSpOEg6MSARnLmCd7OvhGCa4cRf8INJ/wpPDabzSgvL3em3sRQ+vxrHooTfm9vL2pqapCTkwNlehI+/9x9Lk7TuBYOshiLNK2wkvDoVlKTYgxY9V49Rm+34PiAChtSsjCOzsBszAUxoziu9FnGcOPJf+Eva76JHFW8xxZjvtvG9ULFC55wswxYKCInVOkqb5BKpU4xA0xEd/nUVltbG6qrq52TmPk0qafI/Hww6ORNVqnImcO4zr7hv4D+nmxcncP5DqPPPvss6D5Rs+FrJGdwcBBVVVVITU1FYWGhaF9k/uQXzF9AHMehvr4efX19zlk+D1T+Fyympg/aDDqwJAc5mi5YoA/K/qZDAimqtHafHjvusOJIfyQ2peZiDG0i78wdlchRHFeGrEb88OSb+PPqb6Ag2n0Gk0QicV6E8vLy3LptmpqaYLFYEBMT4xQ90dHRIb34LhSRMxejGzKZbEoRMy966uvrYbPZphQx8+fWufZcPUFFzhyG4zg4HA5R01PTOYcH00JBKN6KHI7j0NTUhM7OThQXFyM9PV30/fDHCQYWiwWnT58GIcRZLN1p1OG9nuppH9NpHIWDW4SCBCnMJHQeUSquGINeRnFcMbI2fNknw5lp+RhDi3gbc2FiLk5gC7a1NhN+dPJN/Gn1N7Asdvp06eRuG7PZ7Oy26erqAvBV4Wl8fDwUCkVQRcdCEjlz/XnK5XKkuqRJzWazszasq6sLhBDExcWBZVlYrdY5VRvmCTonZw4ixuwbT8zkHB6omTT+4E0NjMViQUVFBex2e8A6w/g9BEPkjIyMoLy8HCkpKSgqKnJGo55r+hIOMku3knkM7HAKihIlMJHgdytJIEWlj1EcVyycA1/0SbE5bQnG0CjCztxRcsUYtgYmiuPKmMOKW069hSdWX4pVGmEjGRQKBTIyMpCRkeEsPNVqtRgaGkJTUxPkcrnzl3mwWtXn8oVQCPy5Zj5EN3gYhoFSqYRSqXR+lgwGA7RaLYaHh1FdXe0sYub/UygUod62YPh0VXR0dKi34hMLUuRMtmYQQ+AIcQ4PV5EDzN7qODw8jIqKCiQnJ2PZsmUByzO71uQECkIIWltb0draiqKiIixatMh5W6thGB/01gpaZ8BiADuUiJIkKYwkuN1KSm45hkQSDzaOxf5egrPTijDG1ImyJvC/WpwAR3FcMbI23Hrqbfx+5U5sSMj26rGuhaf89Fw+tdXh0qru6oYt9ndgIURy+O/1fBI5k2EYBtHR0VAqlWhpacHGjRudkZ6+vj40NDQgKirK+VnSaDRB8Sn0FYvFApZlqciZK7jOvmEYRpQvm1Dn8HBoj54Mf6KerkCOEILm5ma0t7dPEQSBgH9PAvU62e1253u1YcMGxMbGut3+bNOX4DzU4kzHsNWI8sFYrE6WwECC060UiEJeB+HwWZ8J56QVY4ypEWXNYEVxXLFwDtxZ8Q4eLdmBs5LyfF5HKpUiISEBCQkJACa+43zXVqBa1ReCyHG1xJnv8M81IiLCKWqAiXIGvV7vLGLm611cZz2FU7GyyWQCAJquCncCMfsG8M45PNwjOZOxWq2oqKiA1WrFxo0bg6bkA2XSOTY2hvLycqhUKmzatGnKe9U4Noi9ffVer6uzmXFyQI31KVkYI4HvVhK7HZuHJQSf9hpwTtoKjEsq/Vor2FEcV2wci7srd+Ph5RfhvJQloqwZGRnpVoMRiFb1hSByFkIkh8e1ztMVmUyGxMREZ62mzWZz1vM0NDTAarU6C+Lj4uIQExMT0tfLYDA4U3JzkQUhcgIx+8YX5/BwFDl8qm6yqBgZGUFFRQUSEhKC7qsVCJPOnp4e1NbWIjc3F/n5+R7fq2eaDngRw3Fn1G7Bkf5IbEzNwRhp92uvMyFBBMoD0I7Nw4Hg0z49zk1bhXFJuc/rqEIQxXHFQTj8ovp9WDkHLkpbJuranlrVPc1U8bZVfSGInIUWyRFyrYmMjERKSgpSUlIAuBfEd3d3g+M4aDQaZ3pLpVIF9fXjI01z9T2b9yKH4zjYbDZRoze+OoeHY7oKcN+Xa71KYWEhFi1aFPQPt5ivE8dxqKurQ39/v1un22TqRvvx2UCTX8cyOGw41BeB0rR8jJHAdCspuWJobYH1nyIA9vVpcU7qahilp71+vATSgHdUCYElBA/WfAgr68Cli1YE7DgSiQQajQYajcavVvX5VpDriYUkcnyddjy5IN5gMLjN6HEdjcB3AQYSo9EoisVFqJi3IodPT/HdU2IJHH+cw8MxkgN8JSpsNhsqKythMpm8Em9iI1a6ymw24/Tp02AYBqWlpTOeDJ5uPOD38QDAxNpxoFeGLelLoCfiditJSSRODwfPVuKz/hFsSVkLs+ykV4+biOLoA7MpLyEAHq3/BBbOgauy1gTlmL62qi+ESI6Y5+JwR4wZOXwRc3R0NLKyspxRQ51Oh/7+fjQ2Nrp1AcbFxYlexDyX28eBeSpyApGecp0P46tzeLiKHKlUCr1ej5aWFmg0GmzatCmkzs5ipKuGhoZQWVmJ1NRUFBUVzXiyqdT14MCQeJEXK+fAZz0EZ2cUYZSI160UxRVDZw/uXJ7PB4ZwVvJaWCOECZ2JKI7/re1i80TjfphZO27IPSPoxxbaqm42m+dsB4tQ5sOMHKEEwpzTNWqYm5sLh8OB0dFRty5AtVrtNonZ31IDg8EQ9BSZmMw7kRMIawaTyYSKigq/ncPDUeTwEa/6+nosXbpUUG1RoPEnXeVaKyVUjD7dJE4UxxU7YfFpjxnnpRdDD/+7laQkEqdHTCLszHsODA6hNHEdHJEnAWZm8RlOUZzJPNtyEBbWjpsXnxmyPczUqm4wGKDX66HX6wPaqh5KFkJKjicY5pwymWxKF6CnVCkvemJjY73e01yedgzMI5HDz76pqalBdna2aNNKeXdtMZzDJRIJ7Pbw+ZXLt747HA4sXboU2dnezRYJFL6KHNd0m9BusFPaLhwZbvdhl7PDEg77eg04L70EelT5tVYUVwx9kKM4rhwaHsQZCWtB5NMLHbEGFAaSl9qPIdIWhe8vWxfqrQBwb1W32+2IjIyEWq2eF67qnlhokZxgC7rIyEgkJycjOTkZAJzzeXQ6HXp7e336PPE1OXOVeSFy+Nk3HMehr68PaWlpfr8pfHSjr69PFHdtILwiOXq9HuXl5YiJiYFarQ6rCZx8fYI3jI6Oory8HNHR0V6l2/7S+IUvWxQMSwj29oxia8ZKjKLCpzVkiMKpkdA7nx8dGcS6+LWQRp0CYaaKUBVXjKEwjeLwxEvVePZ4OXp1Jvyi9CxIwuiCSwhBRESEoFZ1PtITFRUV6m17xXzxchJCOJhzKhQKKBQKpKenOycX8+3q/OfJVfR4Cg7QSE4IcbVm4L88YggJV+fw0tJS0VRsOIgc18nMixcvRk5ODo4ePRryfbnibSSnq6sL9fX1yM/PR25uruBfiseG23FS2+XrNgVDAOzt0WFr+mqMMd53K8nZIoyGMIrjygntIFbFrUaUshwcvvrMzIUoDgCkO5LRxw3i7cZ6WFgHHj7zbEjD5KI7ufB4plb13t5eNDQ0hLWruicWUroq3AQdwzBQq9VQq9XOzxNfHzYwMIDGxkZERkY6BQ8hBGlpaQEXOSzL4oEHHsCrr76K/v5+pKen47rrrsMvfvELUaJ+4f2NmIHpiotlMpnPF2xPzuFifkhDLXLsdjuqq6sxOjrqNpk53IxDhYoclmVRW1uLoaEhrFmzxpmXFspfAlCLMxOf9I7g3LS1MEiEdysxjggcGxwN4K68p1w3hBJuJVTqKnCYEDZzI4qjQlXnV2Lx/ZZm2FgWj245DxFhcDGarbtKrFb1ULLQ0lWhjuTMhEQiQWxsLGJjY5Gbm+usD9PpdKirq8Nll12GzMxMZ/nH6OjolAnxYvDb3/4WzzzzDF5++WUUFxfjxIkTuP766xEbG4tbb73V7/XnpMhxtWaYXFzsq5CYzjlcTEI5J4dP56hUqimTmcNtfo+QFnKTyYTy8nJIJBKUlpZ6HbY/ONSKCl2PP9v0iU/7hnB26jqYpCcE3V/OLYORhG6o3nRUjQ5jGVkOTXQdONjnRBQnw5GCPm7Q7W9729tgcXyMP5yzFfIQR0G8TdF6alXnUxHd3d0ghITUVd0TCymSE4zCYzFxrQ9bvHgxGhoa8OGHH+Kf//wnKisrkZCQgPXr1+O8887Deeedh9LSUp8me0/m0KFD2LlzJy6++GIAQE5ODl5//XUcO3bM77UBYO68A/iquNhms3kUOMDEG8UbbwpldHQUhw4dgs1mQ1lZWUAEDr+3YEdyCCHo7OzEsWPHsGjRIqxdu3bKHIVwEzmztZAPDg7i0KFD0Gg02LBhg091CWLNxfGF/f2DkJhWzno/GRQ4rQtNR5UQasdGMDRWCBW3AkPW0NcMzYRGokJVn+eU34HuTvz4k49gCnFTgL9zcvjai+XLl+PMM8/EqlWrEBMTg6GhIRw9ehSHDh1CXV0dBgYGYLOFZlhjuKVwAslcf67Jycm45pprkJOTgx//+Mdoa2vDTTfdhI6ODnz729/GQw89JMpxSktLsW/fPjQ2TswVq6iowJdffont27eLsv6cieQInX3jTbpKiHO4mARb5PDRKa1WO2M6JxxFjqf9uJqFFhcXIz093af19w80oWa0z99t+sURnQ4bsApQVEzbrRThKMK4Yzi4G/OStvFRSLVZiJYbMc5ZQr2dacnkUjDADk57+9G+Hvzo4//iL9u2Qx0iR2gxhwGGg6u6J2i6au7Bz8nJzMzEddddh+uuuw6EEFit4tjL3HPPPRgbG0NhYaHzGvnrX/8a3/72t0VZf06IHG9m3wgVEkKdw8VEIpEETeSMj4/j9OnTUCgUs4YVg7kvIXhKV9lsNlRUVMBsNvtlFkoICWkUx5VjOi02ytaDizg+RehEQIGTI2Mh2plwimSZONE1hKzYeEg0eoxy4Rd5ipUoUd0zuxVG+eAAbvzofTxz/nbEyoPftRTIicczuarX1dXBbrcHpVV9oaWr5oPIMZlMUyYeMwwjWmffm2++iX/+85947bXXUFxcjPLyctx+++1IT0/Htdde6/f6YS1y+PQUn34SMtxPSLpKq9WisrISMTExszqHi0mwCny7u7tRV1eHnJwcLF68WNBrFm6RHNd0Fd/uzju9+9NB8kl/AxrHp/9FH2yODPVjfcI6SOQn3dqyZY4iGMI8iiODFJ0DE6Kmc3QMGVws4hMk0LKGEO/MnSwuFSccwt7zmuEhfO+D9/DcBRcjIchjFYJp6yDUVV3sVvW5nsLxBo7jRJkcTwhBo6kJh/RHUKbZhCWqAhF2J5xAd1f99Kc/xT333INvfetbAICSkhJ0dHTg0Ucfnf8ih2VZp2Dh3bJnY6ZIji/O4WIS6HSVw+FAbW0thoeHvSqeDtd0FSEEXV1daGhocLa7+/N+cYTg2aYvRdypOBwfGcCa+LWIVJwCBxYRUM2dKI7pKyHWMz6OVE6FxCQGw+x4CHf2FTESBWoERHFcadJpccMHu/H8BV9DSpA9e0KRyglmq/pCSlf5G8nR2/U4MnoMR/RHMWwfQYY8PegCBwi8yDGZTFOEr5g/vMNa5PDCxpsvhUwmg9k81cTQV+dwMeHTQoH4xcbP9omIiPC62yjcJjEzDAOHw4GqqiqMjIxg7dq1iI+P93vdj/rq0GIIz+jIKe0AVmhWQaWqgMxRCINjKNRbmhHXKI4r/UYjEokSqSlS9Dv0wd/YJHJIGo4LjOK40j466hQ6GUHykwoXg85AtqovpHSVL1ErlrCoHq/BIf0R1BnrweGrC/3WhPPE3uKs8AMEA+mptmPHDvz6179GVlYWiouLcfr0aTz++OO44YYbRFl/Togcb/AULfHHOVxMeFUv9smst7fXaWexePFir79Y4RbJYVkWg4ODUKvV2LRpkyihcpZwYRnFcaVSP4RV3GrUm8IjCjITk6M4rgybTGD7opCRFoceR+ja39WSKNT0+n787vFxXP/f3Xj+wouRE6sRb2PTEC4iZzJitqovpEiON4XHA9YBHNIfwbHR4xj3kO5NiEjA2pjVYm9REIF2If/zn/+M+++/HzfffDMGBweRnp6Om266Cb/85S9FWT+sRY4vuNbkiOEcLvbeAPHmJ7As62wJXbVqlfMk5C3hVHg8MDCAvr4+qFQqrF+/XrRffe/31KDD6F3aIhSwY0rEmCJhVTlgIqFp850NKSQeoziu6CwWcL1yZKUnojNEtUV5JB3H7f7VXw2YjLjhgz147oKLURDnfzRxJsJV5ExmslXAZFd1fmouX9PjWvO4kGpyZjvPWzkrTo+V45D+CFrNbTOudV78OZAwoXndAp2uio6OxpNPPoknn3wyIOuHtcjx5QvPt5CL5RwuJq4ix9+CNKPR6DYMzx/vqXCI5LgK0qSkJMhkMtFOhg6Ow/PNB0VZK5BM1I/oYHY4kM8lQxI9BAMRp01TTDLNcWgwzd5FNWq1gu2OQG5mMtr8FBveomLkqO0TJ4o0Yjbj+x/swbPnX4yiAM3QArwfBhgOTNeqrtPpPLaqLySRM91zbTd34JD+CE6NnYKFm/37HS1VY5PmjEBscVb4dFU4XD99JaxFji9IpVJYLBYcOnRIFOdwMeHTb/5GTXhn9EWLFmHJkiV+nzRC3V1ltVpRUVEBm82GTZs2YWBgAEajeMPl3u2uRLdJL9p6gcK1fqRFp0c2lwipRotRbmqNWaiQQoJhg/AfHwa7HZ2dBPmZqWhx9AdwZ+7kIx3H7eLVNemtVvzgo/fwl23bsTI5RbR1XZkrkZyZmK1V3Wq1IioqClFRUfPCVX0mXNNVBocRx8dO4LD+CHqt3s3o2hK/GRES/7u0fMFkMoEQQkVOuMCyLLq7u2E2m7Fq1SpRnMPFxh9BwXEc6uvr0dvbi5KSEqSkiHOyDWUkR6fToby8HHFxcc56qaGhIdH2Y+dYvNB8SJS1AkmsVInqbvd0WsfoKBYRDeLiJNBx4TFReJksEycs3pmFmhwOtHSasSQ7DY32wA9hVErkqOsT3+9r3GbDDz/6L/649QJsSPNtEOVMzAeRM5nJreo1NTWw2+3Q6XTzwlV9JhysA632Nrzb8x4qx6vgIN5N4geAKIkcm+PODMDuhGH6X8SWipwA4c0Xnu8uAr76YoUjvraR815NAER1RgdCI3Jcp01PbucXcz//6apAnyX827FzSDqOeYh0dI+NI42LRmIig+EQz5+ZqMXxLapkZVnUtxuxLCcD9fbAeoYtRjqO2wLTnWZy2PHjvR/g8XPPR9miTNHXn28ixxWGYSCVSqFUKpGXlzcvXNU9obPrcER/FPtjvoDRT1uWMk0plFLxzvXeYjAYIJVK57T4nHufoElMdg5PTU3F8ePHQ72tafFF5AwMDKCqqgrp6ekoLCwUPacdbJHjcDhQXV0NnU7ncdo0wzCi1CdYHQ580d7h9zqBRiNRobJn+uLcPoMByZwSKckSDLChE2zLZJk4YfIuiuOKneNQ3TaGoowUNDEDIu7sK5RMJBoCEMVxxcKyuG3fR/jt2efhvOxc0dZdCJ1HrnUqk1vVHQ6Hs2trrriq8ziIA1Xj1TikP4J6YwMICOBnlYSMkeHc+LNF2Z+v8J1V4fq6CyHsRc5MFzxPzuEmkylgs2jEwJtOJo7j0NjYiK6uLixfvhxpaWkh35O/8BG3yMjIae0mxBJdb9RW47P6HqzPy0WFfebuhVCSjVQcc8x80R80mZAwoEBaShz62OC3ZfsTxXGFJQQ13Ubkx8eiSyW+GCmQLMIxW+CLnO0ch5999gn+b/M52J63WLR1w/GcJSYzzcmRyWQztqpzHOdMa4WLq3qftR+H9UdwbPQEDCJHWjfErkNsRKyoa3pLoNvHg0HYi5zpGB0dRUVFBRQKBcrKypwXS6lUCkJI2IocoTU5ZrMZFRUVYFkWpaWlAf2gBavwuL+/H1VVVcjKykJBQcG0JzsxRI7ZbscL5adAABxrHcIZefkot7f4tWYgiJOqUNklLDoyYjaD64/CorR4dDuC2w7vbxTHFQKgRctihTID9Yx4qSsFExHwKI4rDkJw3xefwexw4LIlhX6vF67nLDHxJlrlqVVdp9NhaGgIzc3NiIiImLZVPZCYHTaUG07hkP4I2sztATkGAyYkw/8mQ0VOCJjNOZyvZnc4HEH70HuDkHTV0NAQKisrkZKSgqKiooB3hwU6XcVHpLq7u7FixYpZC6bF2M8/a6owbP4qH360dQBn5OSjnA0voZPJpaKfFZ660VksYHsikb0oER324MyfESuK4woBUNE9ivU5uahkxYmyFUgW4bg1uJOiOULw0MEvYHE4cPWy5X6ttRBEjq8Tj11b1bOzs2dtVQ+Eq3qlvhe7e6thJH0Yl5wWde3JrIpegeRI3+aeiQkvcuby5zLsRY5rukqIc7jrLBpRYNshsfwDJGINiOwsQOKfHcRMIofjODQ3N6OjowPFxcVITxe/g8MTgRQ5FosFFRUVsNvt2LRpk6BfBf7W5BjtNvy94tSUvx9tH8AZ2YtRzjX7vLaYxEvVqOzyXqiM2WxguyKQtygZrT5YFniLmFGcyRxvH8KG7DxUcK1+rSOHDM39oZkUTQD89ughWBwO3LBile/rLACRI9acHCGu6rGxsc5Ij6+t6nqbGe/31WJ3bzXajBPfga/l2DEeYBecbQlbA3sAgRgMBhrJCRZCncP5Cn7RRI40B5z8CsgMPwDIL0Bka0EizgEXeS4g8b5GZrr6l8liIJgte4ESOVqtFhUVFUhISMC6desE/7Lydz//qKqEzmLxeNvRjn5syFqMChJ6obOIS0Uf69vsGKPdjvYugsVZqWi2B27+TCCiOJM51jGI9Vl5qCS+C52l0kwct4TW7+uPJ4/B7HDgljXrfHr8XBwG6C2BKq6ezlVdp9Ohvb3dq1Z1jhAcHWnHu73VODDUCjv56ny9PjEGg/Zq0ffvylLVEmQpxO/c8wWTyTSn28cJIeEvcnjn8NbWVsHO4a7WDqIgWwpH9N8hG/8BJI6jgOMopObfgEgLwUWcAy7iHEBWJGgpT/UvIyMjqKioQGJiItauXRv0tkmxjUMJIWhvb0dzczOWLl2KzMxMr9b1R+SMW614qXLmUPKxzn6sz8xHJWkBQvTDOUGqRkWXfxdls8OB5g4zlmano8HeK9LO3AlkFMeV452DWJeZhyp4L3RknAQN/XrxN+UDz1ecgsXhwE82bPT6sQshkhMMg05fXdX7zGPY01uN9/pq0G/xHBVMU4+iP8BRnPPDJIoD0EhOUKiqqoJWq/XKOZy3dhAV6WI4ol+EbPz7YMhEDQXD1kPK1kNqeQZEkgYuYgtIxDkgsvUA43lCpWuUiRdwbW1tKCoqQkZGRkhOcmIah/Lu4aOjo1i/fj00Go3XazAM47PIeamyHKPW2UelH+8awNpF+ahFKzgE/xd0BpuCXi9qcabDyrKoazegOCcDdSLPn5FCgq5BzxGxQHCiaxBrM/JQw7SBMMLfkwImHeV2feA25iWv1FTCwjpw38Yyr75PC0HkhKJNfqZW9brGBpw0D+C0dBT1Dt2MZ4JijRr99tqA7jUrKhNLVUsCegxvmOuWDsAcEDn5+fkoLCz0KroharrKbeEcOKJfgszwfTCc+wWF4fogtb4BWN8AYaJBZGeCizwHJOJMgPnKpp6PmlitVlRWVsJsNmPjxo0BtbKfDf6Xlb/58vHxcZSXlyMqKmrGlKKQ/fgSutdbLHilukLw/U92D2B1ei4apO1gEbw5QUnSaJR3ipdasXMcqtrGsDI3EzX2LtHWLZJl4qQx8FEcV072DGJ1eg7qpe2CxGckI0XXcPj5e71ZXwuLw4EHyjZD6sV3ar6LnGBEcmZDJpNhTMHgffTiA3sdRokFEBD4L4izoDfAnrnbwqCjypW53l3FMEz4ixy1Wu21YBE9XeW2+KKvIjpcp8e7MGQcjP0DSOwfgEAGIlv/vzqecyCVSjE+Po5Dhw4hLi4Oq1evDvlUT1eR4yu9vb2oqalBTk4OFi9e7NfJ2td01d8rTsFg8+4sdLp3ECtTc9Ac2QEHCc6soFQ2Gd2cuMPwWEJQ3qbH6pwsVDs8fy69QQoJuoMYxXHldO8QVqbmoCmiY1bxWSjJxHFzaFzOZ2N3cyOsrAOPbD4XMgEX9oUSyQmVyDE6bPi4vx67e6tRM+ZdHVumXIZem3/F8bORHJmEldErAnoMbzEajc7i7rlK2IscX770AYvk8EjSXITOzO2vDBxgHIcBx2FIzY8gUbEKreOLkJu/HUsyV4bFSc0fkcP7afX19WHlypVITk72ez++pKu0ZjP+WV3l0/Eq+gexLCkDHfJuOJjARnSSZDEo7whMgSxHCE61abE4ToNOtd6vtUIRxXGlon8Iy5Oz0B7V5Vb46YoMUrQN+jc2P9B81NaKJLsCt52zEZGy6Qvvw3m2l5iEIl1Vru/B7p5q7BtshJn1raCmWGNHoCdTbY0/FxImvCYLG41GZGdnh3obfhH2IscXAlKTMxlJ8oTQMfwADNsk+GEp6nJslIzjCDmAnv4kpCjOQkrUZsTLV0HChObt8NUd3WKxoLy8HBzHYdOmTaL5afmSrnqh/CRMDt8rAmuHtMiLScaIZgQWErjKwlRHMrq5wHVDEQBNOgfWxWSjivPN0iKUURxXqgeHUZS4CD2KHlg95BOKpJk4YQrPKA5Ppjwa7x6qR0//GH77rW2QR8z8HZ/vIidY6SqtzYT3e2uwp7cG7Sb/5Em6IgqjssDO14qVxWKDZn1Aj+ELJpNJVJ/EUBBeslEkAh7J4ZEkwKH+O4hUWGcVT5KyBduiM2FnR9BueBNHh/8fPum9CKe1v0KfaR8cIXCc9nbq8cjICA4dOgSVSoUzzjgjIIahQoXOoNGI12v9b+tsHTMgxZgGpWSq1YQYpMhiUd4d+Lk2AHCiYwQrJHk+PXaZLBMDxvBwPa8bHkGqKQ1Kxr2+SwoJOsM8igMA6XYVOEJwrKUHd7z6IYxWz+lU/rM+30VOINNVLOHw5XArflaxG1878Dz+3HzAb4EDABuSpWAR2OvJOfFbIAvRj9yZoIXHQcDXdFXAanImI9HAoX4BUsOPIGErBT8siqvGtuhl2Gfoh41YYSdj6DV9hF7TR5AgAgnytRNRHsVZiJL6nwKaDaF1MIQQtLW1oaWlBUVFRVi0aJHoe+Hfc6Hh+7+Wn4RFpPe7cUSLfJIMSfQQDJy40YwkeyI6SWCMKT1x3If5M+ESxXGlcUSHfC4ZnKofFmbifQ5Wa7s/ZESqUdf8VWqyvKMft7/yAf7wnQsRo3AX0gtJ5Ij9HHvMo9jdU433+2owaBXXPyo+MgJDbGBnaiklSpypKQ3oMXxlPoiceRnJCUq6yhVJDNjo58HJ1nj1MDlXi63qJEQyCre/c7BjyHoE1frHsK9vJ74cuB5NY3/HmD1wXzYhIsdut+P06dPo6urChg0bAiJw+L0Awoaj9RnG8WZdjajHb9HqED2agFipeNGpVFksKnqCP6zueOcgSiA8olMky0R/mERxXGnR6aEc1kANOSRBbm33lUVsNNhJn+GaniH8+OX/Qmd0H7C4EAYBAuKlq6wOBz7ubMHNJ/+Nyw7+DS+2HxVd4ADAmalRsAcwfQ0AZ8WVIUo6/XDCUEJFTpgStHSVK4wKrPpZcLIzvHpYJNeAbeo4RDHTXVAJRu11aBx7HgcGvoNP+y5Drf5JjFhOgojYDTSbyBkfH8fhw4dBCMGmTZsQGxs4d1xvCqGfO3UCtgC81+36UUTpNFBz4vifJdgS4SDBa1N35UTXIJaTPMzWkS2FBD1hLB76LBZEjsRilSw3bNJp05EaqUR9u2dR29Q/gltefB/D41+l2xZCJIcvrvZH5DRoR/DokYPY+q9/4q2ucpzQdQVsylW0TIZRP6ZwC0FKpFhqKYDJZAo7oUsImRciJ+zTVb4Q1HSVCwRRaNPejWhyH5Jj6wU/LoJrwnnqPHxmlMDEzfxrxMz2os3wBtoMbyBSEg9G+i3EyUtQHF3k16+BmYRhT08PamtrkZubi/z8/ICfiIWKnJ7xMfynoS5g++gcHUOiWY24VCt0xPeLalpEHCraglOLMx0nuwexOj0P9dK2aefPhLqjSgiDJjPSW9RIiVJiwBa+NTnJBhlaZkh3tg/rcfOL7+FP11yEVI16QYgc/vvs7XMct9nwQWszdjXWo3ZkotBcESFDSwDtTADgrDQlhrnAWpqURCyHccSIY63HQuaqPhNz3dYBmAMiJyxbyD3gcDhQXV0NnU6HVav+Ai7iYUjs+wU/PoJrxbmqbOw3SmDgxgQ9xsZpISUv46BhPf7WaUKheilWxa7EipgSaCK8i7R4iuRwHIe6ujr09/dj1apVSEoKjiuua03OTDx98jjsAXRPB4Bhmw1JgwqkpMkw4Bj1aY14azzag1iLMx2newexKi0HDbIOcJPmz4R7FIenWKZBfcswkmKUSE9Ro9cmforCXxJkUejoml2AdWvH8KMX38Ofr70IyeqJHyjzWeTw32ehkZwT/b3Y1diAT9pbYZl0Pi/JjkWFVS/2Fp3IJRJYGN+6E4UigQSXZn8dCZEJHl3V1Wq1U/QEwlVdCDSSE6YEuyZnbGwM5eXlUCgUKCsrQ2RkJFjyOGC8BxL7x4LXkXEdOEeZic9NGoxxekGPYYkRS6KOQsZsRPl4DarHa8CAQbYyG6tiVmBV7AqkR83uZj5Z5JjNZpSXl4MQgtLSUigUihkeLS58S/tMkZyOUT12NzUEZT9DFgsSB5RIT4lDr0Pn1WPTZXGoaA9tFMeV8r4hlKRkoTWyCw6XjpFlskycCPMojoQAY4MT3UlDYybEcwpkpkejyxoa9/HpWCKJR6XAMQEDowbc/OJ7+P23JvyK5rPIERLJGTaZ8G5zI95pakDnmOcfFRESBl0ksPVtm9OiMcq2B/QYa2JWIyFyYtDedK7qOp1OVFd1b+A4joqccCVYkRxCCLq7u1FfX4+8vDzk5eV99cFjIsCqfgeYIiGxvSd4TSnpwhZlOg6YE6BnhV10WGJGrvwQZCjDiXE9CAjaTe1oN7Xjnf7dE5M0Y1dgZcwKLFblexw45SpyhoeHUVFRgdTUVBQVFYVkQulsNUJ/OXkcjgBHcVwZNpnA9SmwKC0B3Q7hYkBji0dbGERxXKkaGMaypEXoiuqBDQ5IwrCjyhNLoEaXSx2L1mCGpjsKuZmxaLP4FmUTm/iIKDS0eXcBHh434dZ/fIjvLkua1yJnukgOy3E40N2JXY0N+LK7E45ZIrgrc+JRZQtclEXKABJZjyCrB3+YycJBiKs676g+m6u6rxj/V/dGRU6ACdcWcofDgdraWgwPD2PNmjWeR18zUrDKXwOIhMT2H8FrS0kvNitS8KUlCVqHsBMmR6zIjPwS0tgzcXRU73bboG0Ie4f2Ye/QPqilapTELMeq2BVYFr0McslE3pf31GpubkZbWxuWLVuGjIwMwXsWG4Zhpk1Xtei0eL+5Mcg7ArQWM9heObIyEtFpn30IXUZEfMhrcaajdmgEhYnp6Ff2IV+ahpPGQM9z9Q8JGJhGpn6n9SYL1B0cFufEodnsXZQtECyVxKHS4b2oHbPY8PfKPkRG7cfqvEVOd+xQ+zyJCd8+zp/TO8dGsauxAXuaGzFkFlZfJWWAIUlg3+czU2KhE8EaZSaKVcuQISDCDnjnqh4XF4e4uDhRrIJMpon3hIqcIDDTBc8TgY7k8EaUcrkcZWVlkMtnGB7HSMAqHwBhIiC1/kvwMSRkAGdGJeGwNQVDdmEnTQ42pMm+QJlmMw7q9R7vY2ANOKw7gsO6I4hgIlAUvRQrY1aCYQg6OztBCPHK8T1QzBTJeerEMXAh6kQYtVrBdUciLzMZrbaZBUyMRQOOhKfIAYD6YS2WxKdC6whyJ6IPrFImocHoWVgaLDZwbQSFefGoF2H4m6/EyiLR1O57ys/s4PDs8Xb8WC5HYn8/HA6H2691pVI5pyM9HMfBTgj2/C8ddbK/z+vOqBXZ8ai1BlaAqKIGYQ5s1zi2JfpuxDmTq3pLSwvMZjNiYmKcn5vo6GifxLLRaERERMTM17c5wJwQOd4SyJocvtMoJycH+fn5wj48DANO+QsAckitrwg+loQMYZOcxVGkYcDeJ+gxBA4kST/H5rgt+EKnn/G+dmJH5Vg1KseqIZFIEEMKsSR1NTIldoRW4kwvchpHhvFRa2CHc83GuM2Gzk6CxVmpaLZ5rr1YJEtARVf4ChyeWIscxmErYmIiMeYIsMWyjzAEMAzOvDeT1Q6u2YDixYmoCZHVwzJpIiqn+TwIxWx34E9fNuCRK8/DqtQ4aLVajIyMoKWlBREREUhISHD+Yo+IiBBp54GndngIb9ZW48OuVpg7fPv+MiAYjxhHIIcPb0yKwbDd/+npM5GnyMViZb5o68lkMiQlJTkbQywWC7RaLbRaLbq7u8FxnJtYVigUgsSywWCY88IamKcih4/kiGl4x7IsamtrMTg46HOnEaf8KYBISK0vCH6MhGhxhpzDCWYRem3dgh5DwCJOsh/nxJ2Nz2YROs69MRzGYutRZZDhqS8OIFsVj7NTCnB2cgFWxmVAEuQP+nSFx38+cSxgczG8wWi3o6WDYEl2OhptvVNuj7bEgiC8RY4MDIZ7jRgcNWIRFwOpRgKdI/xqc1apk9HYObtwsdgd6G0axYqCJFSagjt4US2NQEuHOIXbFrsD97z+CR7+5rk4qzAbWVlZzu4brVaLtrY21NTUIDo6GvHx8UhISPD513ogGbNa8X5LE3Y1NaBB6/9rszwzHo2WLhF2Nj1JKj0GAh3FmaEWRwyioqKQnp6O9PR0EEJgMBig1WoxNDSE5uZmwa3qRqMRKpUqoHsNBvNW5BBCwHGcKG13BoMB5eXlkMlkKCsr86vIi1PehpbWbizJ+FDwYyREj/WRHE4iC902oaFaDjGSz7At4WzsHRFWlMmBg1VajXPTl+PTXi1ebj2Kl1uPIj5Sic3Ji3F2SgE2JuYgShr4X5CeTDprhgbxSXtgh3N5g8XhQEO7EctyFqHORYBmRsyNKM5qZQpqOyb22T0yhjQuGtIECYbt4TN/hiGAeZYojis2B4uOBh1WL03GaVPw3oOSiCRUWsWb22JjWdz35id44LJzcN7yvCndN1arFSMjI9Bqtejp6QEhZMqv9VBACMGxvl6809SAfR1tsIoYUWeVZiCAH82VcdEYsIs7PX0ymZG5WK4uDugxXGEYBtHR0YiOjkZ2djZYlsXo6Ci0Wu2srerB6Kzq6enB3XffjQ8++AAmkwmLFy/Giy++iHXr1ol2jDkhcrytyeGLrliW9Vvk9PX1obq6GllZWSgoKBDl11Lb4HZkLMqFijwj+DEMGcPaCA5SJgcd1naBjyJQ4jNcmHAOPvRC6BiZKpyfUYKPe/QAJhx93+muxDvdlYiSRmBjYg7OTi7A5uTFiJcHxqHWU7rqzyeOBuRY/mBjWVS3jWFFbhZq/idAVea5E8VxpU83jhROBVmyEv1hMmhvpSoZTQKiOK44OA4t9SNYW5iCk6bAd7appDK0dYhfC8RyBA+8/RmsDgcuWrXE7Ta5XO72a318fBxarRYDAwNobGx0FqLyBcxiFKLOxKDRiHebG/BOUwO6x8Vv6S9Mi0WLqUf0dV3JjTWiNwBRnAgoEMUVoHOcwUXZZ4Q0/SOVSp2fC8Bzq/rrr7+O1NRUJCQkBDRdpdPpUFZWhnPOOQcffPABkpKS0NTUhLi4OFGPMydEjrfwQsSfuhyWZVFfX4/+/n6sXLkSycnimWRKJBIYuG8hShkLifm3YAQmYBgYsErWBgny0WYVHtGQ4zNcnLgF7w8LO/kQEIyiChcuKsGH3Xq32yysHfsHmrB/oAkSMFgZlzGR1kopQLYqXvCeZmNyuqp8oB+fdwZ2OJevODgOFa06rMrLxhgxonIORHFWKVNQ1zF1nwOjRiRySmSkqtETBoP2rEO+XXVYQtBYP4wNhWk4ZhJWz+YrJZHJqLIEZvouSwh+/c4XsNgduGz9Mo/3YRgGMTExiImJQU5OjlshalNTEywWi3PGSkJCgmgzVhwsh4ONndhzqgHtijE0jQau6yky1gEE0MljaYwKfXbhU+png3CAiuTAaEvECb0WVk6P1KhonJ9SKNoxxMBTq/rJkyfxySef4OTJkyCE4KqrrsK2bduwbds2ZGZminbs3/72t8jMzMSLL77o/Ftubq5o6/MwJNwMMzxgt9sF+Ri5snfvXmzcuBHR0dFeH89kMqG8vBwMw2DVqlWih34PHDiAwsJCJCUlgbH+G1LTw4KFDgAQyFHDFqLZ4l0Bn8m6DnsN3r2OSZIVeL9LL+i+eeoEnJ1cgHOTl6I4LtWvE+mRI0eQnZ2NtLQ0AMD33n8Xh7oDm4/3FwnD4OzkLHw6EJ5ijEcGBll6NQZGp79qxKkUkGRI0BnCQXsrlUlorvOvloMBUFyUgqMBEjpREikSBuTQmwJfy/T/zt+Aq0tXeP04fsYK/4tdIpE4f83Hx8d73T3TMazHe6ca8EFFM7RGM/Ky41GFwBV75ydGo1sRWKF6SW4kem3+NzQokAA4slExOAr9JGPPnyw5G1dmeWfiHEqeeeYZvP3227jwwguxd+9eHDt2DIsXL8YPfvAD/OQnP/F7/WXLluGCCy5Ad3c3Pv/8c2RkZODmm2/GD37wAxF2/xVzIpLjy8XS1w6r/v5+VFdXIyMjA0uXLg1IMZ9UKnWKNiL/JlhEQmr6JRgIEyAMrCiW1kEaVYwGi/B5MUr5CeyI3IQ9WqvgxwxxldiRXYI9HbOnu1oNI2g1jGBXVyVSrSkoiE7COTm5KM3IhNzLcLlruupEX2/YCxwAyIvS4PjxbmwsysARY2BD6/6wQp6IhtGZxYPOaEZstzykg/bsw/7PuiIAqusGsLEwHUfMUwvE/WWVPBlVQUiJAcBTHx+DxebADWd7d6FUKpVQKpVYtGiR24yV7u5u1NXVudVkTDebx2JzYF9NK9473YCKTvfn69AQQO/PM5uZ2ESgO4BRnEyVAv22Jp8fL0EE1GQJeg2ROD42AuJB8GkiFNiZUeLPNoOO2WxGZmYmHnzwQTz44IMYHR3F/v37RVu/tbUVzzzzDO68807cd999OH78OG699VZERkbi2muvFe04c0Lk+IK3s3I4jkNDQwN6enqwfPlypKamBm1vRL4TLBMBqfHnYASO2WRgQ6G0ChLFCtSZhdsbSJjDuCy5FP/xYsLtgKMKO7OX490OYZ5aOrsJrLwPYyNW/Lu+FkpZBEoXZeK8nFxsyc5BXNTskTHXdFU41uJ4QmOKRB8hqKrtQ+myDBwKQ6EjJQz6O4WJllGTFeoOEpJBeyuUSaJ1KwFAVX0/Ni1Nx2GLeEInUiJBT7ew74RYvLD/FCx2B27etsGnx0+esWKz2ZypLb4mw7WAuV1nxHunG/FJdQuM1qmpw+wMDWr1gbMDyYxTodYY2CjO2iQGvXbvp6dHIwtGazKq9XoYHDNHPK/IXBWUhg0xmdxdFRsbi507d4q2PsdxWLduHR555BEAwOrVq1FdXY1nn32WihwheCNyJvs0KZWBKabl4acLu0IiL5qI6Bh/BgbC6hAYOLBEUgmpYhWqzcLduFn2EL6RvBH/GbQJTpL1OapxSU4x3mkXlr4Ys1vAqUdQIElE08AoPmlvxSftrZAyDFanpuG8nFycm52HrFjPRqJ8d9WRnm4c6w0/sTCZAmUc6uq+aluuqO1DaVEGDgW4WNJbVqtSUGcRXjMUqkF77Ij4w1AqG/qxqSAdhz20/PvC6qgUVBuCb9nx6sFKWOwO3LF9k9+1NZGRkUhJSUFKSgoIITAajejsG8C/j9Xiy9YB9Btn7myTJkmBAOrflJQIDIocxeE4OzjWColUjhSFCoMO4WkqOWIRweahadSOY+YxQECDgVIagW9mrvJ9wyEi0C3kaWlpWLbMvc6sqKgIb7/9tqjHmRMiJ5DWDoODg6iqqkJqaioKCwuD4vQ6nQAjkVvBMk9CargDDIS1zTJwIF9yClLlWlSYagXvwcEeweXJ6/HWICtY6PTaa3Bp7jK80zYOAgHDpBxWcIohFKYlo75PD2CikPJEXy9O9PXit4cPYnFcPM7LycU52blYkZzifK95IfjY4QOCn1MoiTFEYvKls6KuD8UpKtREBTDW7gUyMND2er+XYA/aW65MDEi3EgBUNvVj0+I0HLH1gfihD2SMBP3doatXeutYLax2B+7ecRYkEv+LiAkhON7agz2nGnGgvgM2AT8Q01OiUa0L3DyilBgFak3iRd5Mxg5ohw7DMNaAiUQmA5JaDJU0G8lxKdM+jiFSRDMFGDKqcHJ0BCzxLnK1M6MEsRGhaen3B5PJ5NM8OKGUlZWhocE9C9HY2Ijs7GxRjzMnRI4vzFaTw3Ecmpqa0NnZieLiYqSnC/MREQPXmpzJkIjNYNV/htRwGxgISykx4JDDnIBEtR6njcLnPNjY4/hm8lq8PQgIlTo9tlpcmluId9pMgiqITKwN/fIBFKenoqZ36k++Zp0WzTotnjt9EklKJc7JzsW5OblQcBw+bqxHrT70fkSzsVQZj/o6zyf79gEzSpdk4JA19BGd1aqv5uJ4i8XuQG+jHiVLklAV4EF7jDawvRCVzQM4Iy8Nx9h+cD6OllyjSEHNeGiNV/ecboTVweIXl2yBTOpb7eDAqAHvn27E++WN6NN7103HqmwgAZw+nJ0WhQqTOCa8upHjGOh5H4AEcL7nBM0DNWjqr8YZxaVYmuXe+aRi0mC3ZqBaPwa93QRfhvREMFJ8O2utv9sPCQaDAXl5eQFb/4477kBpaSkeeeQRXHHFFTh27Bief/55PP/886IeZ96KnJnSVRaLBeXl5XA4HNi0aVPQDchmS6WRiFLoVX9F5/hfkciMIRmNiGBm/oIxIMjGMYzblqA5UvgF1cqexOUpq/D2gBQOgSf8bls9LslbgnfbLGAFPMTM2tEV0YeSzHRUdU3/C33IZMKbdTV4s64GckaCggCnDcVCZZj5a1TR2IfSggwctvb4FT3wBxkYjPT4N/vGxnLoqNdiaXY0GkhgohjLlYloDVAUx5Wq1gGsy0nBKTIg+HPPIwWD4d7Qt9cDwMdVLbDaHXjo8nMRIRMWhXawHL6o78B7pxtwrKXHJx+45AQV2rnAvQZxSjnqRKqfMhk7/idwAEz6acY3Fx+tOYS46DhkxOUhiluMtjHgmFEHIemombgwtRDJUd53+IYDJpMpoKUb69evx65du3DvvffioYceQm5uLp588kl8+9vfFvU44TUHfBrETFcNDQ3h4MGDUKlUIRE4gOeanMmoI1chVX0TTpt78YEpEl/aV6OJbIQBaTM+bnlcI85QLfdqPxZHOXYmmCDz4lzXbW3EztxIyAS+N1bOgTamB6uyPbi1e7o/4VBtNGBtapqAxFjoKFQmoKFr9hRORVMfNkakQxKiZ7NKmYKBUf8vSiwh6OswYSkXmFx9gA2m3ahpH8QqkowIxrvT4Gplyozt98Hm8/oO3PPGXljtM6fn24d0+NNHR/D1P7yGX/x7H440d/tsdBufpQqoSe6STDVsnDhhIu3QYcx2qWMYCWqae3C8Lxn7+nRoNfr/QWQAfDdnvd/rhIpgTDz+2te+hqqqKlgsFtTV1YnePs6y7NwQOb4wOV1FCEFTUxPKy8tRWFiIkpKSoNTfeGKmdJUr8fIVOCPpKUgZBYZtjagxVeET4xj2WgpQxZViEEVgydTnkIajKFV7J3QcqMMFqmFESYS/Jt3WZuzIlSFSYJu9nbBoJF1Yk5Mo+Bgn+/uwOjUt6N5ZQlGOC3+9Klv6sV6SCpmXF1V/majFEW+CMUsIerstWKeYvo7BF4oUCWjpD66LeF3nEEociYgS+J5IwEDfbw7wrrzncHM3fvLPj2Ca1AFlstqx51QDbnxhN67+y9t443C13zN94mMVqNQHbuClWi5Dk1WcjiqOs/+vBmfm8y0hHLqGK2AR0bttc1I+ckQckBpsjEajT3PmwgmpVDp/RY5rSshqteL48ePo7+/Hxo0bkZGRETZ7mw1NZBE2Jv0FkRKN829Gthct5gocMnZiz7gGn40Wo51bCyu+6lRKJkdxppdCR6boxCWJY1BKhGcxe6wtuDiHQZRAocMSDvVcB9blCRc6p/r7sDI5JejiYDaKlIlo6PauELe6bQBr4H30wB/EiuK4whGC+vohnKGcObLoDZFjoRGyDd3DKLQlQCFA4K9SJaNPF7qC45k41d6H2//xAQwWG6q6BvDou1/g6394DY/uPoDqbvFESWpuDOxeDmf1huKsWBhZ4X5lM8GxVkBwOpL87/7icG2Ob23+4cJcN+js7u7GK6+8MjdEjj/pqpGRERw8eBByuRybNm0KC2Xq7QyfmMgCbEx6GnKJh1SP1IJRWTvKzfX4wMjhc1sJ6rlN0CMXieQoNntpBmdmG/D1RB2iJcJnOvRY23BhDoFCYGSMJQTV9nZsyBcudE4P9KM4KQmyMHJajvLxolzTPoiVXBLkQRA6YkdxXHEO2lP4X7RfpEhAc29woziuNPWOYLFZA/UMs0wYAhgHxLsIBoLq7kHc88Ze3PS3PdhzuhEmm7hmTNEqOarGAld4LpdK0MaKV9AtkcoBwSli5n/395/F0hgsjxXvB0Cw4ccJhKKcQyxaW1vx7rvvzg2R4wsSiQSjo6M4deoUCgoKsGLFioCb1AlFSE3OZKIj8rAx6RlESWby0OKgs7ei3lyJ/cZBfGjJRodDiiWKM0Ag/MtrZptwUeIQYmWRgh/Ta+3Atiw7oiOEvcYEQKWtHUsThb8nFYMDKExIRGSI0oyuLFMmoLHH9yFodZ1DWOZIFBQ98IdARHEmU1Xfj01+Ch35eOhPRa39OmSNqxEzzed+pSoZ3SPBHf7nLSkxalR0BMZHCwCyFmtgYf2fRD0d2XEMRu3ipIyS5Cpcn1eK83LOh4yZ7TwjgTqmEBIvftzNxPly8TyeQoXJZJrTIqe4uBj33HPP/BQ5NpsNPT09MJvNOOOMM5CZmRlS59fJCK3JmYI1HhGd34PEISzPa2GH0WGpRKP5KKJkq1Bv+RpGua3gMPsFycK24sL4PsRHCBc6/bZunL3IilgvhE67Qo+NS4TPYqgeGsTiuHhESUMrWO29/tdlNHYPY4klHqoAPZdARnEmU1nfj01y34TOIi4STX4IRjHpGBpFml6J+IioKbfZhgNgUS0yqRoV2AAVBCujIlBrDNycJJmEgTHWPwEVwUhxbnIBnlh1CXaf+QPcsvgs/OyMO8HO2uvOIT5pk1/H5smLikOJXHiUOlyZ65GchIQErF+/fv6JHJ1Oh4MHD0ImkzmdecMNb9NVwISn1uHDh5ESV4jN6S9AKVvk1eOtjqNYqerHFzod9oyk4pjhfAw4LoYNK0CI54+Bhe3AtrhuJHk44U/HgK0HZy0yIT5SuDg6bW7DxqXCTwq1w0PIjo2FUhaaMenZnBy9o+L82mzuG0GuMXba6IE/BCOK40plYz82RaaD8fIam+AIfQrZle6RMcSPyJEY8VX77AplEjqGQuPhJZQEtQK1PYFLJeUuiYfBHjihtzI7HsM237rWlqiT8JMlZ+P9s27Eb1bsQFliHqT/SwdvytiEx897HAwYMFNSxBP/Tsm4GEpVlj/bd3JZQlFAPA+DCcuyMJvNc7om5+DBg7j99tvnhsgREoUhhKC1tRUnTpxAXl4ecnNzfYuWBAFvRA7Hcaivr0d1dTVWrFiBpUuXQhWZjk1Jz0Al824ypJU9gcuTOcgYBn3WYRwZ7cMHIzJ8OlqKFuvX0KMrASHuotDCduOcuDakRgqf2Dlo68fG9DEkyb0QOqZ2bCoULnQatCPIiI6G2otIk1iozOJOL20b0GHRmBoamTj1AMBEF5Av0439pbKpH2dEpAlulS9QxKG5L/wGPvbpxhEzJEVq5MRJntOG57nElcz4WNjZwOxTHilFoyVwNVMSBtDK9F49RgkpNstS8X8pZ+KJ/AvxjfQV0Exznvreyu/hj9tfgSp6Kb6q0WGgjlmKrPwbEJcgTqt3pkKDM9TpIevcFQujceLcEQ41rL7S09ODTz/9dO4MA2QYxjm4aTI2mw1VVVUwGAzYsGEDYmNjMTw8LMjWIRS4OmzPhMViQUVFBex2OzZt2uSmqqOkSdiU9AyODv8Y4/YWwce2sqfxjaQV2DUUCRuZ2IOBNeH/s/ff0ZHk93U3/KnO3ehudEDOGTMIA2AyZgOXXHJ3GZZBokRRlCxTFi3JpCSKth/7+HGQ/ccj+7WtSEnWK0uyLT96aVumRImmmJZp4+zsDHLOOXTOsareP7CNwcwgVDe6EWZ5z9lzdoCuql+jq6tufb/3e+9oOApoUXnbqDeWUaMXsaqn0bBAQtzg6WKJV4OtrCWUtT/cqW2uVkoMbNnZjCkTa96LLHLzYj1vTChrXcz4vDTZbKhiAsHEyQhCOwwOlpb8ed/vkstPjWRFbRfw5EGT0K21MxvwH39hOWBkbotrjeW8JW0d6aRtDWsficM4K9gKRHBKRm7VVxVU55IPFJv0TKwXrorT0lbCm6HCBWVeqnMwEV8+8nVqQeCGo54Xq7q4Za8nEgzh9XqZm5sjFotRXFy8Gy5qsVgeeEC+G0tT0/CJB7Kr8qXByeBT9VcRJM59JSdDcs5zu+p973sfFy9ePD8k5yD4/X4GBwexWq3cunULrXbnpD0q1uE0oaSS4/V6GRoawul0cuXKlX1F03q1g5slv89t9y8TTClPIo+Lw3ystIu/chlJPNSrlpBYiG2yEAOwU6JrosFgwqnZoN86x5vBFpYTyioEnpSbnjIJNuxsKpzyGAgvcbOjntvjbkX5WPN+P/XWYtSCgC+eP4+Lg6AJFO7iteoJUiGaUZWocKVy19KoZPBvFf5vcRhGF7a5XF/GgOAiLe9P6FuMdiYnC5+FdRx4QjFaZs3Umi2shM/m6DhAU6mdgQIRMY1aYCFd2FZdVB+GQ2RutSYbL1Z28cGqDkr192+8xhI9JSU7FeBYLIbX68Xr9bK8vIwgCNjtdpxOJy6dyG3vEgAqlTbv5AbAqSviQ1UdrC2tPBYkR6/X795PzyPsdjt2u/38khxZlllaWmJmZoaWlhYaGhoeYO256F5OCoetTZZlFhcXmZ2dpb29/UjRtE5dzM3SL/Km+/P4k8pzq+LiKB8tu8jfuCxEpYMrXu6kD3dyp52gVzXQYHRSI9fjSq2RkI++8PnSXtocMXTBGpajyqotA6EleprLGZoLKyI6S8EAtRYrKkHAEyucUdulojLmlgp7U970hymTi1CXFbGZqz5BNrMSOhnB8WEYX3LRU1vCiMZNcp/KZXFES+FqA/lBe7GdyaFNLGY9jY1WFkJnb7rKrNcxtVE44XZbeyl3IoWrZHVW25iNrT7yc5Nay7PlbXy4qose29HeZkajkerqaqqrq5EkiVAohMfjYW1tjT/wDxdi6Q/gJ+r60Kk0SJJ07ttV4XAYk8l0pgZ2ckEymTwfmhx4UJeTSqUYHBxkcXGRq1ev0tjY+MiHkfHJOajFdZo4qF2VTqcZHBxkaWmJa9euUVdXp+gk06os3Cj5Hey6nqzWEU9P8OESP0UKzf8SUoKpyDI+cQlPuAZvsBeTeAWLUMdhoUxxdYzW0i2aLcpzUCaSW7TXatAoTFheCQXRqdWUmQonlJM8J0OatwMRdJtQo8++H65GIHyGpoAmV9x0Jp2POGk3GYqZVBCHcdowvc1pQuEEidkILVbbqa5nP7RWOPLuh5OBSoA1CixeNz/48NNnq+ZfdjzP3z79C/yLjucVEZyHoVKpKC4upqmpidKLzYxR2EpUkVrHj9bsXH9FUXwsKjnnWXScgUajOT8kJ4NAIMBrr72GKIrcunULu92+7+sy7Z2zKD7OVHL2ErBwOMzrr79OOp3m1q1b2Gy2rPapURVxveS3cOqvZrVdTJzmxRJPVtM9ETFCqWUegybJ9zZdvLQKs+521Mlr2ISLqOVHBbShdJB6+yrtVuU93gUC9LRb0SokOhvhMIIAlQXoI/eYy1jYOjmBrCcUgzWROkN204F9pnJ8sbNDcgCm1zy0x+0POGk7Yson9k4LLVYb8wv3iVgkliQ0FeBC8f7XnNOAUathdqtwguD2tjLWI4UjOW3lVmajLsr0Zj7dcIMv3/pZ/vDqJ/hQVSfGQ4wZs8GfLd3JOW1eKX60pgfz24MDkiQ9FiTHbDaf+0qOSqU6PyRHlmWWl5d58803qamp4cqVK+gOGVPOlAvPYssqs7YMAdvY2NgZDy8v5+rVq4e+r8OgURm5VvIfKdXfzGq7mDjH+x1bmA8YJd93GymGwzxPr3PnJuxNRnndtcU3VyO8uV5B0H8Jq9yHSbjvgRMWw1TaFumwKScho+E1utot6NTK1rYViZASRarzPBUguk/+PPJF4qSWUzQaio9+MTtVHN/G6bep9sPshpemaDFmtZZGQzGTy4UTyeYLxdFHz7l4Io1nwken7WxkErVXlRCK5ycC4VHIuLSFa//q1Gpu1VfzO30/wl8/+Rl+seUJaky2vB5jOx7ibzcm8rrPh6FXqfmJusu7/34c2lWRSKSgCeQniXNDcsbGxpibm+PKlSs0NzcfyTAzTPosTlhlvgCpVIqJiQnGxsbo6emhra3t2MxZLei5WvLvKTc8ldV2cXGB91iXcKiVE6y4FMdimuFqyYPVBhGZyYifb697+N6qkQ1fN4b0NaxCM7F0nFLLApccyknIeHidi20mDBplFw53LEYsnabOqowcHIUmyXiiVZy9CMYSRJcStBptR762z1TGpv/kfHGyxcKWj9qQmfK4scDP1cdHk8XK7Oz+RCyZFNka9XLJvk/MyglCq1ax6PIXbP9tLaUshfLf5uksKeWf3XyClz7xU/xq51PcdDYULID3/12+S+pII8Dj4QOVnZTo77d2Hod2VTgcPteTVXtxbj6J6upqbt26hcOh7AlKEIQzKz7OfAHu3buH1+vl1q1blJUdFteQ5f4FLZedv06l8dmsthN0Lt5tW6QsC0+chJRAb5ii03jwqbQSDfCDrS2+vZpifLuZSLSLKpOOS1m05CbDm7S26DHqlOmHvLEYgUScxizbfvtB8p3uLTkcT+Kfj3HBdPC5v1PFOXvp2A9Djkmkp6LY9fnzBCoEivyHXzdSaZHVYRd99tNztu2sLjt2ovhhCJny1/a0Gww86yjhj9/9Pv78xY/xiYudWAt8DgRSMf5qbaSgx1Aj8NP1D0oEHodKTjQafSw0OXCOSI7D4UCf5ZfirI6Re707PXSj0cjNmzcLUhZUCRr6HP+GKtPzWW2XZpNniueoyoLopOQUVscKT5QdXTkJpRO85dni66sepoNhbhhb6dU0U6s9+ql4OrJNY5MWs14Z0QkkErgjUVrsubcWLhmcuMKFagcoRzSZwjUbptO0/031rFdxMqhM6VnfDFDqVVNqyK+pYr5QYypiZeXoKSpRlFkc2uaqPX8PKEqhFgRWfYWb9GpucDAbOF71UiMIvKu2jt94z/v41id+io+XVtBcbMvPAhXgf64MEhMLq0/rFIrZmphjYWGBYDCILMuPRSXnvEc67MW5HSFXgrNWyZFlmYWFBebm5lCr1TQ3NxeU8QuCml77v0KNjpXo3yjeLiFt8kSxyOvBC6wq9MQREUE3zrsqOvn+pl/RNnEpzWBigXqpitmVBGWmMuqdVpK6OPPJTZI82mqci7hobHCyviQQjB99AQulkoihIG0OJ9Pe7MZsBRkS7rPT7oyn0qzPBLjUWspw9H4r5bxUcWqLzMyMbwOw5QpRIhahKjexFTtbOqIq0cgUygiEJMnMDm5wrbeSO77tAq/sPjpryhheyV9a98NIFsvgz23bpmIbH2lt50PNrZTseYA7SUFuTEzxP1YGCn6cX770PpxJFV6vl5WVlV3T2kAgkNOD+VlBOBx+bCo554bk5KJVOUskJ5VKMTIyQigU4vr169y7d+9E1iYIKrrt/wyVoGMp8r8Vb5eUXPRbJd4MdbAUV0h0ZJGEepT3VHXxnXW/om0SUpoFYY3e+hoGlzxsR3dueHp1EeU6DRWVVtYlNy7xvhHbQtRDXZ0d9aoenwLvnWg6zUogwEVnCRMe5WPLfZZyps6YQDaZFlme9tHbVsZgdOem2mcqY2LpbK1zP1SKBqb2eCu5vREckomqqiLWoycfQbEfavYQMaWQZZge2OBGbxW3/YUjHhmogK1g4f5e9TU2xv3ZPRCYtVqeb2zmo63tXCor3/c1siyfGMn5y9VhgnlKMz8INxz1XCrdSRvf680zMjKC3+/ntddew2Qy7Tow22y2c9PGepzaVeeG5OQCjUZzJoTHoVCIgYEBTCYT/f396HS63JPIc4AgCHTZ/zEqQctC+EuKt0tKHq5ZRtEI3czFlLVCJCQiwgjvq+7mW2t+RdukZJFpVrjcUMu9xZ2La0IUWY6JLM/v3Lzri6upsBkJakIsJLZZjvmorrGhXjPgjhx9MYuJaeZ8XtrtdqZ8R5fhBRmiW6ffptoPKVFifsrDlQvlDEa2z0UVp7rIzMzEo+TB649SLBmprTsbjsLVkpFJBSaX+2FycJ1LbcUMJwvbNuysLWNkpXBVI1WJGhR0qgTgWmUVH2lt5731jRj2cWXfC0mSTmQkOSWJ/Pny3YIf52caHsy7ynjzqNVq2trasFgs+Hw+vF4vk5OTpFIpiouLcTqdOBwOioqKzuyIdiQSobKy8rSXkRc81iTnLFRy1tbWGB8fp7Gx8YGpsNNYW4ft86gEPXOh/6p4m5Tko7doELXQx3RU2U1IRibICC/UdPP1Vb+ibURZYlJa5mpTPW/NP1ptWQoEWArs3HyK9Q6aS4oRRBFddQTVholtBQ6/SUlixufjQrGdySP0BpctFUwun1z7IVuIksz0hJtn2+t5denozJ/TRo1kZFLanzwEgjEsi9KpOwpXmExMTx6vErM0HaCz0cyYXDji6VNA6nNFdYWVMd/hVcEqs5kPt7Tx4Zb2rKwaTqqS87WNcbYThSWaXdYKrjr2Ty3PCI+1Wi1lZWWUlZUhyzLRaHQ3dmJ+fh6NRrNb5XE4HDlbhxQCP9TknALOW7tKkiQmJibY3Nykt7eX0tLSB36vUqlOZW0Xin8RtaBjOvhHirdJy0E69G8Sj3ayjLLqk4yMVx7mA7WX+NqKX9E2oiwzllrienM9b84d3FYKJBLcW9shIBpBRavTQZvWwUo0yFL88JukBMwE/fSWVzC4tb9VvQqB8ObpZj8pgSDLuO66uVZTdqJ6kGxRaSo6kjyEwgmKZmVaWouZDRbWnfYgNFDEhHT8atLqQpgbnRXcjuS/hdhZXcrYWuFak6YKHfI+/N+gVvOe+kY+2trO9cqqrK/HsiyfSCVHkmX+bOmtgh4D4KcbDk4t3097JAgCRUVFFBUVUVtbiyRJBAIBPB4Py8vLjI+PY7FYdglPcXHxqYqXHxfHYzhHJCcXZKIdThqxWIzBwUFkWebWrVsYjY9OkZwmAWu1/j1Ugo7JwO8p3kZWxbjqHMOWuMlwWPlNyC0N82J9N3+zpGwbCZnh5CLXmuu5M3e0LiAtS0y43ZQaTVi9WppSVirKLIQ0SaZinn0zk0RZZnhrk76KSgY2H01P6jOXM7l0dklDBr32UmYXN9lyhbjRV8VtX+H1ILmgDhOT0tEVmkgsiTQdor3dztQxJ3uyRZnRxMxU/j7zybFNbnZWcju8hZzHG3s4UbhpoXJnEcP+BwlUd2kZH2lp44WmFizHqDRk3N0LfeP+7vYMy9HCnjsNJgfPlLYc+Hsl01UqlWo3QBJ2MpYyVZ6xsTFEUcRut++SHqPReKKtrR9Wcs4JTmOE3O12MzQ0RHl5ORcvXjxQaHaSmpz90Gz5aVToGA/8puJtRGK0GN5AI9zkXhYmYVvpET5S38VXlpS1ImRgOLlEW0kx0wqdhl2xKKLDSElAz9D0DnGxajU4zRq0xVo2NUncqfstBAkY2NzgSkUld/cQHRUCoXNQxVEDwZX74tPJgXVu9lbxxgkIX7NBhdHEzJTyNcXiKaQJPx0dDsb9hYsreBhNajMTYn41QRNjG1y/WMFbMRf5uApdqCxhcqNweV/2uiLmvSGcRiMfam7lI63tNNvyE2FxUiTnvy6+WdD9A/x0w9UDCUemYpWtwFin01FRUUFFRQWyLBMOh/F6vbhcLmZmZtDr9btaHrvdvhtbVChEIhEseXaNP2lkKmrnZpj/rLerZFlmbm6OgYEB2tvb6erqOvREPwt6oUbLJ+iy/RNQkPSdgSjHqNe9yrUsgwo30qN8tCG7L82SMcCNNuWust54jC1rjNqqHb+eWCrNqi/OwmKI+FyCzpiDJ4zVtJrsCG/7+93d3OBqZdXuPq6YK1jznL2k6YfRay9l2/3gTXlicJ2b1v0nW04L9UIRopidmWIimWZ71Ev3CTkKOw0GZicLU7mbnNjksq4ETR6ewlMFfChyFhtxWIz89rPP8c0f/xRfuHYzbwQH7kfYFLIa8YZnkclQYSuwFXoL76+4eODvM+/zOGROEAQsFgv19fX09fXx9NNP097ejiAIzM3N8fLLL3P37l0WFhYIBAIFCaE+77EOr732Gs899xzwmFdy1Go1icTRI8bHRSqVYnh4mHA4zI0bN7Bajw5VPC1NzsOoN38MlaBl2Pf/gEK9jUSSau3LqIuf4o2AX/Gx1lNjfKyxg79cUC4KHIwt0X+hgdcnlT3BBhIJUgaRUrsWt+9+aV+WYXHbD9s76602F1FbXkxcLzKxvc21yirubWzgP6PZT3vxcBVnLyaG17nUXMywePrGgGVGE7M5toBSaZH1YTe9l8oYPEIIe1y0aa2Mpws3kj09vUVvSynDkn/f9qkS1DnMzBUgiLPObKFKMPLs5RY++K6OvO8/g5Oo5BSqiiPIAi26CjQxA89Xt6BRHfzwmg+S8zDUajVOpxOnc4f0x+Px3dbWysoKwAMCZoPheOG3siyf+0pOdXU1n/zkJ4Fz5HicC06iWhIMBnnttdcAuHXrliKCA2ejkpNBbdGH6HX8GsjKS6wyKSo0P+DJLGMT1pLj/EijCSGL9KJ7kUX6Lyp/qo+KaVwOiab6g52OfeEYw3ObTI+70C6BuJrmWXsD697TH2M+Cp0W+yNVnL1YmgvQq7EiFOAJLxs0qcykxdyrD2lRYmloi8v20qNfnCNsen3ORCwbzMy66JSLMeTokyLn8Vph0Wq5Zi+jK2UhMOpnY8nPe/vb8rb//VDoSs5oYIO7vtW87rNSbeeS0ITZU8LofIgFb5CPtlw4dJvM+yykH47BYKCqqoquri6eeuopenp6KCoq2g16fuONN5iZmcHj8eR8jznvPjl+vx+tdifF/tyQnFy+HIXW5KyurnL79m1qamq4fPny7h9VCU5bk/MwjPGraNZ+LEuik6ZE/X3eZbdldazV5CQfazJldfLdCy9x86JTMTmKplPMavy0NB5NjlKixNSqm1cHl7jSWHXk608TKmT8i0froRZmfdwoKju1L3ipwZiVFucgSJLMwuBWwaITLuqLSSZP5mFjfsFNe9qCKUs9RUOJjZXA8UbSVUBHsYPr+hIMiymmBzZYedvH6mPPdaNXmAmXKzKTVYUiOf8lT1Ucs6DnkqaBmnANi4sp7ixv447t/O1/4mInpiOu8aIoFvR9PgxBECguLqaxsZErV67w5JNP0tTUhCiKTE1N8fLLLzMwMMDS0hLhcFhxa+u8V3K+853v8Md//MfAO6BdVQiSI4oiExMTbG1t0dfXR0lJ9iF9J9VKOwqyLLO0tMTMzAwVZe/G5ali3T6NRb2MTh4D4fC/n4yITfU9nnU8w0tev+Ljriam+GhTK3+9kCSt8Is3EF7iekcddya8SAo2iaXTTKq9dDSXMH3ISPpe3F1Yp6+xkoGFR6euzgJ67WXMLe4/+v4wJsY3uXahnLcSbrKUxRwbLRoL4+n8tMwkeSc64WKzmYl0/vxnrDod81Mn6xS9uOShucbOojFOKKXMbNKoV/7w9DAqTUXUa81sLflZW3z0vZpNOj74bGfO+1eKQnrkzIXdvOyay3l7FSratJUQ1TGx7eWO9Oi1wqDR8MmLXUfu67TDOR/25onFYni9XjweD4uLi6jV6iO9edLpNIlE4lxXcvR6/W4R4txUciD7ak4hRsij0Si3b98mFApx69atnAgOnA1NjiiKDA8Ps7CwwNWrV3E6nRSnGrni+BG+7TXyTf9NZhIvEpTeg0TFIXuSMAvf5Tnn0QGde7GamOHDjRp0WVz8BkPLXLloR63wVEiIIqOSmwutyisBAwsb9DVUctbMSNVAeDU77cjk5BaXtc68CF+VwmkwMJNnIa8sw/psmCvm3MNWH0an0U48cfIWE8urPmrDeop1R+ca1TisTGbpi6MTBFpUetqiOmLjQSaG1vH699eavfhsF0XGwpvQFdIj578t3smi+X0fNRoH3TRhcDkYmg8wtOkiKe1/Tf5Yazt2BVqXk8znOgqCIGAymaipqaGnp4ennnqKzs5O9Ho9KysrvPLKK9y5c4e5uTl8Pt9uZyEc3nk4OalKzr/9t/8WQRD4/Oc/n7d9fuADH+DJJ5/k7//9v/94V3Ly3a5yuVwMDw9TWVnJhQsXjnUyn3a7KhqNMjAwgEaj4datW+j1emKxGJIk0Wnp4JebPssXF/6A8fAa4wBUUaHvps6gx6HZQC+PgLD3SVTGyHd5f8kz/K1b+XTSamKODzY08rVFFQmFf4/h0Aq9F6oYnAwqqlCkJImh1DZ9F8oYV3jzHVjcoKe+gpHlLaRT1rZk0GMvVVzF2Yvp6W0u1FiZ0kVJKSmBHROtGisTBRLyzo66uNlTxRuB47XCzBoti9OFG8c+CmsbfiolKxqbgCdxsGWBzWRg1avs+9RmtWFPa1ma9+CKHy2gN+g1fPT5bsVrPg4KdfPfiAX55taU4tcXq4zUCxW4/Enm/AHg6OuBRhD4ma4eRfs/ywnke715mpubH/Hm+bM/+zOWlpa4ceMGdrv9RCo5d+7c4Q//8A+5dOlSXvfb0NDAv/pX/4qVlZXzVcnJFvlqV8myzMzMDIODg1y8eJGOjo5jn8inKTx2u928/vrr2O12rl27tpuUq1KpdolXu7mNzzd9DoPq/tPLZsLDm4F1vu6R+br/CpPxD+GX3otI7e5rdPL3+GBJdk8Aa4kF3t8gY8yizDsaXqe5VoVOrexzSMsS9+JbdHYoH7EeWtqkq6Yc1Rmo6ORSxdmLldUgDSENuTc+lMGh1zNXYCHvxNA6/dbjaXS6zA6isdPNJtvYCuLwCJQZ9x/VrbSZGT+iiuM0GLhpK6ctYmJr2MPk+CaxuDLDwFt91SAlCzKC/DAK1a7670tvIcqHPxxpUHNRU0NrsgHPsoY7iy4W/cp9vl5oaqFSoTHeaberskHGm6ejo4MnnniCX/iFX+DmzZt873vfIxAI0N7ezs///M/z5S9/Gb/fn/fjh8NhPvWpT/FHf/RHu6aI+URTUxPvete7zhfJOY12VTKZ5K233mJjY4ObN29SVZUfYeppkBxZlpmfn2dgYIALFy48QtYeXlNzUTNfaP5lTOpHL8IJKcFUZJ3v+7x81VPKa6FnWU29SJzrqOXbfLg0u6eA9cQSz9WnMWchylySg3S0mdBrlF1URFnmTmSDrq7DWm8PYnhlk2qLAa1CMlUo9NhL2XIdb/Jr2xXnQtqCoYDvpU1XTDJV+PN6fHiDfnNZThNkJo2G1ZnsUrYLhW13GPOmhFPzKP0stRbtW0XUqgR67aVcUTuQpqNMDK5nfW5o1Cr6e0oZHBzklVdeYWxsjM3NTZLJwhC/QrSrvMkof70+euDv67UldMtNaLZtDC74Gd1yI2Z5vgjAp7uVVXHgbFdyDoMgCPT19fFrv/Zr/MZv/AY2m43f//3fx2Qy8c//+T+npKSED33oQ3k95mc/+1k++MEP8t73vjev+92LRCLxeLerMjdtWZZz+oIFAgEGBgYoLi7m1q1beXWZPGlNTjqdZnR0FL/fz/Xr1ykuflQ/s7eSk0GDqYF/2Pwr/Obc7xI+xHvFlfThSu7YqWuFHuqNVi5bapgKB4jIylosG4kV3lNbzfdW9QRTysjpRHiT9tZyZmYTxBRsIwNvhta50V3FyIiyda0E47RVOFh0B0imT776dtwqzl4sr/pprbGzaIwRSuU3IsCm15+okHd8dIMbHRW8GXUpdHjaQbfZyWRkvWDryhYeXwRzQkNlnZGN+I6wutRiYnz1wb9lg8VKhWxgdcHLwnz2bcu9eN9T7TzZfwVJkggGg7ueK3szlJxOJ1arNS837UJUcr60fI+E9OB33qEuooYyNr1xpoMh4Hju5U/X1tFiV64DO0uanFyRiXR44YUXeP/73w/AysoK09PTeTvGl770Je7du8edO3fyts/9oNfrH2+SkyEl2ZYQZVlmZWWFqakpWlpaaGhoyPtTyElqciKRCAMDA+h0Om7dunVg2u1+JAeg1ljLP2r5PL8x9zsE00frA1JyitnoBrBBta6DiQ07TVYzZl2YsLxImoMnZDaTazxdU8mrayZ8SWU34anwFi3NZSwuCEQUZPvIwBvBdW72VDMypGyKanrTy4WqEhZdfuIKCVi+kKsW5yAsr/qoq7KxalYRSOZvwu+i3sZ48mTJw84EWQVvxZVFJxjUatbnTi4uQinC0TTmlSQNTVYWQ0Gq7FZcoSjFWh3tRTbCWzHWFn3kI5VJpRL4sQ/0vv3/Kmw2Gzabjaampl2dhsfjYWRkBFmWsdvtu5ECuRrN5fvmH04n+IvVIQB0gppWTRXxkIopt5cNOX9E++9d6svq9eepXXUQMiRn7z2vtraW2traQ7ZSjpWVFX7lV36Fb33rW8c2LjwMmXPuXJGcXNpVsFNCVHriiaLI2NgYbrebK1eu4HDkb5rj4bWdRCVne3ub4eFhampqaGtrO/RCcxDJAagyVPGPW36V/zj32/hTfsXHX0uOc6vyAn+5sImMgEYop83qoMIkgHqLsPyogdd2coNb1eW8umzAr3D2eTayTVNDCWtLEFSoSXjDv8bN3mpGBpURncl1N60VTla9QWIKCdhxkc8qzl6srvupLLeisoEvD1YGxTo98ydgqrcfJic3udxWxkDKe6QdQY+1hMm5s1PF2YtwJEnRHHR1lkBY5JquhPl5F1Pp/NoZvOtGM5Vl+5uWPpyhFAqF8Hg8bGxsMDU1hclk2iU8NptNMXHJd7vqy6vDlFJMg2RmatvHvVT+Qzkvl1fQU5ZdTMp5bVftRaEjHe7evcv29jaXL1/e/ZkoivzgBz/gi1/8IolEIi9EMZ1Oo9PpzhfJyRaZky3zZo9CJBJhcHAQtVrNrVu3CsoyC01yMllaCwsLdHZ2KtISHUZyAMr15fzj5i/wG3O/hSel/Gl4x/yvja8sxEnLEuMBN+MBABVO3QVarRYshigxeYkkOy0xV3KLvlILg9sOfAonguajburrHaiWdfgVikrf8K1xs6+akQFlN5KZTQ/N5XY2/REiicILV/NdxdmLja0g5ZIFtdOAO368sv5FQzETidPzFpqe3j4yOkGnUrE1f7Lp5tkiEk3SFFQxMlWYv6UgwCc+pKw6IQgCVqsVq9VKY2MjqVRqdxpnfHz8gaRsp9OJ0Wg8cF/5bFclRZEv31tgIRAFChfD8rPdvVlv8zhUcsLhcEETyJ999llGRkYe+NmnP/1pLly4wD/5J/8kb3+/zD3/sSY5giAoHiPPVDyqq6tpb28vOBsvpCYnlUoxMjJCKBRSnKUFyohXqb6Ef9TyBX5z7rfZTiovC68mpvlI46Pmf55kFI9750KlFpw0m1upNquR5HXCwjq9FTLT/irWospuwktRL7W1dlRrerwRZRWKN7xr3Lhczeg9ZTeWuS0fDaU2VGGBUKxwho4qClPF2YstV4hSyYy6zMRWLLcbhkmlYr5AAZfZYGbWRWdjCRPqIPF9zuOe4hKm58+myWMG5iI9M/uY9uULN/saqK/OrTqt1WopLy+nvLx8N9/I4/Gwvb3NzMwMRqNxl/DYbLYHblb5rOT81cwUC1lk5uWCNruDp2rrst7ucajkFDrSwWKx0NX1oLFiUVERTqfzkZ/ninv37iGKImaz+fEmOXD0jVuSJGZnZ1laWqKrq4vKysoTW1chNDnhcJiBgQGMRiP9/f2KKlgZqFQqZFk+Uqjt1Dn4Ry2/ym/M/TabCeV+JTvmf818dVHc92lblGWmQx6mQwAaioQmms1mLjl0CLKG1ZgyB92VmI+qqmI0G0a2w8occm971rh+uYqxgQ2Qj74YL7r81DqtqAUBv0ICli16bCXMLx4/GuEouDxhHKKJqqoi1qPZk6oOg42ZLAhvITG/4Ka93smMNkx0z2SlRhDwKIjDOG001jgKVsUB+IkXLx/9IgUQBAGz2YzZbKa+vp50Oo3P58Pr9TI1NUUymcRms+22tvJ18xclif86OpSHd3A4Pp1DFQceH+HxeXY7BvjFX/xFAoEARqPxfJGcXJ4EDiM5iUSCoaEhEokE/f39BS3R7bcuWZbz+qXY2tpieHiY+vp6Wltbs/57ZdahpORq09r4R81f4Dfnf5u1uHKNQ8b8728XVcSPIHkROc1wyM9wCEp0ZrppQqUSiKgjLKS2EQ+ZqVmPByivsFLhMrKpMPfnTc86V/sqmRzYQsmk6YonSJXdgiCAL5JfoqMCImsnl4ju9UexSUbq6swsh5XHMVi0Otbm/YVbWA64H51wf4Ks11bKzBmN6sjAoFczv1y40fa+zhraGgsTdqrRaCgtLaW0tBRZlolGo7sC5rm5uR0BqEaDy+XCbrfnPKn6jYV5VkOFDdGtNlt4vrEpp20fh3ZVRnh8kvje976X1/393//3/43P5yMSiZwvkpMLNBrNvl45fr+fgYEB7HY7ly9fzut4uBLsFUUfl+RkzAqXlpbo7u6mokK5D8xeZENyAKxaC/+w+fP85vzvshJbUXyctcQCLzTU840lNTGFLTt3Moykk9D6iln2hinSFnOhxI7OJLMuunGLj174thJBSkvNVAlFrPuVVSje8mxwua+CmUEXkgIt0LovRLFeg8OkxxvNX+uqz1HG7OLJ3pT9wRjWRZmGBiuLYWUuu50mOxNZkNyTwt4JsnAygX/57KfLN9TYmVSYsZYLfuLF7CaFcoUgCBQVFVFUVERtbe1uWGQgEGBubo5YLEZxcTFOpxOn00lRUZHiB7I/GRks7OKBv9N1CXWO12RRFE/8XpJvnAbJyTc+/OEP7/7/+f40FODhSo4syywvLzM9PU1rayv19fUnlhi7F3sJxXGQSqUYGhoiGo0euxqVWZMoiooT1c0aM/+w+Vf47fkvshBdVHysHfO/Wl5a1hJWaNjoTUax2WQaVXYW3EGGNu7rQGqLq6gsNhLTxlhIbZGSdz5zVyKMwylTp7Kw7FVWobjn2aS3t5z5ITeigumuQCJNqVVPhU3Lpv/4oZQnocU5CMFwnKJ5ieZmG3Mh/6GvNWu0LJ9iNMJRyEyQOWrsjC2unfZyDoVGDasbyuNQskVHawWXLuTHyDRbqNXqXVFyR0cHsVgMj8eD1+vdDY3MtLUcDseB154frCwz4yvs+L/DYOSjre05b/+4tKsKNVV8UpAkaTdo9Fx9GsdtV6XTaYaHh5mfn+fq1asF8b9RCpVKhSAIxxIfh0IhXnvtNQRByEu7LbOmbImXSW3iV5t+mZai5qy220is8GR5CFMWn4E/FSNk8dBS9qCZ4UogyJvLW4zMBRHXLbQlG+nRNlKhKcabjJCwBWh0Ko+bGPRs0XDJiVaj7CviCkZIpkWq7McPteu1l7G5Xbgb3lGIRJNEZ4K0WW2Hvq7L7CByytEIR2FrK4h23I+zqHCTkvlAVamJcLRwf0ulE1WFwl6dn9FopKamhkuXLvHUU0/R0dGBVqtlcXGRV155hbt377KwsEAwGHwgcuKPhwcKvs6f7OjEcIxKzOPSrjrvmhyVSoVOp8NisbwzKjnpdJpwOMzg4CBarXY3kPK0cZwx8o2NDUZHR2lsbKS5uTlvZO2oMfKDYFAb+JXGz/F7i/+JybDywDwvLp6pK+f1DbNi879QOoFkctFeUcrU5qNi0lg6zcjWfSFspbmCGocZwZFGJQjMKQwQHfZu09ldyuqwl7SCio43HMNuMlDrLGbFk5vIdUeLczpVnL2IxlNIUwEuXnQw4X/06dmk0ZzpKk4GHWV2Zl9dwFlmQV1jZjukTJ91ktCoVXgChSM4zfUlXO/JflIonziowqFSqXYrOC0tLcTj8V0tz8rKCoIg4HA4WBdgcLuwIvwirZZPXOg81j4eh+mqSCRyYgnkhUIgEOBzn/scJpPpnUFyMr3g2tpaWltbz8xJmMsYuSRJTE9Ps7q6Sk9PD2Vlxwsq3G9NubbQ9Go9v9T4D/j9xT9kLDSueDt3eotb1XB73YJbofdMREwiGbbpqKpgfP1w75ONcJiNt8W0Zq2Od9nqSKZE1sQwy/HDyciY10Vds4nwYpJE8ui/iy8aJy3LNJTaWHT5Fb2Xvei1lzF3wlqcgxBPpHGPeenqdDLqf1AQe8nsZCJ69rQ4eyEgE1/xA+DZDmETJSobbGwET59E7sWF5jJGpwvjhQTwiQ/2FmzfSqHUJ8dgMFBVVUVVVdVu5ITH4+G/3Cus/T/Ax9svYj3mw+/jUMkp9Aj5SSAej7O8vEwsFnu821WSJBEKhdja2qK7u/tE/G+yQbZj5JmwULfbTX9/f94JDhyP5ABoVVo+2/AL9FgvZbWdK7nFtcoAFQblF5mYmGJVu0FXjfIE23AqyZ3wBpFIEs9UiHqfmX5tFZfN5RSp99cCLCeimBv16LTKzr9QLIE7GKWpLLu+9lmp4uxFMiWyMeqmx16y+7OzFHB5GC6W2dlcvk+A/Z4IwryPGtvZEVWqVAJb7sKJomsrbTxxNbdJoXwiF5+cTORE2m5jVKEQPlfo1Gp+ujO7a9Z++GEl52ygpKSEv/7rv+b3f//3zxfJyQaJRII7d+4Qj8epqKigvDw7e+6TQDbtqkAgwGuvvYZWq+XmzZsFY9r5MCnUqDT8fMNnuFKcnSeHJ+Wip8JLtUm5fiIhpVlSr9NTq5xQRNMppjU+WpucuINRhmc3mRpzoV6U6UmVcstUTbPJjrCnQ7Ucj2BtLcJiUuY7FE4k2fQHaa1wKl5Xr+N0tTgHIZ2WWBneps++M37cbXYSUmi0eJpIrz1KHoK+KOkpN/X2s0F0LjSX4/IWjtj+2Ad6UalOR3e4F8cR5P7J8GB+F7MPPtTcSmkeogweB+FxOBwuaKzDSUCtVlNcXMzVq1cfT5Lj9Xp57bXXMBgM1NbWnpq4+CgoJRRra2u8+eab1NXV0dvbW9ARxXyZFGoENZ+p/1lu2K5ltZ0v5aGz1EVt0cEW8Q8jKYnMCqv01SsnFPF0mnG8tLfc9w0RJYnZdQ9DExtsTgSo8pjojltpSRsxCxqWIkEMzQasZmUkLJpMs+z201Z59LpUQPSMVXH2QhRlFge3uOEoZ3327AVcPow2p4X1xf2rTeFgnOjYNk1OZU7ghYIAeBVaG+SCMqeZ99xqLdj+s0GusQ4rwSDfWpwvwIruQyUI/N2unrzs67y3qzJO1ue9kgP3J5fPFck5iqzIsszi4iJ3796lubmZS5cuodPpTiQIMxccRSgkSWJ8fJzJyUn6+vpoamoqOGE7brvqgX0JKn6y/CdoS7dktZ0/7aO9ZJNag7IxdoC0LDElL3OlseToF7+NpCgyLLq40L5/288fiTO/FWZjLQFLEl1xJ9WpIupbbNgsytpqibTI4raPi9WHm7D1OkrZ2Dp7VZy9kGQZ42qMpiwI6GkhvnR4Oy0WSRIc2qCl5PSITntTGZuuwrWqPv7+HtTqs3GJzzXW4U9HBhGVOHMeA8/WN1BfXHz0CxXgcWhXPQ6aHNi5lwUCgfNFcg5DOp1maGiIxcVFrl27Rl1dHYIgnFjady44yo35zp07+Hw++vv7KSlRfvM+DvJJcoLBILffuM2z6nfztOOp7LZNB2h2blCnV050RFlmPL3EtWblf6u0JDGU2KbjwuHtTFmGhS0fg5MbjAxuYlLreMpZyTVHOc4jglyTosTMhpvOmv3J1E4V5+TcjXOFTqNic2yT2VcW6C21nfZyDkR7aTHejaP/nvFYCu+9ddpL83ODyxbhPJpHPgx7sYnnn75QsP1ni1wqOa5olL+ZmynQiu7j03mq4sD5r+TA42EGmLmHff/73z9/JGe/p4FwOMzrr79OKpXi1q1b2Gy23d9lRsjPIg4iOX6/f7fddvPmzRPtj+aL5GxsbHD79u2dFltPLz9V+0neW/KerPYRJUq9c40Lxcq/cBIyI8lFrrcot69PyxJ345t0dih3il73h5hOBfGsBhGnInQmLdwqruBisR3NPhqItCQzseaiu/ZRMnUeqjgAXU4bIf/OCPbsa4v0ldhOd0EHQO1WPiaeTKTZvrNKR5mtcAvaB62NpazuY3+QL3zs+W50urMzPJuLVuW/jw2TLPADapvBRGBmlqmpKVwu17HvFeddk5NMJkmlUue+XZXxVxodHT3/I+QZv5iD8pqUppCfBvbT5KysrDA5OXlqbszHFR5nIiaWl5cfGXH/8eqPo1Vp+dvtbyjeX0KIU1G8iEbVwKhPmZuwDAwlFrjR2sjtGWXBkZIscyeyTluNidVVZTlUW8EIJWUmSjRWVtf9rK77ASgxaKmtc4JZzXI8xFY0unuM0ZUteurKGVre8fw4N1UctYqt8Qd9SmZeX+RKfwN33f7TWdQ+aHFaWX5jOattUimR1TeWaL1cyYz/ZD6LZLJwD17mIj0ffHdHwfafC7JtVwUTCf7X1EQBV7SDX33qXbQbTbsZW8eJnMh3FuFpIBLZ0Yid90pOBvF4/PySHEmSmJqaYm1t7VC/mLPerspUTTL6m+3tbS5fvozTqVxEW6g1ZYtUKsXw8DCRSISbN2/u+0X5WOVH0Apa/nrrq4r3GxWjOMzz9AgtDHmVVzwG4wvcbG/gjSllpnUyMKWOcvNSFSPDynxL3OEokt1IuWBla21nbbF4iunp+4SgvcyKo8JMUJ1mNuBjaHmL3voKBpc26bGXMr9YOI+UfKGrxMb05KMC0KnXF7na38hb7sO9ik4KhhxN9SRRZvPuBvWdDpbihb1eNNU5CxrE+eH3dmIyKpsCPClk26760sQYkZQyc9Bc0VlSyq2aWoDd6+1BkRNOpxO73X5o3E3munme21Xht/3EzrsmJ0NMm5qazh/JEQSBWCzG4OAgoihy69atQ9s5Z53kiKJIPB5nYGAAWZbp7+/fzXk5DeTaropEIty7dw+j0Uh/f/+hF4MPVXwAjUrDlzf+SvH+41Ica9EMV1St3FXoWAwwEF2kv72B1xUSHYA3Auvc7KlmZEiZKZ83EiNt1VOltrGx7H/k95vbwd3R8GKdhto6B5qQzLX6KkKThWtZ5AtatYrtiYPdZidfX+DqjQbuen3InN4kY6PDwuJt5UGxD0OWZLyjHrqu1zGaBZk+SzAatHz0fd2nvYxHkE2FI5ZO8+fjowVeEXy6+1EtTiZyoqamBkmS8Pv9eL1eFhYWGBsbw2q14nA4cDqdWCyWB6o8mfvMea/kmEymc/0e9uJTn/rU+SM5Ho+HgYEBSktL6ejoOJI1n2VNjkqlIhKJ8Nprryl+PyexpmxJjsvlYmhoiNraWtra2hSVd18oew6toOV/rP8vxcdJSAkMhilulF7gtks5ObgXXaT/YgOvT2RBdPxr3OitZnRQGdEJxhLIJpnaRjtrCwdXNRLJNLOz91toly5UnXk9TlepjZl9qjh7MXl7kctX6xkIBMiPbD17WCIiypqTB0OWYfH2Mn1PNDKwnf/qVH21vaBVnA88cxGLQouDk0Q27aq/nJ7El1DWMs4V9dZinq1vPPQ1h0VOLC8v7/4+Ey66O7J8jglCOBzOqkV3FpGpGm5sbPDGG2+cP+Hx8vIyra2tdHV1KSIEGU2OXOAxxGwhyzKhUAiXy0VLS4vi91NoZENyZFlmYWGBwcFBOjo6aG9vz+rL8Wzpu/lUzScRsnj6T8kp1PoJbpVlNxFzL7zIzYvZtQBv+9bo6qtU/PpQPMmSLkZti/LjDE+un1o6tBJo1QLuye2jXwhMvbVEr8XKaXjP1dvNzI/mL2Zi5tUFrpQpd9JWCp22cM+VWo2aH3khf5NC+YTSdlVKkvhvo8MFX8/f7e5BleWNPBM50d3dzVNPPUV3dzcGg4GVlRVeeeUVhoaGgB3j1nxNqJ40HofxcUEQmJ+f5zOf+Qyf+cxnzh/J6evry8rgL0McztJJJ4oiIyMj+Hw+7Hb77rj7WYBS4bEoigwPD7O0tMT169epqsrtRv0u51P8TO1PZUV00nIaWTfO0xW2rI41EF7ixkUHAsoJ723vGk0XlBOqSCLFrBCmvk35GPtZJjqdJXZ8LmWCb4Dpe8tcMpn3nTArJGzx/D/ETL26wJWS/BGdmkobM4vHrTUdjOeebsdhO5tOtUorOX87N8tGRPn5lgtKTSZebD6eSWImcqK5uZlr167x5JNPUlZWhiAIjIyM8MorrzAyMsL6+jqJxNl3B88g43Z8Vu5H2SJzn/+d3/kd1tfX+bVf+7XzR3Ky/eNnSM5Z0eXEYjFu375NNBqlqanpTFRv9kJJJSfzHmKxGP39/RQf00jrlqOfT9d+BrtwCQM2RduIskhSPcq7K5W9PoPB8DLt1Zqsqg0jMR/17RYeyHk4BPFUmikpSONF5WPsw5PrdLaeregRjUrAN539TXl2cJVOnRHtCRnR1djMzI+sFWTfU68vcMVpy8u+zAojQXKBWq3ix97fW7D9HxdKNDmyLPOnI4MFX8tPd3SjzfN1V6fT4XA40Ol0PPnkk/T29mI2m1lfX+e1117j9u3bzM7O4vV6z9QD98N4HDxyAF566SU+85nP8LnPfe78kZxsoVKpEAThTOhyPB4Pr732GsXFxVy/fh29Xn9myFcGR01X+Xw+Xn/9daxW6+57yAduOnp5ruzdvL5hZ9PfjT51DbPYgiAeMs2ARFQ1wnurbVkda0EV4MpFW1bVhvF4gAt95Sjl2Im0yFjST3OXcuIyNrNFc22x4mMUGl2ldjzbuTnyzo2sc0GlR68pPIkvTe1oaQqFqTcWuWIvzqoC+DBsVi1T88raftmipsLGP/jpJygvPbveJkraVd9ZXmQ+4C/oOqw6PR+/cLEg+864HQuCgNVqpbGxkatXr/Lkk0/S0NBAMplkfHycl19+meHhYVZXV4nFlHs6nQQympzzDpfLxdWrVwHOn/A420rOWXA9zsRNzM7OcvHiRWpqaoCzOfl1WCUn4+HT3t5ekEywZyva+Y99H+MfDfwly5EdYbGaKlqtDiqL1KjVHkLSErJwf30yMiFGeL6mm2+s+hUfazi0Sk97NcNTQVKSspvXXc8mfb3lzA65kRRskxIlhqNeei5VMKtwJH1uJUBnawUTc1uKjlEoqFUC/lnlQu39sDC+QUt7OfNagViqMA8ZFRYTs4OFqeLsxdSbS/RdrWMwEMxJWF1qt+AP5i/zy1yk5103mnnvE21caD5bFcD9oKRdVcggTkGGCyYnH2xtpUhbmIraQdUqrVZLeXk55eXlyLJMOBzG6/Wyvb3NzMwMRqNxV8Bss9lOtbofjUYfi0pOLBbjf/7P/8n8/Pz5Izm54DTJRDqdZnR0FJ/Px7Vr1x5xYz5rpcv9SI4kSUxOTrKxsVFwD5+ny1v4rSsf5wt3/zdxKY2IzGTQw+TbA0hFmibarDacBpG0aoOovImMjE8e5v21l/jbFb/iY42G1+hqr2JsOkxSVPY5DHi3uHjRzvpkkLR4NAlJSxKDYTd9fZXMDCib1Bqb2eRiSznTCy5EhevKN7pK7cxNHT8YcWlqi4aWUpYNGiKJ/BOdStTMnBAZnH5rmZ6+WoajYcQsjlniMDO/evxJLbVaxZWuGt77RBs3+hrQac9Wq/swHFXJub2+xqg7/3qlGr2FWsHCxkaQrfUgH3qxcIGlSiIdBEHAYrFgsVior68nnU7j8/nweDxMTk6SSqWw2Wy7E1snrY+JRCLnupKTOce6u7v57ne/y6uvvvrOITmn0a6KRqPcu3cPrVbLrVu3HmntnIdKTjKZZHBwkFQqRX9//4lETNwqbeR3r/0Yv/zWXxATHzQEi6STDHgzZX8dZfqLNFnNWHQxIvISH6qr46vLysfLx8PrXGyrYGomRjyt7LOYCPuoq9cTWEyRVsBBREnmnt/FlStVTN9VNgE0MbtFe3MZc0tu0koOkkeoBAjO52/MeWXWRU1jCetmHaF4bmZ9+6HcamL+BKo4ezEzsEL3pWpGk1FFJBegvMSM25u7mLahxsH7nmzn3f0t2IvPprD4KBxVyfmTPGpxbBo97ToHYU+CxSU/PnZcfH/0Wgf2AobL5hLOqdFoKC0tpbS0FFmWiUajeDyeXQdmnU63S3jsdjsaTWFv2Y+LJueLX/wioVDofDoe58JqTyPaweVyMTw8TFVVFe3t7fue/MeNUCgE9q4pGAxy7949bDYbly9fLvgXbC+uOev5ze6P8PnBLxM/pEGwnYiw7dq5iAkUU18k8ISjkeVtP5uqACnV0QRhMrxJW0s5s/MJYgrt9pfFBK0Xi3FNhUmlj77ZSbLMW94trl2tYuotZURnam6b1oZSlta8JFMnd550ldmZn17I6z7XFtxU1jlQ23X4o/khOjUqLVOnUOmaHV6jo7OKSeJHVgBtxcactDhFRg0XGsxc766g60ItTqcTq/Xsp7/vB1mWD63kjLldvLF+PLKqF1R0mkoRQjIzCx5GpQfNK9UqgZ+8VViTxOOGcwqCQFFREUVFRdTV1SGKIn6/H4/Hw+zsLPF4POfICaV4XEhOb2/v7v+fO5KTC06yYiLLMvPz88zPz9PZ2XnoaPVZbFdl1rS5ucnIyAhNTU00NTWdykhhj72avye08GeaZYKpo83BZGAx4mcx4qdV5SSxYabFacdi1hAUQiwmXcgHTEhNR7ZobipleQHCCtsqM+EA7Z1O3FMh4vGjt5FleNO9RXu7mc0pZU/2M4suWupLWNnwkyhg3lEGKiB8iJnhcbCx7KVMtKEuNeCJHM/srcRsYHYgd3fj42J+bJ22CxXMalPEDyGgNeXFjE4r02Np1Cqu99bx3ifauXapFkkSd5/qV1dXEQRhV7vhdDoPdRU/S8h4lB1EcnLV4mR0NsUpHfOrXqYSB7e7nu1sotJeWGF2vnOr9kZKwE5nwOv17jowazQaxZETShGJRA6MSDqveMeQnJNoV6XTaUZGRggEAty4cQOr1Xrkus5aJUcQBKLRKKOjo4dmgp3UWmoFE3947RP8g7f+J76k8kmEGZWHK+31vDHhIWODa9U5aHRa0RthU/aylX6wrTUXcdHQ4GRjSSAYV5abM+X30NrmwD8TIRpTuE0ixvUb1UzdVvb0OrvkprHWyaYrSEzhunJFZ7mdhVfyW8XZi+01PyWiFVVVEa5Q7pMlDVoDkyfcxnsYi5ObNLWWsagTiO5DQC1FemYWjxZvN9U6aK7W8nM/9QLWB9yK1VRWVlJZWYkkSQSDwV233YmJCSwWC06nk5KSEsxm85n1Nsk8yO23vsWAn+8sL2a1v/s6mxDLy8oI+U8/WXiTxFzaVdnAZDJhMplyipxQivOuydkP7xiSU2gyEQ6HGRgYwGAwcOvWLXS6oxX8maqJLMtn4gKVTqdZWFgglUrxxBNPnHrZMnPBaLOU8Uc3fpJfePNLuBMRxdsPhJe4ebGe2xNuZASCyQRDG/ef9iqKyqm2m0GfYjntIijFWIx6qKuzo17R4Yspa6vMBLw0tdhRzcUIK2zFvLm1ydUbVczcVta6WljxUF/twO0LE8lTu+dhCMhEF/0F2fdeuDeDOESZijoLm8HsU7/tJj1zg6sFWFn2WJ7ZpraphDWTlnDiQQLaUONgZGp/sbnDZuI9/a2898k2HFYtg4ODDxGcB5Exn8sY0CUSid0qz/LyMmq1GofDQUlJSd6e6vOFwyo5fzIyiKRg/v8gnY0S9LfW0lzuUL7gHHGSCeTZRk4ouR/BDsmxWM6uFUEuOHck5yxqcra3txkeHqa2tpbW1lbFJ3rmdaIonqjeZT9EIhEGBgZQqVQYDIZTJzhw/+8jSRItllL++Man+Myb/z+248q9WwbCS1zvqOPOhJeHB2I2IxE2Ixk9j5oGWzUlVj1xMUZpTQLVuh5PRJlb6XzQR31TMapFFcGwslbMW1tbtHdZ2RxVll21tOalttKGSiUQCuffRbWr3MnCK8efqFICrytEsShR3WRjLaD8hgXQbDQxmTw4MPSksTbvprLewZZVR/BtYXWRUcvc0oNVHJ1Wzc2+Bt77ZBuXu2pQv31+B4PBrK9rer2eqqoqqqqqkCSJQCCAx+PZfaovLi7eJT2nnUV0UKbTZjjM/5mbPXA7nUpFl3FHZzO74H1EZ6MUJ1HFgZ3r+GmNf2ciJzLnQ6bqt7Kywvj4+G7Vz+FwYLVaD7xHPQ6xDg/j3JGcXFCoSo4sy8zOzrK4uEhXVxeVlcpzjjLrgtOPnHC73QwNDVFdXU1ZWdluBstpYy/JAag3O/iTm5/iM7f/nI2Y8lDLwdAyVy7Wcm/Cx0EDMTKw4A+w4N/5t16tptXh4IJWx2YiwnzUj3zEfWIpFKCm3op9xYAvqIzoTIUjtF8qZmM4oCjYYmXDT2WZFZUgEAjlL8RQQCa+T4J6IRHwRihKpSmpL8KdUPYdsBp0LJyRKs5ebCx5Ka+2oS7R44smaKor2a3idLSU8+yTbTx9rRlz0aPmmcfN1VOpVNjtdux2++5TfabKs7i4iFarfUC7cdIPVAe1q/7b2DDph659ggztRQ5sSf2ROhsluFRbTm99xbH2oRTHFR7nCw9X/ZLJJB6PB6/Xy8jICLIs71aBnE7nA1O/hRQe//qv/zpf/vKXmZycxGg0cuvWLf7dv/t3tLe3F+R4GfyQ5OSIVCrF8PAwkUiEmzdv5lTi21vJOQ3sNSnMiKSDweCpk64MMhfFvTeBGpNth+i88eesxpSPig+HVui7WM3QpDLzv4QoMupyUW4qwritojJupKasGEwCy6kgm8n9qw+r4SBVNWaca0Y8AWWak6lgmN7+KhbeWEeJqe7GdpDyUgtqlQpvIPt2z37oKHewVEAtzkGIhBKYFqGhs4xF79EVujZLEZPxwjgHHxdba35KJCuGWiuhSIKfeLGPZ59oo+aIjLV8t6sNBgPV1dVUV1fvajcyI8mxWGzXh8XpdJ6ID8t+k1X+eJwvT0/u/rtGb6EWCxubIVaW/eRLUv5TT17K056OhiRJittCJwmdTrer7coEQ3s8HtbX15mammJra4tXX32V559/nlgsVrBKzve//30++9nPcu3aNdLpNP/sn/0znnvuOcbHxwtaPTp3JCfXdlU+Q9JCoRADAwMUFRXR39+fc//7NN2YRVFkbGwMj8fD9evXd/OnskkhLzQEQUAQhEfWo4+J/KzYwH/WzrGeUu4/MhJao7u9itEszP+2ohFKy0xY3FrGFu/fXJtsVspLzMR1IrNxL6E9fj7rkTA2pwabrMMfVKafGdzYovdmFYu3N5AVkLAtV4hSp5kSexFuX3btnochIJNaVV4Zyzei4QTy6BbNlyqYcx+8DrNBy+LA2avi7IV7I8iHnmnn73z23YqvVYXU5O3VbrS2tu5O6Hg8Hubn53d9WDJVnkJUIvbTqvz5xCh61Fwyleaks1GCpjI7T7TV5XWfh6HQwuN8IBM5kYmdSKVSvPHGG3g8Hj73uc8RDof59V//dZaXl3nhhRdoaGjI27G//vWvP/Dv//Jf/gtlZWXcvXuXp59+Om/HeRjnjuTkgnwSicxodUNDAy0tLce+OJ2GV048HmdgYABBEOjv78dguC94PEskBx5dTyZa4tqFLp4pe5qff/NLzISUl7THwutcbK1gciZKQiHRccWiiE4jlSoLG29nOW35w2z5dwiWWiXQVerEYtPjliLMJ4L4xTSaKh3lOjNbbmVEbHBji0s3Klh9c0uR07HLE8ZRbKSsxMK2O7eMKTi9Ks5exCJJpIEN2i5XM+3y7/uaCxYzk7HCpXjnA1qdmvd/vI9UKoVKpSIur7MR/yZbiW+hVdko1d+iRNePRdP6QKXypDQzeyd09vqwTE9Pk0wmH6ny5AN7jQCTKZE7I0sMDW8gL4s562yU4FNPXDpRLdJZaVdlA61Wy1NPPcVTTz2FKIq0tLTQ19fHl770JX7pl36J5uZmXnjhBf71v/7Xxw5ifhiBwE4l3uEorCj8XJIcQRCy6mPng+TIssz09DQrKytcunSJ8vL85MWctFeOz+djcHCQkpISOjs7H3nyUKlUyLJ8opMChyHzWUuSxNTUFOvr6w9ES2SmriaDyi+Wk5FN2lrLmJlLHOpxshfeeAzJJlOjLmZ148E2mSjJLGz54O0lFGs0NFba0QkawpUpKlWwsa2M6AxvbNN5rYzNuy7SCtbmDcQoMmoodZhweXNrXaXXcidI+UQinsJ9d5ULV2uZ3H5wNNik07A8rGwS7TTx7Is92ErUbMa/xkbimwTF0d3fxaQNgukJ5iJ/jF5VSonuJqX6WyA1nooweK8PS6bK4/F4cLvdzM7OYjAYdn9/nEwlSZJY3Yrx23/6fV65M09VZwkjrsIKxyuKzbyvq7mgx3gY56GScxgEQcDv9/O5z32OtrY2gsEg3/nOd3jppZfy3k6SJInPf/7zPPHEE3R1deV13w/jXJKcbHFcn5xkMsnQ0BDxeJybN2/mVZh1ku2q1dVVJiYmaGtro66ubt8L614x9Fn4wqpUKpLJJFNTU8RisUeiJWw6I//fG5/ks3f+JyN+5TfB6cg2LU2lLC6kiSSVec/4E3FEs0RdtY3lNf+Br0ukRSZX7k/WlFhMPF1ZTTSRYikawhU/XKsztuni4uUS3ANuksmjz41ILI2MjN2qxRfMzkeno9zO8ilXcfYimUiz+eYynTfqGNu6T3Qu2qxMjR0vMLTQUGsE2j/8Oi97/x0Sh7cpE5KLtfjfsBb/GwR0qCuaWIluUKLvx6g+GaHsXjzstrtfppLdbt8lPUbj0e7La5sBXnp1mm+/OoXLu9OKUmtUzEUL3xr95K1uNOqTvX6dlWtmrojH44iiuKsvtVqtfPSjH+WjH/1o3o/12c9+ltHRUV555ZW87/thvCNIznFGyIPBIAMDA1gsFvr7+/M+mXASJOegKsh+eHii6SxgZGQEs9nMzZs399U/WbUG/tP1T/C5O/+LAZ9yzcZs1EVTYwmrizIhhS7HoWSSZWOIxjo7CwqNyNyhKAOpNLUJA8mFMG1lFpzlFiJakblggEj6UWIyseWmrdeJf8RLInb02qIxEZWgpqrMwvq28sqMtJF7plKhkE6JrL6+RPetekY2fRi1GtZGzn4Vp/npZWLW4ay3k0mSNk0yGZ6E8G9iVjdRor9Fqb6fYk0HgnDyLZCHM5UikQgej+eB5Oy9VZ7MdSMYjvP9N2Z56bWZfeMsmi6V85a3sMJxm8nAi32FndjZD+exXbUX0ehOJbjQ9iGf+9zn+OpXv8oPfvADampqCnosOKck56TaVevr64yNjRU02qDQGphMwGYymVQUsHmWSI7H4yGZTFJeXk5vb++hf/8ijZ7fv/bj/Mrd/82bniXFx5iPuqmvd6Be0eFXaP4XSaWY1wZprLWxqDD1PBRPsqSXaWxxsjLrYettIqJXq2iptmFyGPCSZDbgR3z73J7e9tDSZSc0FiAePbpCE44mkWSZhhoHi6veI19/odTG6muLitZ/0hBFiaXXFum51YhGhqnxs13FEVQSfT96sOdLNgiL84Sj8yxG/ztaoZgS/U1KdP04ddfQqk7eqE0QBMxmM2azeTc5OyNeHh8fJ5FMsemD0ZkAozMu0gfoyQRBYE3MzzTgYfj49Q4MupO/tZ33dlU4HEYQhIKFMMuyzC/90i/xl3/5l3zve9+jsbGxIMd5GOeS5GSLbElOpvKxtrZGb28vpaWlZ2Zt2SAUCnHv3j2sVqvigM2DJppOGsvLy0xNTaHT6aitrVVEMI0aHb979cf4wr0v86pLuandUsxLba0dYXXH40QJoukU02ofzVUWVtaVVUMiiRSz2jBt7SUsTe3ctEVRYnHZC8s7ryk1aKmpdaA2a9hIRZl1+WjqsKGeDBEJH03CorEUm64gTXVO5pcPTxJPrhxNhE4Tkiiz+uYSrbWHx6OcBTTd2qC4Kv838JQcYCv+PdwJF/OJ7xMSS+kyd9Jl7qBMV3YqWp5MlWfbL3JvZpsfvLlAREGkSXN3GXcDhSWrJp2Wj1/vKOgxDsJ5b1dlIh0KdU599rOf5c///M/5yle+gsViYXNzJ9OtuLhYUfszV7wjSI5Go1GsyUkkEgwODpJKpbh161bBWG0GhSI5mSmwxsZGmpubszpxT3PCSpIkJicn2djY4MqVK0xMTGS1Fp1KzW/0fYx/PPBX/MA1p3i7lZiPqupiNBsGXAodi1OyzLw+QmdLCdOzyi7e8VSaSU2Qjo4yFsYfLdvH4ilmZu7/vKHYSJlJh76jguVpF17/0d478USa1Q0/LQ0lzB6QndRsN7P15tkexwZoKjcx9Fdv0PWBq0wsnw2B9CMQZPo+rvxcUwq9qp2tZAV3ghGisgQEgAAz0Vn+cvsrlGpL6LJ00mnuoMXUjEYo/OV8bTPAS69N893XZ9h0Zfd5bKsLE0eyFy9ebsdqOjgeo5A47+2qcDhcUJLzB3/wBwA888wzD/z8T//0T/m7f/fvFuSYcE5JTrYfQoZIHDWqGQgEGBgYwGazceXKlRNxBs33CPleF+Zcp8BOy7snlUoxODhIIpHYba1lQ7h2p8Jk+HeXXuRfjH6Nb29NKz7+ejxAeYWV8m0jW0FlRn5JSWQEN5faSpmaVjbenEyLjMk+urvKmRs9fMrEF4jhe9tUsKrUSrdBQF+kJ6KWWfCFDpwOS6ZEFle9tDWVMb2PNkLvL2zQZz6g0Qis3dtpAY1+7S2633+Z8ZX8eqnkA/XXtnDU54eA6VWVRORW7gbTbCbjwMH7daXcfNf7fb7r/T4GlZ4LRRfoMnfQae7AoslfWysYjvOD23O89No0k3O56WmcNQbmfYUVHGvVKn7yVndBj3EYznu7qtCRDsd19s4V55LkZIu9E0MHMe3M5FFLSwsNDQ0nVgbO5wh5Op1meHiYUCiUswsznE4lJxKJcPfuXYqKirh58+YuwVSqv5JleZfIAug0Wv6fnhfRjnyNv92YULyOrUSQ0lIzlSoTG35l7Ye0JDGcdNF7oYyJSWU3gZQoMRz10nOpgtnhTUXbrLuCiE4LmgU3ga0Qeo2K5uZSDCVF+MQ0i97gA/lc6bTE3KKLC83lTM7dJ1NtpTaWz6gWZy9aqsyMDfp3/z3yt/fofr6P8bXC6zqyQd/Hj6fF0QgWZKGDyaiB8UgQyF4MHpcSDIaGGAwNISBQb6ijy7LT1qrWV2d9PUumRN4cXOI7r81wZ3j5QJ2N4v3ZNBAuLLF+rruFUuvp5S6d93ZVOBw+EQfsk8Y7guRkbpjpdPoRkiNJEhMTE2xubtLX10dJScmJri1fVZNoNMq9e/fQ6/X09/cfy178pEmOx+NhcHCQ6upq2tvbH/iSKVlLhuBkLjKZ7dWCin/T/UF0Kg1fWRtRvB5XMozTKVMrmFlR6CacliXuxbe40lHB+LgyD5C0JDEYdtPXV8nMwP5p1Q9jyxOitMGKXa3Ctx5gaWoLpnZ+V1Kkp6q5BMGqZzOWYCMYQZRkpua36GitYHxmh0xpPcqqVKcJtVpgc+hRXdXINwboel8vExtn4z3U9Looa1UeL5KBgBqdupOVhJO3gkFScgpIgaIEs8MhI7MYX2IxvsRXXV/Dpimm09xBl7mT9qI2dKqDrw1jM5t859VpfnBnnrDCcNqjUF5rYTpcWGKqEgQ+9cTJRTg8DEmSkGX5XLerCplbdZo4lyQnW6aZEdM+TCbi8TiDg4NIkqRo8qgQyEe7KhOwWVVVRXt7+7GfJk6S5GQExhcvXtx3nPCoteyt4OwlOLvbCwL/ovN5dCo1/2tlUPG6PMkIdrtELVbFREeSZd6KbHC9q4rRUWXVGVGSued3ceVKFdN3lY1Ju7wRHFVFODUqPHvG2KORBLPDa7v/riu1UFrvIGlQsbLqpbOtkoQ3ytLryqfPTgut1WbGhib3/d3otwbpfPYSk1tx8kEKjoNsqzhqqZaw0MybwRj+dIodnU1h4U8HGAtPMR0MMOZ7lWp9GU+UNvFkSSMVBivrWzs6m++8NsumK/8tJalEA8rcFnLGU+11NJTaCnuQQ3BQ0vp5QkZ4/LjhXJKcbLFfRlTG+dfpdNLZ2XlqDPw4RoWyLLO0tMTMzAwdHR1UV1fnZU0nQXIyAuPNzU2uXr2K3W7f93WHtaskSdr9bz+Cs3cf/7TjfehUav7fpbuK1+hLxTCak9TIDlYVCH5hJ1/zdmidG91VjI4oIzqSLPOWd4trV6uYeksZ0fEGokilRsrUTrYX9p+i8rpCeN8WhwoCJANpKqrtKFvV6UFQwfbo4qGvGXtpmI53dzHtTnFKrX4qOjxUdh49oaaW7bgDVSyorKykEsDJ5IQZVUZsqjrmAire9IfJtMEWwwu86lng3yeg9AcWxK3CfdfLa4qZKbAWB+Cnn+wp+DEOQ+Z6+cNKztnD+aWdWSJDJmRZZnl5mbfeeoumpia6u7tP9cTMtV0liiKjo6MsLCxw7dq1vBGc46xJKVKpFHfv3sXr9XLz5s0DCQ7sT7gy1ZvDKjj74QsX3sOnG29ktdYYIjF7kJay7MaYbwfX6bqk3LlWluFN9xbt15V/jv5gDLdNS3nr0S1WWYaNJS+Dr83R2XdyoYW5oK3Gimv56Gm18e+O0mpTI5zSVeywKo4KA1rVVWbDt/iyp4EfiPq3CU5hoRbUVOma0KW6eXW1jK8sxRj1R9iv4mWY1BaU4AAYa00UmoNebqiko6aswEc5HJnr5XnWszyulZxzSXJyOZHUajWpVIrR0VFmZ2e5cuUK9fX1p35S5tKuisfjvPnmm4TDYfr7+7HZbHlfU6EqOeFwmNdffx21Ws3NmzcVmRPuXcte/U3m99l8hp9re5qfb34iuzWnE3hMbtorsguoux1Yp6snO4v+N7c3abuhnOgEw3G2TCoqLyifohsbWD6zREcQwDOhvJ028fI4zeYdDc9JorTFT23fw0RMwKC+iF96N1/3dvMXLomxRHznTRUY5bpqbHQzvlXPXy2keWU7QPqwElcKDFOPuofnE47SIka3Ch+oerOiiOXlZSKRyKlN8GSGWk77fnIchMPhH1ZyzjNUKhWTk5OEw2Fu3bpV8ORTpci2auL3+3n99dcpKiri+vXrDySI5wuFIjlut5s33niD8vJy+vr6FJsTZi5cmRHxTKpxrv3vv99yi19uezqrbaJiki3DNh1Vtqy2u+1fp6s3O6JzZ2uTtn7lRCccTbKmlajurFS8zVklOi01VrYWshtTnnptilp9CpX65G5wvXvcjfWqalI8zRvBfv7HtpHv+wLE5MJbMNg0dsrVnWz62/ibBTXfXAsQSClrfRtmNKiShb0h21uKEaXCfiYt5Xae6WrB5/Nx584dXn/9daampnC73Sdqg3HeJ6tgZ3jlcSQ57whNjtfrJRKJYLfbuXr16pk6GbMZIV9bW2N8fJzW1taCVqHyTXIyLcLp6emstUOZtRw0QZUrfqbxBjqVhv8w+R3F28TEFCvaDbprqhhZVa6kvO1b53pfFWMDytUwdzY2udpfzczra0e/GIjGUyzpofFSFSsK07ozRGdsYFnxugoLmeDsSk5bzr05h7ZTi6ytR0gXtv1srwvScjOGrLrJRFTPZI5j37nAoDLiUNexENTwTW+Qw3x0DoQIxonCVnGsxQZGXYWP4vg7T/VSU1NDTU0Noiji9/vxeDxMT0+TSCQeCBUt5GDJeffIgR2SU1VVddrLyDvOJclReoPbK8wtKiqioqLizJ2ISio5ewM2T2LMPZ8GhZkR/a2trUMFxketJZ8EJ4NP1l/BoNLwx5NvsiH5FW2TlEQW1ev01FYzlEUswpveda71VTI+uAmysvW/tbHJlVvVzL6+hhJhQzyRYk4n0Xq5hqV7ytyMxwaW6eitZWJo5dQEvBmUFQusv5q7LDo1lkJ7YQnJUAfpwl3amj5q4CueFkSSQJJCT3ipUVOuq8MTNfP6dpCUnBHB53Zc/ZwGVayw18Hyi05WNgsrca9xWHl3x/38I7VavUtoWltbicVieDwe3G43s7OzGAyGB0JF86nFPO9ux3Df8fhxw7kkOUqQEeZ6vV6uXr3K0tLSqbj4HoWjCEUymWRoaOgBF+BCI18GhZlw0FQqRX9/f9b5JBmH6kAgQCAQwGq15r16dVNTxkTEydeCKuqdNnRGGZfsZyN9cKUmKYnMCqv01dcwsKSc6NzxbnClt4KpwW3FhOLu+iZ9/VUsvL6hSG+QTIpMSzHar9WxeEdZhWZ8cIWLPbVMjawiFbi9cBgE1/HHqVOTKTStS8jmOkjlv1qRcsDXSy30pqqoNqWIyFv4DzlXjoMyXRWplJM721FeT+Zp3FwC43hhqziCTsWIp/BanJ+81Y36gIfWTNCkyWSitraWdDq9W+WZnJwklUo9UOU5bnbS41DJeVynqx5LkhONRhkYGECj0XDr1i30ej2rq6tnkuQcVsnJBGxaLJYHXIALjXy0q8LhMPfu3cNsNisOB92LTHuqvLyceDzOwMAAKpWK0tJSSktLcTgcx3pykmWZubk5VlZW+Pmn3kWv38s/+953SMs779thLKXObkFrkNiW/Wym/Q9sn5YlpljhckMd9xYPD8Lci7veTfp6K5gdcikmFAPrW/T2V7L4xgaygm1SaZHJUJiOmw3Mv7Go6BgTQytcuFTD9NgaknjyRKepxsLM16fysq/0TBpN0xKyvR4S+b2hB59UE5UkXtvOEA4LdaYSqtUJrEUJwhrv28Z+uaFYY8MgVzPiTfNmOEa+fXR0S2rU4cLejAMVMvIBcSP5gtNs5AO9bYpfr9FoKCkpoaSkhLa2NiKRCF6vl+3tbWZmZjAajQ9UebIlLD/U5JxdPHYkJ2OMV1lZyYULF3ZPvNPKYzoKB1VNtra2GB4epqGhgZaWlhNV7R+X5LhcLoaGhqirq6O1tTXrte8VGFutVi5duoQkSfj9flwuF1NTUyQSCRwOxy7p0ev1ivcviiJjY2MEAgGuXbuG2WzmA04nWpWaf/zdb5GWJLyxGN7YfW+cElMZtTYzaoPEluRlWwwiyjIT4jJXm+p5a165/mDAu0lPTxkLwx5EhYRicH2LSzcqWH1zC1GBxX5alBj1Bei+1cjcawuKjjE5vEpbVxVzk5uI6ZON9Uiu5paJdBDS8yLquiWEslrkuPJz49B9FkO499FzeTma2AmRD+nRClX0Oi1UmSWSuPGkjn5fBpUBp7qexaCGb+Wqs1ECGYxjuTuhK4GkAkkjIBT49Pnxm13oNLk95AiCgNlsxmw2U1dXRzqdxuv14vF4GB8fRxTFB6o8SoY7Hod21eM6Qn4uSc5+N01ZlllYWGBubm5fcetxTPcKiYfJV6bCsLCwQHd3NxUV2U3m5AMqlYpUKvun0b0aqM7OzpxEbAcJjFUqFQ6HA4fDsfsk5nK5WF9fZ3JyEovFskt4zGbzgcQqkUgwNDQEwI0bNx6Iv3hfYxO/pX6eL7z0TZIPEWJ3NIo7et+avsxURrXdjFovsil5uN5SwpsKk8gBhrzbdF8qY2XES0ohoRje2KbrWhkbd12kFTwpS5LMiNvPpaeamH350YiE/TA9uk5LRyWL01ukT4joNFZZmP1mfqo4eyEui6jFZYSqOuTY8YlO8AkVHDGqnpJl7riD4AYwUGFspcthwKKL4kmvE5d2iLMKFRW6erwxM7c3giSk4+lslEC7qkbjL2y1IVIlIEiFfSAz63X8yNWLedufRqOhrKyMsrIyZFkmHA7j8XjY3Nxkenoak8m0S3iKi4v3rdic93aVLMs/bFedNewdLU6n04yOjuL3+7l+/TrFxY/6mWg0GhKJwptxZYuMJidzcx8ZGSEYDB4rYDNfa8oGkiQxPj7O9vY2165dy8m7JxsH48yTWGNjI8lkErfbjcvlYnFxEa1Wu0t47Hb77sUnHA7vpsx3dHTs++T1TF0Dv/u+9/Mr3/o6cfFgUrwdjbK9h/SkzTGerqwjGkyylAriSh6d1TPi3aajq4SNsQBJheX90U0XFy+X4B5wk0wqIDqyzNCWl953NTPz/TlFx5gd36CsxozfFSeZKPyDwebq/vEN+YC4Ju0Qnboa5GjuugvRDKHL2d/ENmMJNtd2rjsqSnm6rAIzEssJ+EpgG/kEYh3sWiP1ulJWR/zIFK6aLQmQ1gmoCsyNP3btIkWGwlSkBEHAYrFgsVhoaGgglUrtVnlGR0eRZfmBKk+mgvw4tKsikcip3XMKiXNLcjKIRCIMDAyg0+m4devWgcGUZ7ldBTvvY3BwEJ1Od+yAzXysKZt2VTKZZGBggHQ6nbPAOEPyIHuDP51OR1VVFVVVVYiiiM/nw+VyMTY2Rjqd3i05r62tUV9fT1NT06H7f6Kmlj944YN89ptfI6qworUZjrAZjnDDVkV0PE6zzUqZ00xKL7GYDOBO7R8LMe5zc6HDiXsyREwhoZjYctPe68Q37CERP/qclmUYWPfQ9+5WZr47o+gY26thGtrK2Vj2kogXLj1abQ8Qfrmw49fipoRKXEHTXIcYzs1XKtivAm1uFYoSnZkajZO17TjfWLn/Xq0GO80VVjRGkZWEF18qfyGWBpWGNlMF0SBMLPjxej2UKNfI54RElbrgBEenUfOJm52FPcgeaLVaysvLKS8vR5ZlQqEQHo/ngQqy0+kkkUg8FiTncWxXCfJpWUQeE8lkcle3UlNTQ1tb26En2crKCpubm1y7du0EV3k00uk03/72t9FqtXkL2DwulpaW8Hg8XL58+cjXhsNh7t69i9Vqpbu7O2eBceY0zISp5gOZ0vPs7Cxu904ryWaz7VZ5TCbTocca2NrkF7/+fwinklkd94a9itHBB8dnq+wWSpxFJHUSC0k/3lT8gd+3Fjvwz0SIxpQTipZSB6ExP/Go8m366kqZeUkZ0QGoay7FtRkgFsnub6AUKmme1HjhSNReiDYNQmsN2ixbV6IR1n5Vg6xXfl6a1FpajBWE/DKTGz6ObkPJNJRYKbfriaqjzEfduyJ4pVAh0FZUjjquZ3zNT3xPddA5JKP3Z7U7RZAFSJkEkmYB0Vh43eBHr1zg/3rxyYIfRwmSyeRulcflciHLMmVlZTidThwOx6k+qGYLSZKw2+1MT0/T0tJy2svJK84lyZFlmYmJCebn5xVrPzY2NlhaWuLmzZsnsEJlyGhYJicnaW9vp7Gx8eiNTgArKyu7vjaHISMwrq+vz0kcnW+Dv4chSRLT09Nsbm7S29uLwWDYbWt5vV70ev0u4TloomLEtc3Pf/2rBLNsdd5wVDF6iPlftdOK02EioRWZT/jxpxM0F9sJz8YIR5UTiqYSG/HJEJGw8m1668uY/fa04tfXNDrxucNEQvlt92rtSeIvKxNF5wuiVQ0XatBFlVd0/M+oCLz7aFGpWhBoNZWjiusZX/WROIamyaBV01phxWQW2Ej52EocLEauNzqwyVZm1oL49jl3tEGZ0oGcl/IIZCBthFSRQMokgKrw5Mag1XC9uZp//MEncFoKb6ORLaanp0kmk5hMJjweD6FQCKvVutvWslgsZzryIRwOU1VVxebmJuXlyiNizgPOLckZHR2loqICq1VZcGJmVPCJJ7LLLSoUJElibGwMt9tNIpHgqaeeOjOlwrW1NdbW1rh+/fq+v5dlmcXFRWZnZ+nq6qKyUnmcwN59FJLgpNNphoeHicfj9PX1PdJCE0Vx9wnM7XYjSRIlJSWUlpbidDrRau+PHk963Hzmb/8GXzz+8GEOxXVHJWMKzP8EAWqcxdjtRnQmNfOzbrwR5YSi3llMeiZCOKh8m96GMma/pZzoVNU5CAVihALK0tiVIJZeQzd5Mk7BeyGZ1UhdtejDR1d0JP1OFUc6pErRYHJSLFp2SEasEBUvmSqbmZoSI0ltgoWoC7PGQK3GyZorwYr38L+hfUzGeEzzYRkQdZAyC6SKBOQTyApTqwS6a8r4yVtdXG+6P0iSuV4cJ9ol35icnESr1dLc3AzsDDhkqjxerxdBEHYJj8PheOD6chawvb1NS0vLY2kIeC5JDuwkWWejG/F4PIyNjfH009llFhUC8XicwcFBZFmmr6+PV155hRs3bpwZ0dfGxgaLi4v09/c/8ru95Kyvr6+gAuNcEYvFGBwcRK/X093dfeQFRZZlgsEgLpcLl8u1GwFSWlpKSUkJJpOJWZ+Xn/va3+COZaebuOqoZCILl2OAGruV8ogGnUFLRCOyEAoQOkIbVGO3IizECfqVk5ALVTZWfrCIoPAKUFFtIxZNEvAdXzuSKIqjua08iDPfkEwqpEs16MOH68cCT6rwv+/RKo5TV0SdtoS17aNJRr5QpNVyweIk4U0hqMBo07GZirIcOli8rInIlL6V+8yWqHm7YmMWkHLUJGUDAWiucPCJm928eLl999ogSdLuQ1FGwwfsEp3TJjzj4+MYjcZ9q/GSJBEIBHYJTyQSeaDKc9g06Elhfn6ey5cvk0wmz/0o/MM498JjpdBoNGdihDwQCHDv3j2cTiednZ2o1eozJ4o+SHicERiLokh/f3/W4aDHFRgrQSAQYHBwkLKyMsX6JkEQKC4upri4mJaWFmKx2C7hyYyQlpaW8jtPv5vPv/w9tqMRxet5y7vBlb4Kpge3UcrJV31BxGIzurUIfncUjSDQWVWMtcRERCUyFwoQSace2aaqwYJtWcDvVUZCJtf9XHymidXvLygyGdxc81NaUYy9xIzPfbwbuxjynurFRxWVYHCVRG81+vD+7Q9J+7bg+G0YVVpaTeWEAzA552Md5SaQuUIjCFy0laKLCszNe5hMP+q7U2M1UVlTTEovMRfyEdqjITOvZE9wJNV9YiNmoUM6DqrsFj58+QI/+cQl9NpHzwyVSrX7XX44y27vtTPzupMmPIf55KhUKux2+26kTTwex+Px4PF4WFpaeiCOwuFwnJjp615kRMenTbYKgXNLcrL9MM4CkVhfX2dsbIyWlhYaGhp238NZWNte7GcGmHFfLi4upru7O2u2v9fgD/IrMM5gc3OT8fFxWlpaqK2tzXn/RqORurq6XaOwTFvLu7bGPyit4Pc2V3FlodG569mkr6ec2SG3YpfjjUCYsqoiHEIRXleE1TU/rPkB0KkEmqpsWJxGQqo0c6EA0XSadX+I8poiHOqdbZRgYtVL17OtLH1nBlmBMeH2dgB9twm1pEX05iYYTpoS6O4UyPAuC6jiEtxbJX6lGkPo0RJ9+LIK2SzQqLUjBgUWvUnu7GacFfZm0FJsxyEZWFrwM794eK/JF4zjG99ppQoCdNQ4sDgMbEfCxLcPrvLsRUZAnCoSSBvf3lGBYS8y8N6uZv7eM5exm5XrbPYavGauJ3urPJmH2ZOs8mTjk2MwGKiurqa6unrX5NTj8TA/P8/Y2BjFxcW7pOekiEc4HD4TFaVC4NySnGyRIRKZPKSThCzLTE1Nsba2tm/AZj4DMfOBh0nO9vY2w8PDeREYF+KCkzGCXFxcpLu7m9LS0rztW6PR7I6QZsrOlSsV/IuBO2xnMXU14N2ip6ecxWE3aYUux9vBCCXlJko0Ftwb90mBJMksr/rg7SR0g1pFS5WNIoeRoJDCX5WkRG3BvamMSIwubtPxnhbWvjt3oNNxsgwivSoil1SIlhTqgEz5fwVtDsWMdNSL/ow0yVVJGeGtNeJXqzCE7huhyWpw3iol4YHJLITgx0FFkZl6rZXt1RAbSwE2cvDQkWVYWvHDChg80qF/ZxlIG97W2ZyQgNik0/JEex0/9+4rNJRmF9a7HzLXkr1Vnr3/nVSVJ1efnL0mp3tDRT0eDwsLC2i12l3CY7fbC1bliUajJ5KLeBp4R5Ec2GHcJ1kOTKVSDA4OEo/HuXnz5r6irnwFYuYLGZJzHgTGGRNCn8/HtWvXCqprypSdn7Db+VJzMz/7f77CYlD5jWjIu0XXpVLWRnwkFU7euMNRRIeRcpWVrbXgvq8RRYmlFS+s7Pxbo1ZRWm2nqbECfzjGojdE8ogoiPFFFxeeaWLj+wuIb48eiyaIXFIR6VGRrHrwcxOLBTY/raH8v6bRZZHFmDIl0d3Z/32cFoSUjObNdVI3a9AGdi70wRYdRjx/UgAAkl9JREFUW6HCkxuLTke72UnMnWRh3Mso+fHKEUQZXfhghpMyQsypQtYUntho1Sr6Gir52Weu0NeQ/TUkG+zX1soQnkJWeURRzIuWxWg0UlNTQ01NDaIo7lZ5Zmdnicfj2Gw2SkpKdkNF83U9/WG76gwi2w8jQ2xOkuTsDans7+8/8LhnsV2VSXF3u90HukgfhUITnExCuyRJXL9+Pav8quOirKiI//riR/m5r/0NMz7lLmujXhcdXSVsjgdIKHAsBvBFYkjFBirUNjaX/Ue+Pi1KLCx78JoNlITSmJYCVJUZMZYUkTLpWfKFSe1DeiaX3LS8q4Gl7SUCHTKxNuHQGAPJIrD1aQ3l/y2N7uBp+QeQip+dKs5eCKIMr68Q7a3BmCrC25ObaaASaFUqLtpKUIdhbt7DhLi1s4Y8tsB0AflQQbk2Bpo1ibQB0kaBlFFAzqOwWCUItFc6+cknenhfd/Op3Dz3trXgvng5Q3zyWeUphOPxXq0O7FRbMlWeubk5dDrdLuGx2WzHIlmZdtXjiHNLcrJFRgNyUmQimxbPWSM56XSadDpNOBw+lsC4kBNUGadri8VCV1fXqUwEOI0m/vSDH+Ezf/s3THiUz+iO+9y0X3TiycLlOBCNI5lkahvsrC36lG0TjpM2abGVG3CvhmFtRyxs1mmobirB4DThl0QWvAESNpFEU5o3G5aRDQJKNSdSkcDW39VQ9t9E9OuHs5eUIYluoPAxBrlCkEA3sIr3g02krPk/n5qKrDhkE0uLPuYWjjnTfRhEGX3oaCYpyDtkRxuTMSAjaXYIT9ookDaQU/uqzlnMR69e5MdvdqHNMUCzUDhMvLxXL5jLiPpJBHSaTCZMJhO1tbW7zu4ej4epqSmSyeQDcRPZus4/rgnk8A4jOSdBJmRZZn5+nvn5ecUBm2dJkxMKhXYDLK9du5aTg/F+F4x8wuPx7Dpdn3RC+8OwGQz88Qc+zC98/asMu5QnaU/5PTS32hDmYopdjkPxBEt6icZmJytzysQwkVgKyWakzmphbXyn3JJKplmc3CRt2WlHRd+nJnkMGZNkFNj6GTVl/13EsHJIiyTtQ382TvNDEezK38W+2myhAiMby0G2lsJsUdhxc60gUJU24pezO44AqNOgDu0QJFmAtP4+6ZF0B3/HSiwmnr/UwqefuYzFcHLV1OPgoCrP3hYXKG9rnXRAp1qtpqSkhJKSEmRZ3q3yuFwuZmZmMBqNu4TnIKPTvQiHwz/U5Jw15HJjK3QS+d6g0Bs3big2KjwrmpxMTEZdXR0LCwtZf2kfjmgoxJd+dXWVqakpLl68mFPKeSFg1ev5o/e/yC9+4/9wb0th3waYC/mpqNZjXFETSyi7+0cSKeZ0YVraSlieVlYNiCXSLOkFGi5Vsjy2QaxFRfiaQLz5aLGpZj1Bulx3ZPq2bBDY/mk1ZX8uYlh8lOikDSn0g2e3ipOBuquCyxda8JNgLuAlnYONmE1voLXITmg7zvKYHz/KLQdygixz0e6kOKlhcd6NP358IiXIoI2DNi6DT0ZS329riUYBS5GeJ9vr+cy7r1DlUHadO8vIdkQ98/8ZnEQl5yAIgkBRURFFRUW7E6E+nw+32834+DiiKD5Q5dmvMv+4JpDDOSY5uUCj0RSsYhKNRhkYGECr1R4aFLofTrtdlZlOmpubo7u7G6fTycLCQlZ95kLrb2RZZmZmhvX1dfr6+nA4HHnd/3FRpNPxn174EL/0rb/l9vqa4u02Uwkq642wJBNLKCO6sWSaaU2QCxdKWZw8WvUrAwF9ijerRGKX7YgaGW0sjW4yhWCUEEtlJPMBie8JiYpfmiZVYyDRWUSiq4hUo2FfciTrBbZ/Sk3pl0SMsw+Sg3QihDZ9BsU4D2G7u4z1oR2iatVpqKu1o7Oq2UpFWTrEdE+vVtNRXIIclJmbdTMu5V9n8zDqzVaqVEY2l/2sL7lYL9iRQCWCOaGit7man/rYVS40H12hPq84qsqzn3j5LKWQazSa3biaTH6fx+Nhc3Nz1/drb9yERqM5EZLze7/3e/z7f//v2dzcpKenh9/93d890FU/n3hHkZxCkQmv18vAwACVlZVcuHAh65P9NNtVoigyNjaGx+PZFRhn1qK0urS3glMIgiOKIiMjI0QiEa5du3ZmbcdNWi2//9wH+JVvf51XVlcUb7eRiFHbYkW3lCIQVua/k0iLTMgBOjvLmB/bv02W1kOsAqLlvB2emCEZAimjlhRvO0H7ZLTraXTpFCqjRLpMRira+QxTjUbc/7Se0n+9iPHuzki6VKQi0VF0n/Q0GHZ9VWStgOdFFbX/R4s8vePdktaIqEcLqEHJExINNtLl9y/0iaTIzNz9dVeajVTXFCMbBZZjAdyxKBfsJZgTGubnvUzPZzFmliNKDEZajFYCGxHWF334UabPyhUqAarLTPydH7vFu260FfRYZxUPV3keHlF/WNB8VsgO7BAxi8WCxWKhoaGBVCq1Gzdx9+5dfvZnf5a+vj4sFktBK+P/43/8D77whS/wn/7Tf+LGjRv81m/9Fs8//zxTU1OUlZUV7LhwjmMdZFkmmcxuxPP27dvU1tbm7cOUZZmVlRWmpqa4cOECtbW1Oe1nenqaVCpFZ2dnXtalFIlEgoGBgd14iUwZU5ZlvvGNb/Cud73rUAHbSQiMMxEYGo2Gnp6eM5f5sh9SosgXXvom311ezGq7qiIzmnXw+JWPEWtUKi4VOZkb2ak+SGqIl0C0ApK2XD8LGV0sjXYP6VEFkpT82gIaz6PtXtGsJtVZhKbZTqjcjLfGBIKKyu9GsCykCMtejGOFJwDHhefHu0hVH916qbVbKdcaCbtiWJxG4lqZRZ+fULwwI+d6BOpUetRR2NyKUOgrtgDUVtvpayum76Kda1evnovv3UkjQ25GRkZIJBL09PTsXv/OStzEYRBFkddff52vfvWrfO1rX2NpaYne3l4+8IEP8IEPfIAbN27krQV348YNrl27xhe/+EVg529XW1vLL/3SL/FP/+k/zcsxDsI7iuTcvXuX0tJS6urqjn38jD/L9vY2fX19u5bduWBubo5IJMKlS5eOvS6lCAaD3Lt3D7vdvu900je/+U2eeOKJA6smJ+FgHAwGGRwcxOl0cvHixTN7sdgPKUnkn373Jb6xMJfVduWmIgybKtw+5ToOlQrK9VrWpDjxUgoQniiji6axBOPY/2QOefvwoFLRrCHWbCXWbMEY0GD6wQKq1Olrzg5DssaK98e6Dvy9o8hIk7WY0GqYzZV92lYCVNXbsZSbCMgpFjx+kseozmpUAp3FJegiMgvzblLpwld6S51m3vdkOz/yfDdTk2MA9PX1nUrMwHmAJEkMDQ2RSCS4cuXKrrZyry9PBqcVN6EUn/zkJ7l69Sqtra187Wtf4xvf+AaSJPEXf/EXvOc97znWvjPp7H/xF3/BRz/60d2f/8zP/Ax+v5+vfOUrx1z94XhHnb35aldlKiCSJNHf35/1uF6h1qUUGYFxU1MTTU1N+5KT/aIdMjgJgfH29jajo6M0NTVRX19/7kyqtCo1/593vxeNSsX/mZtRvN1WNEJpuYlytZmtI/KhJI1M2iyTLoKQJkHhogYEkiYtHpMW/y9epO73J1G5Dg4CVYfTmIe8mIe8yALEG80Y508+bTwbhK/XPPIzo07DBacT0ZtkadzNzGETSzKsL/rg7fF+i1ZNdZMdnV2PJx1n0eM/ugIjy7TZHDhFLUvzHhbnlYvYc4XVbODJa0389I9cw2krIplMcu/ePXQ6HT09PY9dWGO+kCE4yWSSK1eu7Fa69hMvZyrepxE3oRSRSITy8nI+9alP8alPfQpRFLlz5w6tra3H3rfb7UYURcrLyx/4eXl5OZOTk8fe/1E4tyQn1+mq45KJQCDAwMDAgRWQXHBSmpy94+2XLl165KR7eE37kZyTEBgvLS0xPz9PV1dXwfu1hYRapeLXn3kWnVrNX04r/zK7YlFEp5FKlYWN7QejGWSVTNoEabOMdILTuqqEhGFLRJ3Q4PpoB87/PY7Ge3TiuSCDYSG8U9WZO/28qv2QrDCTrLcBoBYE2sucGOMCy5Mu5qdzk/OmUyJLU/f1PBVFOiqb7GDRsBEJsxG4T5hqi8zUaIrYWgmwteRm61jv5mgY9BqudNfyd37kGo219yNmEokE9+7dw2Qy0d3dfWZuwGcNoigyNDREOp3m8uXL+7byTtKIMB+IRqMPVO3VajU3b948tfXkE+eW5OSC446QHxSwmY91FXqEPONg7PP5FI2370dyTiKiYWJiArfbzdWrVxWP4J9lqASBf/PUM+jVar40MaZ4O288hmSTqVEXs7LhRzRCukhGNFHobMj7kGQMWyKaMEhaDYKgQdIBOvD8WBeO/z2G1n20fkiQwTgXOrNEJ3K9hganjVKVnvUpL2sL+acZ0UiSuZH7++2uKqbCpEfWaJhe8jIeLux4vVot0NlawSc/cpUrXY9qB2OxGHfv3sVms9HR0fFDgnMA9hKcvr4+xVqlQhoR5gOFnK4qKSlBrVaztfXg92pra0uRj9xxca5JjiAIZCMp0mg0pFLZJyfLssz09DQrKyv09vbmNQASCt+uyjyhAfT39yuKP3i4urT3y1gIgpNKpXYvHjdu3MjaZfksQxAE/vkTT6NTq/lvo8OKt/Mn4kQNKcQ6EA/z6M8zdF4RnU9GFjSg1iHrHuVVskmL98c6cXx5HO2WMv2QcS6E6oITaTKHVM8CQVtZTE1NNe67ngLPKYFBo6LdWYzkjbP48jLetxPpZaCpuYTiOhtRFSxt+YkrdMI+DIIANRVW+i+V0VipRqvVYlSFcLlcOByO3SpDJBLh3r17lJSUcOHChXPXGj4piKLI4OAgoihy+fLlnLVK+TYiPC5kWSYSiRQs90+n03HlyhVeeumlXU2OJEm89NJLfO5znyvIMffiXJOcbKFWq4nHDxdNPozMzTcWi9Hf31+Q8eVCtqsyAmOHw0FnZ6fi9lqmupTpJ2fWVwiCk/EYKioqore397EVOv5fN59Ap1bzn4cGFG+TlMQTqdyoEjI6v4AxrSGZViEr+Ahkgxbvj3Zi/8sJdBvKKjTSpIdEjRX96tkI6YzUlBLcKJxeSCVAe4kNQ0xkaXyDuYlHc84EYHvOzfbb4+o6tYr6C+UYK8wE0mmWNv1IknKSW1Fq5YVnLvDx9/ei0+58kJIk4fP5cLlcTE1NkUgkcDgcWCwWVldXqaqqorW19YcE5wBkCI4kScciOPshWyPCQgx5FDrW4Qtf+AI/8zM/w9WrV7l+/Tq/9Vu/RSQS4dOf/nTBjpnB43k3OQDZVkwyAZtFRUXcvHmzYGOUhWpXbW5uMjIyQnNzM42NjVl9MTLEq9ACY5/Px9DQ0DvmIvv5azfRqzX83r07p72UnYwjv4A6AkgCgqAiSXbnoazX4PuRDuxfmUCnkLjoV4PoGpwkF0+3oiOZDYjVBTCVlGUaS4pxyCrWJrdYmV7Mbl2ixNrYBrzd3bQV6ai6WIHabsAVibPuevTvbLcaeaa/lZ/8yFWKLY9WQVUq1a4BXCYGYGVlhcXFRWRZxuPxIAgCpaWlFBcXP/bfw2ywl+AUetosFyPCfFyXMynkhcInPvEJXC4X//Jf/ks2Nzfp7e3l61//+qG60HzhXJOcXNpVSjU5mYDNurq6gt98892ukmWZubk5FhYWjhQYH4QMySlUewp2NE4TExO0t7dTU/PodMvjil+8fBW9Ws1v3HnjVI6vDchowgJCaofYAMeqFsk6Nd6PXcT+11Pol/yKtkkuehCdFlSe0IlJjB5Guq1q18QwHyi3mqjR6/HMe3DNLpMvZ6BkJMniW8u7/650FlHWXkZRlRWdScff+dg1aiptivcnCALJZJKNjQ1aW1upqqrC4/HgdrsZHBwE2M1Fcjqd72iPHFEUGRjYqbyexjj9UUaED78uF8IjSdKJOB5/7nOfO5H21MM41yQnWyghE3sjDrq6uqisrDwT61KKjDmV3+/n5s2bOfVZZVlGrVYzPz9PNBqlrKwMs9mcN6KTIWEZjZPT6czLfs8Tfranj6dq6/jKzBRvrK+xGPATL2CumkFSI2yLCAkQeLtlmU92oVHj+/AFbF+dwrCgTN2i9oQQHWZU3vCJEx3JpEPcM1mUK6wGHS3FZqIbIVbvrjOVh7UdhtqmEp5+voun3tdBWZUtp314PB6GhoZoa2vbfbioqKigoqICWZYJBAK4XC4WFhYYHR3FZrNRUlJCaWkpJpPpHVPlSafTDAwMIAgCfX19pz5Ov19ba68nT65VnkhkR1NXKE3OaeOHJGcP9hKEbAI2j4t8aXLi8fjul1KpwPhhZL40Fy9exOv14nK5WFpaQqvVUlpaSllZmaJU24OQmfIKhUJcu3btsQ2FU4JWh5N/dOPW7r9d0Qh/NT3FyytLzPi8hLI0u3wEImiioAkLqJISAgWe1tCo8H+wjapvLyJNKptQUnvDp0J00q1VR4aTHgS9Rk27sxh8cRbHN5gWlafP5wJHqYWnn+vkqRc6aWgpOxbJ2N7eZmRkhI6Ojn0f4ARBwGazYbPZaG1tJRaL4Xa7cbvdzM3NodfrdwmP3W5/bKewMgRHpVLR29t76gTnYeRzRD0a3ZmQPKtxOcfFuXU8hp0TMRty4PF4GBsb4+mnn37kd7FYjIGBAdRqNb29vTkRhFwRj8f53ve+x3PPPZfzRSMQCHDv3j2cTiddXV05JYjvFRjvFbeJorhLeFwuF5IkUVJSQllZGU6nU3EJN5FIMDg4iEqloqenJ6sQ03ca1tbWGBofZ91q5q7fy7jbhTcW48gvqwzq2A6xUccKGxC5F9pgGl1QQpUSUCGgfWsOzapyzY1oN6PynQzRkQ1a4s/1glr5d0QFtJXZMMVElsY3ScSzn9LMBkUWA/3vvsDTz3fS0VeHKkdCthcbGxuMj4/T3d2dk/9U5jrgXlkhsLJCXKfDXlW129o6yWtmIXHWCc5ReNiIcK/ec78qz9zcHNeuXSMej5+796oE76hKzkGaHK/Xy+DgIOXl5acSH7CXjedy7IzAOFf/nocdjB9W76vV6gdSbTPl7Lm5OUZGRnA4HJSVlVFaWnrghS4UCjE4OIjdbv+hD8chyBg2Li8vc/PKFRwOBz/39u9ESeJ7y4t8fX6Ooe1NNiMRpIwoPAGaiIAmAoJ0MsRGHRPR+UQ0CVAJakC92wJLXW0GtQrNkjJlitoXRrQVoQpEKPS0fLqlUhnBkWXqnVZKULMxvc3qzGJB16XVqbnyRAtPP9/FlVvNaHX5uzyvrq4yPT19rPaw9vZtqn/3d6n76lcRJAlZpSL47ncz95GPMFFfj8Vi2a3yWCyWc9nWSqfT3Lt3bzcr7zze9JVWeTLX+VAoRFFR0WN7TX5HkZz92lXLy8tMTU3R3t6el0yrXNcFO09K2Qjb9gqMe3p6cno6y9bg7+FydiQSweVysbGxweTkJBaLZZfwFBUVIQgCLpeLkZERGhoasp7yeichY4bo9Xr3beWpVSqebWji2Yam3Z8Nbm3wrcE53ppaYy0aJFVgU0khJaH3pdFGd7Q9wh5i8+ALBVJ9jaAS0Cwoa+eo/REkmwmCMYQsRqazgcqgRXuxmnT64L9TqdlIncmIb8HL9uwKhZwBEwToulLP0893cfOZdor2mYw6LjIO4sfJ2NP80R+h/dVfBbUaIePjIklYv/99+r7zHS78h//A+oc/vNvezjwYlZSU4HA4zoUtRCqVYmBg4FwTnP1wlBHh+Pj4blfkPHxO2eId1a6KxWJ8//vf5/nnn0eWZSYmJtja2qK3txeHowCjpAqRSf1++umnMZlMirbJ6IcCgQCXL1/OWWCczwmqZDK529LyeDzo9XoMBgOBQOBADcAPsYN0Os3w8DDJZJLe3t6czRCX3X6+OjDNm7MrLLr8xFJ5EDPLMpoY6MIS2hgc3TN7ENrhJTRzynOYpGITqnAcxPwTNqGsBHVFCRVtZZirrEQEmeWtABqg1WYhsRVmeaawGhuAxrZynn6+iyff14GzrDCCz0xVcGVlhb6+PoqLi3Paj+q119A/9xzCIbcKWRBIfOtbSP39SJKE3+/H5XLhdruJxWI4HI7dKs9xs/4KgVQqtZvZdenSpceG4ByF6elpnnvuOS5dusS3vvWtx/IB9FyTHFEUs4ppSCaTfOc73+Hpp59mZGQEURTp6+s7E1+6b33rW/T39ysS4sbjce7du4daraavry8nbctJOBiPjIzg8/l2959peTmdznfMRUQJMoJxvV7PpUuX8vo05QtH+drgDK9MLzO76SEYSyjeVp2Q0YZltBEZ1TH5hmZsBW02OVAGHSRSHJ1qmQVUKlTtTQhvn3sajUBDhRnJHyAWF7E1lJNAzfqan3gs/5qb8iobTz3XwdPPd1HTePzJrsMgyzIzMzNsbGxw5cqVYwn8dZ/8JOqvfQ3hkGutrNEgfvCDJP/8zx/5XSQS2RUv+3w+TCbTbpWnuLj41NskewlOT0/Pqa/npDA/P8/73/9+fvRHf5Tf+I3feGzf9zuK5EiSxDe/+U30ej12u53u7u4zc7P9zne+w5UrV4582soIjEtKSujs7MyrwDhfyBCcRCKxW5XIPNltb2+TSCRwOp27pOedLEAOh8MMDAzgcDhORA8WT6b59ugs3xtfZHzNhTccfaAwI6RkdJEdcqPO80S7ZnIN7cSq8g30OkilIE+tK6HUgaq8hPoqC4ZEnIW7c8TCjzqgq9QqqnsasdWVEUfN2qo/Z6GxpdjIE++9yNPPd9HeXX0iT8qyLDM5OYnb7eby5cvHm5qJxTCWle22qA49rkpFbHsbDnloTKVSu0MMbrcbWZZ3hcslJSUn7smTSqW4e/cuer3+HUVwlpaWeOGFF/jgBz/IF7/4xcf6fb+jSM7GxgZDQ0M0NjbS1tZ2pkpz3/ve97h06dKhbbONjQ1GR0cLJjDOBzJTagaDYd+qRCYnJUN4QqEQxcXFu4TncR1j3A9er5ehoSHq6upoamo6lfNRlmVenV7m+8PzzI5usr7oRy6QHgZAM7OBdnT56BdmoNNCWoTjao1UAhee6mBzchX/VnZhmCq1ipreRqx15SRk1ZGkR2/Qcv3pVp56voveG41oNEc8SMViEAyC1XooQVCCjMbC7/dz5cqV41ept7YwNTUd/bq3EZ2fB4Xmo5khhkyVJxwOU1xcvNvWymj6CoUMwclcqx7nG/1erK2t8fzzz/Pss8/yh3/4h4/9+z7XJEeSJEWBm5nS7fLyMpIk0d/ff+aMj15++WUuXLiwb/inLMvMzs6ytLRET09PTgGhe/U3hQp88/v9DA4OUlFRQVtbm6JjxOPxXR2P1+vdLWWXlZVhtVrPFBHNJzLjvBcuXKC6uvq0l/MAJue2+ParUwyNr7O+HSCVyo9RpZCS0ISSGFfdpObWlG+o1YIkFkSjkwseJT0+UimRnmuNPP18F9ff1YbRdHR1UvXaa2h+93dR75lWEj/0IdK//MtI/f1Zr0uSJEZGRohEIly5ciU/I915ruQchng8jtvt3r0W6HS63baW3W7Pa9U9mUxy7949jEYj3d3dj/2NPoPNzU1eeOEF+vv7+ZM/+ZMz08koJB57kpNKpRgeHiYSiXD58mXeeustenp6cp4yKBRee+01mpubH4lgSKfTjIyMEAwGz4zAeD9kbtqtra05T6ml02k8Hg/b29u43W5UKtVuhWdvavJ5hizLLC4u7kZulJQUVpuRD6xvB/jWy5PcHVlhac1HLJvWjSijCSfRhFKoY+ndQSzJ60deV2YYCIBWs6PPSRcmyDZXtF1r5plP3uKJH72Bzan8u/nAtNKearSs0YAokvqt3yL9cz93yB4ehCiKDA0NkUqlctbpHYTjanJywa4nz9tVnmQyidPp3G1r5SrMhx2Cc/fuXUwm0zuK4Gxvb/OBD3yAnp4e/uzP/uyxnKTaD481yYlEIrtsvaenB61Wy8svv8zFixfP3M3l9u3b1NbWUlVVtfuzfAiMC01w9vq6dHd35+3vujc12eVykUqlcDqdlJWVnUrvPh/IaCW2t7fp6+s7MUftfCMQivPSq1O8MbDI/LKH4MO6FllGHUmjCSXRRFIH+t5IvgDymvKpKzIX5QLGXyhBVWsF7/rxft714/1UNueQC5fltNJRSKfTDA4OIstyQfKV8r3ebCHLMuFweLfKEwwGMZvNu1WebCq+GYJTVFSUk2nqeYXH4+GDH/wgra2tfOlLXzqX189cca5JjizLJA+wvne5XAwNDVFbW/uA/uagislp486dO1RUVFBbWwvstH4GBgYoLS3NyTzvJATGoiju9v/7+voKFtGQuchtb2/jcrkIh8PYbLZdP56zMB13FDIj/9Fo9MxM9OULyVSal9+c54235lkcXsMz7YKUstaSFAgir2woP5hGvWMuk4/R+CxgLy/myY/f4F2fuEVLX/Z6uL3IZ2UkMxmk0WgK6s6r+c//Ge3nP5+3ytNxkEwm8Xg8u1YVKpXqgUDRg0jeO5Xg+Hw+XnzxRWpqaviLv/iLd9ygx2NHcvYGbHZ2dj5QGYGdiklNTc2Z00Hcu3cPh8NBQ0MD6+vrjI2N0draSn19fU4C48x4OBSG4CSTyd3E4p6enhO1dI/FYrsVHp/PR1FR0S7hOYtOq8lkcjcyJFNRfJwhyzKDtxd45VtjTAyt4toIIB6ip5GDIaSVDcXj4mqdBvn/3955x0V1pu3/GkCK9DIgIEoRBKQTNWpiiw0RBlYTNbGmbTTRJKbqbzXJxsQ1rsZNjDFFs5pEkyigUTTGApZYgaFKE6QoMjO0AQamnvP7w/ecZayUGaY938/n/bzZUeBhPHPO9dzPfV+XigKl5R4dG3trjEl8DBPmjkH4hFCY9yAG4oFosMdFJpOxler+aJw1u3jxTg/R4cP/6yFKSIByxQqtVHC6A+PJwxxrdXR0wNnZma3yML5jMpkM2dnZsLe379VUqqEiFovB4/Hg6uqKgwcPGk30Rk8wKpHDhD82Nzc/0PwqOzsbXC5XZ+7GDyIvLw92dnZQqVSoqanpc4Mx88+qjQ9ze3s7cnNz4eDggBEjRui0V0ahULBl7IaGBjZIVF8CBCUSCfh8PhwcHExq93g3laX1yDxWgIKsatyubYJcpl7FoNskoGpu9dkXR0VbQgkbWKAT5pyeB5xaDDBHzLQITHhmDEbOjIaVjYZ3vRqaVpJKpcjOzmY/g/16XWlwGkzTdHR0sPcDxpPH2dkZDQ0NcHJyQlhYmN5tgrRFW1sbkpOTMXDgQBw+fNioqsc9waBFDnBHoQPdD9jMzc2Fo6Mj/Pz8+nOZjyQ/Px9isRg0TSMmJqZXRz/90WDc2NiI/Px8+Pj4ICAgQK9uGBRFqQWJqlQqdhzVzc2t3xvtmGkzb29vDBs2TK/eK13TIGjF6fR88C9WoLayAR0SGej2DlA1N3vli9NCB6MasyDCSNyJ06TAxVUMxWE4cUof+fWhY4MwYe5YjEseCXsX7Ry7AtBIJaejowPZ2dlwdXVFSEgIua4egFKphEAgQGlpKWiahpmZmVrzsjEf20gkEsyePRscDgfp6elaayUwBIxC5DQ3N4PP58Pd3f2R/SsFBQWwtrZGYGBgP67y4XR2duLChQswNzfH2LFj9bLBGABqa2tRVlaGkJCQe44B9Q2aptHa2sr68XR0dMDFxYWt8vRlOqM7CIVCFBYWIjAwkO2zItyf5uZmXL6YBVEthZq8etw4W4iGamG3izo36WkowYvgQAW6SxwfB0rQMEcwvsNgzol7vs4nxAsT543D+Kcfh/uQ/htE6EtPTnt7O7Kzs1mbBiJwHgxT7XJyckJISAja2trYKk97ezscHBzYDZCdnZ3RvJednZ14+umnIZPJ8Mcff+idXUp/Y/Aip6KiAsXFxRg+fDh8fHweeaEWFxeDw+EgODi4n1b4cBiBZmVlBScnJ4wYMaJHX880GGszooGmaZSVleH27dt6OX7fHTo6OljBIxaLYW9vzwoeTd/gampqcP36dYSFhfUqNNWUYMJbg4KCMHjwYPZ1hUKJK0eycT71KsquVqCxrvm+JoUtdDCy8E/cPyWUgcZjWAsnTilcvZ0RPSMMw57wwQBnc9aXicvlwtHRsV8edL2dVmptbUVOTg58fHx0Zh5pKEilUmRlZcHZ2RmhoaH3vFeMJ09DQwOampowYMAAtsJjyHYVUqkU8+fPR0tLC/78889e55UZEwYtclQqFf766y8EBgZ2O2CzrKwMCoWix2JCG9y6dQvXrl1DUFAQ5HI5pFIpwsPDu/31/dFgzPj0dHZ2IioqqtsBovqMXC5HQ0MDhEIhGyTKPOicnJx63d/AmE7W1dUhKioKTk5Oml24kVFXV4fi4mKEhYU9ctqRpmkUnivBmd8uouivUgirRFAqVMij30YDYtUqOHfDgQojht7Azm9aETrufyaVjC8T088FgD3efNiUjibo6bQSM23p5+cHX19fra3LGGAEDhOV8qh7okqlQnNzM1vlkcvlbNW3r548/YlcLseCBQtQV1eHkydP6jR0Wp8waJED/K8np7tUVFRAIpEgIiJCSyt6NExlpLa2FlFRUXBzc8ONGzcgFosRFRXV7e+h7QZjJjiSSeY1xqkglUrFPuhEIhGAOw86d3f3HgWJqlQqFBUVsaaNxiAGtQljiBgZGdnrm3Fp9i3ETggATT/62jczoyEUdj6wT5aJGGCug67Hm25ublpp2uzutFJjYyPy8vLI0Wc36OzsRHZ2drcFzt0wsTOM4BGLxbC1tVULFNXHCppCocCSJUtQUVGB06dP650PnC4xeJGjUCjYSkZ3qKqqYqevdIFSqUR+fj7a29vVGoyrq6vR0NCA2NjYR36P/ui/EYvFyM3NBZfLRXBwsElMBTEPOsaPRyqVqvXxPKiZXaFQsGZsUVFRRt3Q2Fe6VrtiYmL6ZIgoEAD+/t0Xk5WVHd2NVWKPN0UiEVpaWtgHHZfL1XzcyEOmlUQiEfLz8w2iD07XMALH1dUVwcHBGvk3YqY3mf/jcDhstc/FxUUvNn5KpRIvvvgiCgsLkZmZSY7I78LkRM7Nmzdx+/ZtjBw5Uouruj/Mh9DS0vKeh2F319W1gqON4ykAEAgEKCoqQkBAAIYMGaKXOxdt0zVIlHFZdXBwYP14mCBRZqqPsYg31LP8/oAJj2xubu57OjbuaAN3dxtQ1KOvz0dVch5GV5sCxnyuP+JG6uvrUVRU1K3jPFOns7MTWVlZ4HK5GD58uFbuWRRFsYGiTLXPycmJrfLoIlxYpVJh2bJluHr1KjIzM+Hp6dnva9B3TCO8ogvm5uasC3B/wjQYe3h4ICQk5J7KSHfWxfTfaLPBmDlGMPWmWQ6HAzs7O9jZ2cHPzw8ymYwVPBUVFbC2toajoyNEIhEGDRqksZ2jsaJSqZCfnw+pVIqRI0dqpM/BxgaYNUuFo0fNoVQ++L23sKARH6/qtaXLgAED4OnpCU9PT9Z8TiQSobS0FDKZrFvVvp5y69YtlJaWIjIykhw9PIL+EDjAnZYAZ2dnODs7IzAwkDUlbWhoQHl5OWxsbNjm5f7w6KIoCitXrsSlS5eQkZFBBM4DMPhKjlKp7JFoEQqFKC8vx7hx47S4KnWYBuPhw4c/0IRQIBDg+vXr911XfzQYUxSF4uJiNDY2IioqymBzlfoDpVKJqqoqVFVVgcPhwMLCwuiCRDUJc5wHAFFRURot8V+4YIZp06xA0w/+PHA4NE6ckGHMGM06JN+v2qeJqT1mOi8qKoo0jz4CxjPI3d1dpyP1SqWSDRRlPLpcXV3ZKo+mj7ApisJbb72FP//8ExkZGaQZ/SGYZCVH2U8Bf0yD8c2bNxEdHf3QHZm5ufl9j936o8FYLpcjPz8fSqUSo0aNMphpAl1RX1+P6upqttrF7OxLSkogl8vVDAhNvT+HaV63trZGRESExgXg2LEUtm5V4I03BsDcHGoVHQsLGioVsHWrQuMCB7i32sdM7YlEIlRVVbHu28xYcnc+uzdu3EBVVRViY2PJ+O8j6OjoQFZWFjw8PHTuGWRhYQF3d3e4u7uDpmm0tbVBJBKhtrYW165dg4ODA1vl6Wv0DEVRWL16NY4ePYrMzEwicB6ByVVyxGIxsrOzMXnyZC2u6s668vLyIJFIEBsb+8jz2ubmZuTl5WHixInsa0wFR6VSaa3BWCKRIDc3F3Z2dggLCyNViIdA0zQqKipQW1t736kgJkiU8eNhgkSZnb2pTVxJJBI2k+1+R7Sa5OJFM3z5pQUOHzYHRXFgZkYjIUGFFSuUWhE4j4IZS2aqPEql8qE7e5qmcf36dbYh29QN3B6FRCJhTREDAwP1+qhYJpOxjcuNjY2wsLBQCxTtyT2Xoih88MEH2LdvHzIyMjB8+HAtrtw4MHiRo1KpelSZaW9vx8WLFzF16lStramjowM5OTmwsrLqdnleLBYjKysLTz31FID+maBqampCXl4eBg8eTGIHHkHXptnuJq5LpVJW8DBBolqb0NEzGOO6/o600MdYJUb8CoVCNDQ0oK2tDY6OjmohkmVlZRAKhd3aEJk6EokEWVlZ8PLyMrj7FkVRap48MplMLVD0YVYFNE3jk08+wc6dO3H69Gm98HozBEzyuKrrdJKmaWpqAp/Ph6enZ49Gr7s2Hmu7wRi40ydUUlKC4OBgvUtk1zeYqpxCoehR06y1tTV8fHzg4+MDhUKBxsZGCIVC5OTkwNzcHFwuF+7u7noRJKpJGF8Xf3//fi+l29joj7hh4HA4sLe3h729PQICAli3XaaJnfl8h4SEmGyIYncxZIEDgM3PcnV1RVBQEGtVwGRs2drassfdXT15aJrGpk2b8O233xKB00NMrpKjUChw6tQpTJkyReOOpjdv3mQjJnqact7Z2YkzZ85g6tSpWm0wZsriN2/e7JMRm6nA9JRYWVkhIiJCI9cMs5tj/HjublLUB++N3iIQCFBYWEh8XboBRVEoKCiAWCyGk5MTmpubQVGUmuuyIV8LmobJ7fL29ta7cGBNwGyEmKOtvXv3oqGhAXFxcWhqasKXX36JEydOdMtLjfA/DL6S09MLnTn/VKlUGhM5NE2jtLQUt27dQkxMDFxdXXv8PZidfEdHB6ytrbWys1epVCgsLERbWxtGjRpFyuKPoL29HTk5OWzas6b+Tbru5oKDg9kg0aqqKhQVFcHZ2Zn14zGkJvDa2lqUl5cjIiICXC5X18vRa5iReplMhscffxyWlpZqobI3btxAYWEhnJ2dWdFjaj1dXWEEzuDBg402t2vAgAEYNGgQBg0aBJqmYW5ujv3792PLli2sO35GRgYGDhxILCt6gMFXciiKgkKh6NHXHD9+HE8++aRGbhrMUUZHR0evDc5omoZSqQSfz0dzczN7Xu/u7q6xG5tUKkVubi7Mzc0RGRlp8lM/j4LpVxoyZEi/3lTvdtq1s7NjrwV9TUqmaRqVlZWoqalBdHQ0yex6BEqlErm5uaAoCtHR0Q+s1jA+LCKRCM3NzToJE9UH2tvbkZWVBR8fHwQEBOh6Of0GTdPYuXMn1q5di127dkEoFCI9PR2nTp2Cl5cXFi1ahA8++EDXy9R7TFLknDp1CiNHjuyzFwzTYGxtbY3IyMhelZbvbjCWy+Vss2pTUxNsbW3Z0cTePuTa2trA5/M1XpEwVm7fvo1r167pvF+p60hyY2MjBgwYwFZ4+hIkqkmYKqZQKFSLKSHcH4VCAT6fz242ultNvl+YKHO8qe0wUV3S1taG7OxskxQ4e/bswbvvvovDhw+rTd12dHTg9OnTaGxsxOLFi3W3SAPBJEVOZmYmIiMj4ezs3OufyzQYe3l5Yfjw4b164DyqwZixk2fSsi0tLdldvZOTU7cEj0gkQkFBAZtebCq7v97Q1fE5MjKyV8eO2kKlUqGpqYnd2VMUxe7qdfWQoyiKPf6MiYkhTbOPQC6Xs1OXffEMYuIFmGuhs7NTzXXZkI44HwYjcJhqqqlA0zT27duHN954A4cOHWInbgm9w+BFDk3TkMvlPfqac+fOISQkpNd26bW1texkUm9SgWmaZis4QPcajJmHHNOsyuFwWMFzP6MxmqZRU1ODiooKjBgxgmTfPAKKotQqEvrsU3J3YvbdDzlNRQs8jK4TZzExMeT48xFIpVLk5OSwflSarMIxrssNDQ1qR5xubm4Ga1XACJyhQ4fCz89P18vpVw4cOIDly5dj//79iIuL0/VyDB6TFDkXLlyAv78/Bg0a1KOvYx6EdXV1iIqK6tVO/24H495MUDH5OYzgYYzG3N3d4ebmBjMzM5SUlEAkEiEqKoo4pz4Cpgm0s7MT0dHRBleRYB5yQqGQDRJlBI+tra3GH3JyuRx8Ph8WFhY9OnIxVZhgXmdnZ4SGhmpVdNwdJmpubq6Wmm0IZp+Mx5Kvr6/JufkeOnQIL774Ivbt24fExERdL8coMEmRc+XKFXh7e/eo30KhUCAvLw+dnZ2IjY3tVUOwNgz+uk5kCIVCdHR0wMLCAmZmZiSDqhvIZDK1hmxDH9ll3FWZni5ra2u24qeJZtXOzk62IhEeHq4XfUH6DOPM6+7urtXwyPvBWBUwVR6ZTKZmVdAfFb+e0traiuzsbPZ43ZRIT0/HkiVLsGfPHsyePVvXyzEaDF7kAHdu7D0hOzsbXC632142jD29jY2NxhqMtXGzYxqhORwOzM3N2VgBplnV0CoU2kYikYDP58PR0REjRowwuge2SqViDQi7NqsyfTw93dUzI/VcLpeMsHYD5shl8ODBOvd1uV+YKJOn1JcwUU0iFouRk5MDf39/DB06VKdr6W9OnDiBZ599Ft9//z3mz5+v6+UYFSYpcnJzc+Ho6Nits97Gxkbk5ubC29u71zux/nAwZrKvPD092bC6u2MF7Ozs2EktbRxjGBItLS3sv6shOqf2FKZZlTniZHb1zBHno3pqWlpawOfz+32k3lBh3i9fX1+97ClhpjiZYy1mqIHL5erEgZsROAEBAT02UjV0MjIyMHfuXGzfvh0LFy4kny0NYxQiRy6Xoye/RmFhIaysrBAYGPjQv1dTU4PS0lKEhIRg8ODBPV5XbxqMewMz8hwUFPTARmiFQsEKnsbGRlhbW7MVHlPy3ADuuPIWFRUhMDCwV43jhg6zq2cET9cspft5MzU0NCA/P99k36+e0tTUhNzcXIN5v5ihBqaXR6lUsgGS3RHAfYURhKYocM6dO4c5c+bg888/xwsvvGBS9+H+wiRFTnFxMTgcDoKDg+/75xRFoaSkBLdv30Z0dHSvog+YBHFtRzQwqdgRERHdboTueowhEolgZmbGVniMLUfpbmpqanD9+nWEhYXB3d1d18vRC5iKn0gkQlNTEwYOHMgKYIlEguLiYowYMaLHjfqmCGPZEBwcbJCxFjRNo62tjb0e2tvbWQHMNLJrEkbgDBs2zCAEoSa5dOkSkpOT8emnn2L58uVE4GgJkxQ5ZWVlUCgU9w05UygUyM3NhUwmQ0xMTJ8bjDkcjtYiGoqKiiAWi7udin0/7pejxNzQ3NzcDGIaozvQNI2ysjJWuJKJs/ujVCrZHb1QKGSzlHx8fO5rVUD4H0xuV1hYmNFYNnQNE+3ayO7m5tZnQ8qWlhbk5OQYTMVLk2RlZSExMREfffQRVq5cSQSOFjEKkaNQKNiKSXeoqKiARCJBRESE2uvMJIStrW2vR2P7o8FYJpMhLy8PABAVFaWxcjIzqSUUCiEUCiGVStm+DS6Xa7CTR4wgbG1t7bVwNSW6hrgGBASwURMKhYJtVDX0IFFNU1dXh5KSEoSHhxttbhdTAWamtfoSJtrc3Aw+n4+goKBetQIYMrm5uYiPj8eaNWvw9ttvE4GjZUxS5FRVVaGpqQkxMTHsa5poMO4PgdPe3g4+nw8nJyeEhoZqrdLStW9DKBSivb0dzs7ObN+GobiqMpU5mqY1KgiNFYqiUFxczH4+mOOJrscYQqEQEomEvR5MfXKPCSaNiorq1dG2IdLVkLKhoaFH1wPTs2SKAqewsBAzZ87EG2+8gf/3//4fETj9gEmKnJs3b+L27dsYOXIkAM01GGt7gqqhoQEFBQU6mXBhwgKFQiFaWlpgb2+vNqmljzCeLra2tggPDzeaozdtoVKpUFBQwIbNPkzI3h0eybjscrlc2Nvbm8zN+8aNG6iqqjL5YNK7rwdbW1u2ytN1sIEROMOHD9dpLpwuKC4uRlxcHF555RV89NFHJvMZ0TVGIXKUSiU7wdQdbt++jerqaowaNQolJSWor69HdHR0r7Ks+qPBGLgjxMrLyxEaGgpPT0+Nf/+ecHeIqI2NDVvh0RcbebFYjNzcXHh4ePS7CZsh0rXi9bBk7Ad9bdeMtQEDBuh0HLk/YJr+b968idjYWL2OAelvFAoFGhsb2V4eMzMzuLm5wcbGBjdu3EBISIhBNmX3hbKyMsTFxWHRokXYsGGDUX4m9BWTFDlCoRClpaWwtrbWSIMx8xZq48KlKAplZWWor69HVFSU3u0WmXRkxnDO3NycrfDoKimbmXBhTMWIwHk4MpkMOTk5sLa27lNwJHD/IFE3Nze4u7sbTVo208QuEAgQGxurt5VMfYDxZ6qpqYFQKASHwzHKMNGHUVlZiRkzZmDOnDnYsmULETj9jEmKnFu3bqGwsBBcLhcRERF622CsVCqRn58PqVRqEJlKFEWphYjSNK32gOuP46KbN2+itLSUjDx3E8Ylm+nx0uQNuGsju0gkQkdHh8E/4GiaxrVr19Dc3Eya2LtJY2Mj8vLyEBISAgcHB1YAi8Vioz/mrK6uxowZMxAfH49t27YRgaMDjELkqFQqKJXKbv3dhoYG8Pl80DSNqVOn9qnBmKZprR1PdXZ2Ijc3F1ZWVggPDze4SRamMZFpXJbJZKzg0cZkTlfPoKioqF4dPZoabW1tyMnJwaBBg1iXbG3SNVZALBazfV3aChLVNBRFobCwEG1tbYiNjTVIkdbfMEaSISEh9xyzy+VytWktCwsLdnLPUMJEH8atW7cwffp0PPXUU/jmm2+IwNERJiNyaJpGTU0NysrK4O/vj8rKSkydOrVHP6e/GoyZfhIm1M/QPxw0TaO9vZ0VPBKJhN3Ru7u79zkokKIodnfdF88gU6KpqQl5eXls0nN/C4y7YwWsrKzY68HJyUnvBA+TVC+VShEbG0um9LoBc2wcGhr6yKpq1zBRkUgEuVyu92GiD6O+vh4zZszAmDFjsGvXLp0JNpVKhQ8//BA//fQT6uvr4eXlhSVLluAf//iH3n3GtIVJiBxmLFYgELDHPpmZmZg+fXq3/6H7q8G4vr4e165dYx1AjfFC7OzsZAWPWCyGg4MD28fT0/K/QqFAfn4+FAoFoqOjDe5mqAuEQiEKCwv1ZsKlq/+KSCQC0LcgUW2sLzc3FyqVqsdN2aaKSCRCfn5+r46NmU0R07jMhIl2dV3W5/uiUCjEzJkzERUVhT179ui0D+3TTz/Fli1bsHv3bowYMQJZWVlYunQpPvnkE6xcuVJn6+pPjELkUBQFhUJx3z+Ty+XIzc2FQqFATEwMbGxsoFAocOrUKUyZMqVbF2B/NBjTNM2OoxqzodjdyGQytUktW1tbdkf/qDN6qVQKPp8PKyurXvdWmRo3b95EWVmZ3sZa0DSNlpYW9pqQyWRwcXFhj7X6u4KiUCjA5/NhZmaGqKgoco11A0bgaMr5WSaTsYJHH8JEH0ZjYyPi4+MRFBSEffv26VwQz5o1Cx4eHti5cyf72uzZs2FjY4OffvpJhyvrP4z6E9ve3o6cnBzY2dkhJiaGvUExO0OVSvXIm1Z/NBh3PW4ZOXKkSY2jWllZYfDgwRg8eDAbKSAUCpGVlYUBAwaoTWp1fe/b2trA5/Ph6uqKkJAQvbrR6SM0TaOqqgpVVVV6bVrH4XDg7OwMZ2dnBAYGsn08t27dQnFxsVZzlO5GLpcjJyeHFdG6rigZAkKhEAUFBRqNtrCysoK3tze8vb3VpveKioqgUqnUjrV0KSqam5vB4/Hg5+eHvXv36lzgAMDYsWPx7bffoqysDEFBQcjLy8P58+exZcsWXS+t3zDaSo5IJEJeXh6GDBmCwMDAe8TJ8ePH8eSTTz70eKQ/BI5cLkdeXh4oikJUVBQ5bvk/mJsZM5kDgK3wAHecQ4cOHQo/Pz+9Ll3rA8zIc319PWJiYgxWRDM5SkzVb+DAgazg6Wo4p6mfxWyQwsLCiIjuBozACQ8P75cqYX+HiT4MsViMxMREuLm54eDBg3pzH6coCmvWrMFnn30Gc3NzqFQqfPLJJ1i9erWul9ZvGEUlp+vNjaZpVFdXo7y8HCNGjHig6ZSFhcUj+3i03WAskUjA5/Nhb2+PsLAwslPsgrm5OXuzYo4whEIhioqKoFAo4ODggIEDB3arGmfKUBTFBrmOHDnSoEeera2t1ap+TB8Pc5zEXC99nczp7OxEdna2VsbqjRUmnLS/BA5w577v4OAABwcHBAQEQCqVsoLn+vXrrEkpI4K19e/Y1taG2bNnw9HREampqXojcADgt99+w88//4y9e/dixIgRyM3NxRtvvAEvLy8sXrxY18vrF4yikkPTNORyOXvsIxQKERMT81DjvMzMTERGRt4zasxMUDG+O9pqMG5sbER+fj4GDx6MYcOGkWrEI2COW27cuIHAwEC2l4eZ1GJ6NvTpBqNrVCoV8vLyIJfLjbopm6IoVgQzQaLMEUZPg2WZkF5mspF8Lh+NQCBAUVGRXvUSKpVKNVNKAGphopraGEkkEsyePRtmZmZIT0/XO2NIHx8fvP/++3j11VfZ19avX4+ffvoJJSUlOlxZ/2E0W2C5XA4+nw+lUokxY8Y80jiPKd11pT8ajIH/GdaZor15b6AoCiUlJWhoaFDrWRo2bBjbs8GkQDs6OrJ9PPpunqhNujbMxsbG6kV/gLYwMzODi4sLXFxcMHz4cNauoKamBteuXYOTkxMrgh92TTC+QV5eXmTj0U3q6+tRVFSEiIgIvRE4wJ1KPXMf6BomWlFRgYKCAo2Ey3Z2dmLu3LmgKEovBQ5wx+zz7ueYubl5j7IeDR2jEDlSqRQXL16Eg4MDYmNju6XS7z6u6g//G5qmUV5ejrq6OkRHR+tt86c+oVQqUVBQgM7OTowaNeoeAzZbW1vY2trC19cXMpmM3c2Xl5fD1taWvdHZ2dmZzEOL6ScZOHCgyQWTcjgc2Nvbw97eHgEBAWrBkWVlZQ+c3hOLxcjJyYGvry/8/Px0/FsYBrdv30ZxcTEiIyPh5uam6+U8EA6HAycnJzg5OSEwMBAdHR3stFbXa4LL5XY7e08qleLZZ5+FRCLBn3/+qbd9bgkJCfjkk08wZMgQjBgxAnw+H1u2bMHzzz+v66X1G0ZzXHXjxg14eXl1+0F25coVtmO/vyIaCgsLIZFIEBUVpZeqX9+QyWTg8/mwsLBAZGRkr0MjGxoaYGVlxQoeTTep6hMSiQQ5OTlwdXVFcHAw6SfpAnNNMA67TJCotbU1KisrMWzYMAwZMkTXyzQIGIETERGh1wLnUTBhosw1wYSJPsyjSS6XY8GCBbh9+zZOnDih15vVtrY2rF27FmlpaRAKhfDy8sL8+fOxbt06kzG0NAqRA9y58Hryq2RnZ4PL5WLw4MFar+BIpVLk5ub26mFtqjBN2Y6OjhgxYkSfHtZ3m81xOBx2N+/i4mI0QkAsFoPP52Pw4MEICAgwWiGnCZictdraWvbhxlwTbm5upJn9ITBHw5GRkXB1ddX1cjQG09vF3CcYjyaKouDs7Ax/f38oFAosWbIElZWVOHXqlEELPFPBZEVObm4u7O3t2Z2bthqMW1tbkZubS/xcekBLSwtyc3Ph7e2t8d6Irk2qQqEQKpXKKFKymRBEUo3oPsxEUGhoKAYOHMg+3LrGjhhqkKi2MFaBczc0TaOjowMikQjfffcdvvjiCwwbNgxcLhd1dXW4ePGixnyACNrFJEUOTdPs0ZGvr6/WwuAY+3x/f38MHTqU7Ky7ATOpERgYCB8fH63+rLtTsjs7O3XqrttbmObP0NDQe0IQCffn9u3buHbt2n1HnpmHGxM7Ym9vzwoeU+rtuptbt26htLRUr80ktcXNmzfx9ttvIysrC62trXB2dkZCQgISEhIwadIkIoT1GKMROQqFolsd40yDcXt7O2prayEUCkHTNFuqdnV17XO1hfHqqays1Fv7fH2kuroaFRUVOhtFlUgkbIWnra2t21M5uqSmpgbXr183+N6I/qS2thbl5eXdqkbI5XK1Ph4mSJTL5cLJyclkKrOmLHAoisKKFStw7tw5ZGRkwN3dHWfOnMHhw4fx+++/QywWo66uzqA9qIwZkxI592swZsYLBQIBhEIhFAqF2tl8Tys8TBhoQ0MDoqOj4eDg0JdfyyRgHHlv376N6OhoODo66npJkEqlbIWnubkZdnZ2bOOyPgQE0jSNyspK1NbWIioq6qGeUIT/wXgtRUdH9/g96+rC3dDQAJqm2SbV3twrDAUm7yw6OvoeXzFjh6IovPXWW/jzzz+RkZEBX19ftT9nPocBAQG6WSDhkZiMyOmOgzFjEy4UCiEQCCCVStl+DS6X+8h+DYVCgby8PCiVSkRFRZESZjdQqVQoLCxEe3s7oqOj9XI3xOzmhUIhGhsbYW1tzQqe7o6cahKaplFSUgKRSISYmBjY2dn16883RLqKwpiYmD5vPpjNESOEpVKpWh+PsRgvMlUvUxU4q1evxsGDB5GZmUmEjIFi9CKntw7GNE1DIpGwFR6JRAJXV9cH9mt0dHSAz+fD1tYWYWFhBtvA2p8wCfEAEBUVZRA9MCqVij2+EIlEbPyEu7t7vyQiUxSFgoICtLe3IyYmRm+P0fSJrtldsbGxWhGFzFGnSCRCa2srHBwc2OvCUO0iamtrcf369V5VvQwdiqKwbt06/PLLL8jMzERQUJCul0ToJUYjcpRK5SMdjPsyQXV3v4azszO7m+/o6EBeXh68vLzuGwZKuBdGFDIBiIZY6qcoCs3Nzex1QVGUWm+Xpn8npVLJVgqjo6MNQhTqGpqmUVxcjMbGRsTGxvZLpZCJHBGJRGhqamIrf9oIEtUWNTU1qKioMEmBQ9M01q9fj127diEjIwOhoaG6XhKhDxityOnaf8PhcDS6w+7s7GQfbC0tLQAADw8PBAYGkp11NxCLxcjNzcWgQYMQFBRkEDf9R9HVOl4oFEIqlapV/vrqjSSXy5GTkwNLS0tERESQSmE3YMJJW1tbERsbq5Pj465Bog0NDeBwOOwRuLamOvuKqQucTZs2Ydu2bTh9+jQiIiJ0vSRCHzFKkdMfDsY0TaOiogI1NTXw8vKCRCJBc3Mz7O3t4e7uDg8PD73sL9E1IpEIBQUFCAgIwNChQ3W9HK3AHHUyQri9vZ2t/PXGd4VJxXZwcEBYWJjJTPT0BYqikJ+fj87OTsTExOhFj8z9zOa6Ni7rQ2WOmQqNiYnRiwGA/oSmafznP//Bv//9b5w4cQKxsbG6XhJBAxiNyFGpVFAqlf0icJhm2ba2NkRFRbFn/HK5nN3JNzY2stlJHh4eejGRo2uYYNKwsDCTMtJi8pOYyh8jhLvTr8GERnp4eJBU7G7CpK8rFArExMTopcM4TdNob29nr4v29nY2XJbL5epkg8RMnpmqwNm+fTs+/fRT/PHHHxg9erSul0TQEEYjcpRKJRQKRY8bjHuKTCZDbm4uzMzMEBkZ+cDd193ZSdbW1vDw8LgnGNAUoGka169fx82bNxEVFWVyUxpd6SqEm5qaYGNjwz7Y7p7Uam5uRm5uLoYOHQo/Pz+TumZ6i1KpBJ/PBwBER0cbzLGeVCpV6+PpTWhkX2AETmxsrMnZXtA0je+//x7r1q3D0aNHMW7cOF0viaBBjEbk7NixAwEBARg1ahQsLCy0clNoa2tDbm4unJ2dERoa2u1jA2YiRyAQsMGAjOAxlEbE3sL0RbS0tCAmJsZgJ020AdOv0fW6YBqXmUDXoKAgDB48WNdLNQjkcjn4fD4GDBiAyMhIvex36Q5MaCRTEWYm+Lhcrlay1m7cuIHq6mqNjNYbGjRNY8+ePXj33Xdx+PBhTJw4UddLImgYoxA5NE3j73//O/bv3w8bGxskJCQgOTkZY8eO1dhOjukl8fX17dOuuquhmFAohLm5OXt0YWwOqgqFAvn5+VAoFIiOjtaLvgh9hQmMFAqFqK+vh0qlgrOzM4YMGaKVSS1jQyaTIScnBwMHDkR4eLjRfI6YCT6m+qdUKtX6ePp6FMcInNjYWNjb22to1YYBTdPYu3cv3nzzTRw6dAhPPfWUrpdE0AJGIXIY5HI5Tp48iZSUFBw6dAhmZmaYNWsWkpOT8eSTT/aqsY+madYvIjQ0FIMGDdLYepkbmEAggEgkAk3TrOAx9HRsqVQKPp8Pa2trhIeHG8yxga6pqqpCZWUlhg0bxvbyyOVydlJLEw82Y4NpzHZycupRhdXQ6GpWygSJOjs7s9W/nja0V1ZWoqamxiQFDgDs378fr776Kvbv34+4uDhdL4egJYxK5HRFoVDgzJkzOHDgAA4ePAi5XI5Zs2YhKSkJkyZN6lZVgaIolJaWQigUIioqSqvNeDRNo6WlhTUfVKlUWvVc0SZtbW3g8/lwc3NDcHCw0T50NAlN0ygvL0ddXZ3asQHToMpU/piEbKaPx9SrYxKJBDk5Oey1ZsxHv3fDWFmIRCK0tLTAzs6OvWc8Kki0oqICtbW1JitwDh48iJdeegn79u1DYmKirpdD0CJGK3K6olKpcO7cOaSkpCAtLQ3t7e2Ii4tDUlISpkyZcl9vG4VCgYKCAshkMkRFRfWr/w2Tjs0IHrlcznpruLm56XVVpLGxEfn5+aRZtgdQFIVr166hubn5kX1LHR0d7INNLBbDwcGBrf6ZmmVBe3s7srOz4enpafImnF2DRBsbG9X6u7oegzPxFjdv3tSa+7O+c+TIESxduhR79uzB7Nmzdb0cgpYxCZHTFZVKhUuXLrGCp6GhAdOnTwePx8P06dNhZ2eH0tJSLF68GOvWrcO0adN0KiqYnTwjeDo7OzVqMqdJ6urqUFxcjJCQEHh5eel6OQaBSqVCfn4+pFIpoqOje3TkwDjrMpNajGVBd3byho5YLAafz4ePjw/8/f2N+nftKUzfHzOtxThxu7m5obW1Fbdv3zZZgXP8+HEsXLgQ33//PebNm6fr5RD6AZMTOV2hKArZ2dk4cOAA0tLScPPmTYwbNw5Xr17F1KlT8d133+mFQVdXuh5dtLe3s0cX7u7uOlsrTdNsA2NERARcXV11sg5DQ6FQqGV39UWwMpYFjLPugAED1BrajUkEMKP1/v7+RmsoqSm6OnHfunULCoUCTk5O8PT0NLnjzoyMDMydOxfbt2/HwoULjeozQXgwJi1yukJRFD777DOsW7cOQUFBuH79OiZPngwej4f4+Hg4Ozvr3YeCOboQCoVobW2Fk5MTPDw8euWq21soikJJSQkaGhoQHR1tkuf7vaFrY3ZERIRGe666TvCJRCJwOBx2BNnV1dWge6QaGxuRl5dHRut7AONTVVdXhxEjRrAmhMxxJ3NtGLNh6blz5zBnzhxs3boVzz//vNH+noR7ISIHd24CH3/8MTZv3ox9+/YhLi4O165dYys8165dw4QJE5CUlIRZs2bBzc1N7z4kUqlULU/LwcGB9eLRVj+RUqlEfn4+ZDJZj49aTBmmWdbFxQUhISFaFR1dowSEQiEUCoXB9HfdjVAoREFBAUJDQ+Hp6anr5RgETEM7k8Detd9LJpOxhqVNTU2wsrJij8GNqfp38eJFJCcn41//+heWLVtmNL8XoXsQkQPg3Xffxa+//oojR44gPDxc7c+YmwQjeHJzczFu3DgkJSUhMTERHh4eevehubtXw87OjhU8mjLjk8lkrPFaRESEXvUG6TOtra3IycmBt7c3hg0b1q/XTtcRZKFQiI6ODri6urINqvp2NNuV27dv49q1awgPD4e7u7uul2MQ0DSNsrIyCASCewTO3ahUKjZIVCQSAYBa9c+Qpju7kpWVhcTERHz00UdYuXKlTu/Vt27dwnvvvYdjx46ho6MDw4YNww8//IDHHntMZ2syBYjIAVBSUgInJ6dHeuDQNI2qqiqkpKQgNTUVV65cweOPPw4ejwcejwdvb2+9EzwKhQIikQgCgYCNEWAET2+bU5lKRE+dn02dpqYmtpfE19dX18uBRCJhxXBrayubnaTN6l9vuHnzJsrKyhAZGUn6vboJI3CEQiFiY2N7NHlHURTEYjF73CmTyVgxzOVy9VoMdyU3Nxfx8fFYs2YN3n77bZ3em5ubmxEdHY1JkyZh2bJl4HK5KC8vR0BAAAICAnS2LlOAiJxeQtM0bt68idTUVKSmpuKvv/5CbGwsK3h8fX31TvAolUq1eAkrKytW8HQ3H4dp+vTx8UFAQIDe/Y76ikAgQGFhod5OnjHZSUKhEM3NzT3yXNEmTCq2qWee9QSaplFaWgqRSNRjgXO/79VVDLe1tcHR0VGtj0cfKSwsRFxcHFatWoU1a9bo/D71/vvv46+//sK5c+d0ug5ThIgcDUDTNOrr65GWloaUlBScPXsW4eHhrODRRw8PpjzNCB4LC4tHTuMwD+rhw4eTps8eUFtbi/LycoSHh4PL5ep6OY+Eqf4xk1pMr0Z/Zq0xE3s1NTWIjo42uVTs3tJV4Dz22GMar8jdHSQ6cOBAVgz3R5BodyguLkZcXBxeeeUVfPTRR3qxptDQUEyfPh03b97EmTNn4O3tjeXLl+Oll17S9dKMHiJyNAxN02hoaMChQ4eQkpKCU6dOYfjw4eDxeEhKSkJISIhefOi6QlEUGwjITOMwDzVmqqympgYVFRUG86DWB7qO1htqJYIRw8y1YWZmpnZtaOOokumDM2U/l95A0zQ76agNgXM3TGWYEcNmZmas4NFVLE1ZWRni4uKwePFifPrpp3pzlM4MZaxatQpPP/00rl69itdffx07duzA4sWLdbw644aIHC1C0zSam5vx+++/IzU1FX/++Sd8fX1ZwaOPQYJMnhbTnErTNCwtLVnnZ0N8UOsCZkctEAgQExNjFKP1d4dFqlQqtUktTTSndn1Qk9T67kPTNIqLi9HU1ITY2Nh+76nqem2IRCIoFIp+z1urrKzEjBkz8PTTT2Pz5s16dW+1tLTEY489hgsXLrCvrVy5ElevXsXFixd1uDLjh4icfkQsFuPIkSNITU3FH3/8gUGDBrGCJyYmRq8+lMCdnRqfz0d7ezvMzc3Zh5qHh4dBT1xoG4qiUFhYiLa2NsTExOhVE6+mYKJHGDEslUrVHmq9aU5l4i1aWlp08qA2VLoKnMcee0znVg7MFB8jeNrb29kgUS6Xq5V/1+rqasyYMQOzZs3Cl19+qXf30qFDh2Lq1Kn4/vvv2de+/vprrF+/Hrdu3dLhyowfInJ0RHt7O44dO4aUlBQcPXoUzs7OSExMRFJSEkaNGqVzASGXy+9x42UeagKBADKZjBU8hua3ok0Y7yC5XI6YmBiDmUTpK4zBHNOc6uTkxB5rdeehS1EUCgoKIJFIEBsba1JOvH2Bpmk290wfBM796OzsZAVPc3MzGz/C5XJhb2/f5+P7W7duYfr06ZgyZQp27NihdwIHAJ599lnU1taqNR6/+eabuHz5slp1h6B5iMjRAzo6OvDnn38iJSUFR44cwcCBA5GQkICkpCSMHTu23wVER0cH+Hw+7OzsEBYWdo/g6pqMLRAI0NnZCRcXF9Zt2VQ9c+RyOfh8PiwsLBAZGWmywu9uY0p7e3v2oXa//hqVSoW8vDyTE4Z9hRE4TOVLHwXO3dwvfoSp8PSmx6u+vh4zZszA2LFjsXPnTp1vDh/E1atXMXbsWHz00Ud45plncOXKFbz00kv49ttv8dxzz+l6eUYNETl6hlQqxalTp5CamopDhw7B3Nwcs2bNQnJyMp588kmtCwgm+NDT0xNBQUHd2mVJJBJW8DClaUbwmMqOvLOzEzk5ObCzs9PLXitdwaRjC4VCNDY2wtramq3wODg4QKVSITc3FzRN9zm/y5SgaRpFRUUQi8UGI3DuhqIotfgRiqLg5ubGhok+apMgFAoRFxeH6Oho7NmzR+83FUeOHMHq1atRXl4OPz8/rFq1ikxX9QNE5OgxCoUCmZmZSElJwcGDB6FQKDBr1izweDxMmjRJ4wJCJBKhoKAAAQEBvQ4+7OzsZAUPYzDHePEY4o24O7S3tyMnJwdcLhfBwcF6Nz2nLyiVSnZSi5nGoWka1tbWiI2NJQKnmzACp7W11WiO9pgeL+bIs6OjAy4uLmyV5+57R0NDA+Lj4zF8+HDs27ePXDu4Ixrv3lzRNG3y9yMicgwEpVKJ8+fP48CBAzh48CDa29sxc+ZMJCUl4amnnupzM19tbS3KysoQFhYGDw8PjayZ8dQQCARsnhazi++LQZk+0dLSwpoj+vv7m/wNpbt0dnYiKysLwJ2bM0VR7PgxaWp/MBRFoaioCG1tbUYjcO4HEz7MBInW19ejoKAAc+bMgb+/PxITEzFkyBDs37+fHG/izvOBqWTx+XwIhUKMGzeO2C+AiByDRKVS4dKlS2yeVmNjI2bMmAEej4fp06f3aOyWSSi+desWIiMjtTYiLpfL2T4NJk+LETyG+kFsaGhAfn4+hg0bhiFDhuh6OQaDVCpFdnY2HBwcMGLECHA4HDZGQCgUsk3tzC6e7NLvwEzttbe3G7XAuRu5XI7Tp0/jP//5Dy5dugQ7Ozs4ODjg22+/xaRJk/T+mErbdK3gTJkyhY1poWka77zzDhYsWAAnJyfdLlKHEJFj4FAUhaysLFbw1NXVYerUqeDxeIiLi4ODg8NDv7aoqAgtLS396knCOOoyfRo2NjZwd3eHh4eHTiMEegITGDlixIhHZp4R/kdHRweys7Ph6up6X2PMrk3tXcePmcZlYz3yfBSMwGGmz0yxetHW1obk5GTQNI2goCAcO3YMFEUhPj4eSUlJmD59utFUiHvDzJkzIZfLsWfPHnh5eWHQoEEYOXIkfvrpJ5N2DCcix4igKAp5eXms4KmsrMRTTz0FHo+H+Ph4tbgGkUiE9PR0BAcHIzo6Wme7QsY1lenTsLS0ZAWPvtjE3011dTUqKipIYGQPaW9vR3Z2NgYNGtTtpnamx0soFEIsFrNHnvqcm6RpmPH6jo4OkxU4EokEs2fPhpmZGdLT02Fra8tWtA8ePIhDhw7h4MGDCA0N1fVSdUJFRQWeffZZ7N69G8HBwVixYgUOHz6Mo0ePIjQ0FG1tbUZhSNobiMgxUpjx0gMHDiA1NRXFxcWYOHEi67S8aNEiBAQEIDU1VW/KvXdHCJibm98TL6FLuh7tkTylntHa2oqcnJw+9S4xR54ikQiNjY0YOHAge31owm9FHyEC547QffrppyGXy3Hs2LH7PqyZx5gxXgMMXZuI7/5vPp+P5ORkVFdX47333sO+fftw9OhRhIWFoaKiAl9//TXeeusteHp66vJX0AlE5JgATBbQgQMH8NNPP6GyshIRERGYO3cukpOT4eHhoXc3h67jpUKhEBwOB1wuFx4eHlrLTHrUehhXWRI30DNaWlrA5/Ph5+cHX19fjXzPuyuAAwYMYCs8+iCINQFFUcjPz4dUKjVZ/yCpVIr58+dDLBbj+PHjZGMBICcnBzExMQCAjRs3YunSpXB3d8f48ePR1NSExsZGZGZmYvjw4QCA06dP4+2338b27dvx+OOP63LpOoGIHBPixIkTmDNnDv7+97/Dzc0NaWlpuHr1KsaMGYPExETweDx4e3vr3QOCoii0tLSwgkelUrGCx8XFReuTOCqVit1Nx8TEmGxfSG9obGxEXl4eAgMD4ePjo5WfwQTMMn1eANSCIg1xUqurwDHV8Xq5XI4FCxbg9u3bOHnyJMnNA3D48GGsWbMGb7/9Nn7++WdUVFSAz+fD3t4eO3bswJYtW/D444/jxx9/RGdnJ0pKShAfH48XXngBH3/8sa6XrxOIyDERdu/ejeXLl+Obb77BggULANyp8NTW1iI1NRVpaWn466+/8Nhjj4HH44HH42Ho0KF6J3hommYncQQCARQKhVq8hKYfaAqFAnl5eaAoCtHR0Sb5sOktjO9ScHAwvLy8+uVn0jStJoiZ64MxmDOEfz+mt04mk5mswFEoFFi8eDFu3LiB06dPk963/6O8vBwbN25ESkoK7O3tUVZWxm66mpub8e9//xsHDhyATCaDt7c36uvrMXPmTHz55Zc6XrnuICLHBJDJZJg8eTI+/vhjTJ48+b5/h6Zp3L59G2lpaUhNTcXZs2cRERHBCp5hw4bppeBpa2tjBY9UKlVLxe7rw0EmkyEnJwdWVlaIjIw0yIqArqivr0dRUZFGfZd6StdJLaFQCIlEAhcXF/ZYSx9HsFUqlVr2mSkKHKVSiRdffBFFRUXIyMiAu7u7rpekFzB9OB988AG++OILBAQE4MUXX8Qrr7zC/p329nZcv34dhw8fxqBBg+Dp6YlZs2bpcNW6h4gcE6Enzpc0TaOhoYEVPKdPn0ZwcDAreO43+qtraJqGRCKBQCBgH2hMKjaXy+1xP0NHRwdycnLg5OSE0NBQEtPQA27duoXS0lJERETAzc1N18thYQzmGB8RR0dH9lhLH0aPmQwvpVJpslVDlUqFZcuWISsrCxkZGSbZKHs3zL2b+f9ZWVmwsLDAt99+i5ycHMydOxdvvvmmrpept5iEyPnqq6+wadMm1NfXIzIyEl9++SVGjRql62UZBDRNo7m5Gb///jtSUlJw4sQJ+Pn5gcfjISkpCWFhYXopADo6OljB09bWxnqtuLu7P3IH39bWhpycnB6NOhPuUFNTg+vXryMqKgouLi66Xs4DkclkbA9PU1MTm4zNmFP29785ETh33oMVK1bg/PnzyMzMxODBg3W9JJ2jUqnYCjIzBs64G1dUVGDTpk3Izc3FM888g1WrVqG9vR1vvPEG1q1bRwxK/w+jFzm//vorFi1ahB07dmD06NHYunUr9u/fj9LSUlIG7QVisRhHjhxBSkoKjh8/Dk9PT1bwREdH66XgudtrxdHRkX2g3R2H0dTUhLy8PPj6+sLX15cInB5w48YNVFVVISYmxqCmYJhkbMac0tLSkq3wdPWW0hZMSKlKpUJMTIzeWDr0JxRFYdWqVThx4gQyMjI0NoVnyHR1Mv7000/x119/obW1FZMnT8Yrr7wCT09PVFdX49///jfOnz+PoUOH4vr16+ByucjIyNDx6vUHoxc5o0ePxsiRI7Ft2zYAdy4cHx8frFixAu+//76OV2fYtLe34+jRo0hJScGxY8fg4uKCxMREJCUlYeTIkXrZwyKTyVjB09zcDHt7e1bwSCQSFBYWYvjw4fD29tb1Ug0Gxj+orq4OMTExBm06plKp1JKxGesCZlJL0yKeEThMY7upCpz3338fv//+OzIyMhAQEKDrJekVb7zxBn777TesXbsWAoEAhw4dgpeXF7Zt2wY/Pz/U1dXhwIEDrNHmxo0bdb1kvcKoRY5cLsfAgQNx4MABJCUlsa8vXrwYLS0tOHTokO4WZ2R0dHTg+PHjSE1NxZEjR2Bra4uEhAQkJSVhzJgxennzlsvlavESNE3Dw8MD/v7+sLW1JVWcbkDTNEpLSyEUChEbG2tU/kFdrQtEIhGUSiXb5+Xm5tbna1qlUoHP54OmaZMWOOvWrcMvv/yCzMxMBAUF6XpJesXevXuxfv16/PrrrwgPD8e+ffvw/PPPY9iwYXBxccF///tf+Pn5qQV0EtQx6neloaEBKpXqnukODw8PlJSU6GhVxsnAgQORnJyM5ORkSKVSnDx5EqmpqXj22WdhYWGBhIQEJCcn44knntCbfgNLS0t4eXlBLpejubkZQ4YMgUQiweXLl2Ftbc3GSxirm25fYVy1m5ubMXLkyHuO/gwdMzMzuLi4wMXFBcOHD0draytEIhEqKytRVFSkNqnV08Z2RuAAMFmBQ9M0PvnkE/z888/IyMggAuc+WFtbIy4uDuHh4di/fz9ee+01fPfddzAzM8Py5cvxwgsv4Msvv8SIESN0vVS9xagrOXV1dfD29saFCxcwZswY9vV3330XZ86cweXLl3W4OtNAoVAgMzMTBw4cwMGDB6FSqTBr1izweDxMnDhRp2O8NE2jrKwM9fX1ascsKpWK7dEQiUSsm66HhwccHR2J4IF6IrYpGiRKJBL22LOtrQ1OTk6s4HmU2FMqleDz+eBwOIiOjtbLY11tQ9M0PvvsM2zfvh2nT59GeHi4rpekcx40AVtfXw8bGxvMmDEDc+bMwVtvvYXW1lY88cQTaG1txdNPP41NmzbpYMWGgVFvHxhzOIFAoPa6QCAgydH9xIABAzB16lRMnToVX331Fc6fP8/uSCQSCeLj48Hj8fDUU0/1ayWAoihcu3YNLS0tGDlypNoIsbm5OTw8PODh4aHWo8Hn89XytJycnPSy0VrbMF4uMpkMjz32mEnGDdja2sLPzw9+fn6QSqXssWdZWRns7OzYa+TuY09G4JiZmSEqKspkBc5//vMffPnllzh58iQROFAXOE1NTayrOwAMGjQIRUVFqK6uZuMcGhsbERISgsWLF2PmzJk6W7chYNSVHOBO4/GoUaNYx0eKojBkyBC89tprpPFYh6hUKly8eJGt8DQ1NWHGjBng8XiYNm2aVns7mHFduVzeowR2iqLQ3NwMgUAAkUgEmqbZh5k2mlL1EaVSqdYoqy9Hj/qCQqFQ6/Nijj2Z1HRGKJuywNm+fTs+/fRTHD9+nFh53MXWrVuxd+9e1NXVYcGCBXjllVfg6+uL+vp6JCcnY+jQoXjuueewefNmODo6kr7SbmD0IufXX3/F4sWL8c0332DUqFHYunUrfvvtN5SUlOjMiZWgDkVRuHr1Kg4cOIC0tDTcvn0b06ZNA4/HQ1xcnEandRQKBbuTjoyM7PVDmokPYLx4mJ2Xu7s7XF1djfIBxrx35ubmiIyMNMk+kp6gUqnQ2NjIHnuqVCpYWloiJCQErq6uJiGKu0LTNL7//nusW7cOR48exbhx43S9JJ3TtYKTlpaGl19+Ge+//z5UKhXWr1+P6dOn44MPPkBYWBi+//577Ny5E7dv38bw4cNx/PhxHa/eMDB6kQMA27ZtY80Ao6Ki8MUXX2D06NG6XhbhPlAUhdzcXKSkpCA1NRVVVVV46qmnwOPxEB8f36eeGKlUipycHAwcOBDh4eEaEyI0TaO1tZUVPHK5XC1ewhjEgFwuZyMuIiIijFLEaQuFQoGcnBzQNA0HBwd2IILL5bKZWsb+ftI0jd27d+P999/H4cOHMWHCBF0vSa8oKSnBsWPHYGtri5dffhkAwOfzMWvWLMTExGDLli0IDAxkY2z8/f1Jb2A3MQmRQzBMaJpGUVERDhw4gNTUVJSUlGDSpElISkpCfHw8XF1du/1Bl0gkyMnJgaurK4KDg7W2i2bykhjB09nZqRYvYYjHO4w4tLOz01uHa32FETiWlpasOGREMdO4LJVKDf4aeRg0TWPv3r1YtWoVDh48iKeeekrXS9IpW7ZsQVhYGKZNmwaVSoVbt26xxqPr16/H6tWr2b9bWFiIuLg4REZGYt26deR4rxcQkUMwCJhJKKbCk5eXhyeffBI8Hg+JiYlwd3d/oOARi8Xg8/kYPHgwAgIC+nUH1DUgsr29nR07dnd3N4iG3c7OTmRnZ8PZ2RmhoaFk99gDugqcyMjI+4pDJnOt6zXi7OzMHn0aw9Ta/v378eqrr+LAgQOYMWOGrpfD8q9//QurV6/G66+/jq1bt2r951EUhc7OTiQlJeGbb76Bv78/e1yVnp6O2bNnY+rUqfj6668xePBg9s/KysoQGRmJ559/Htu2bSOfwR5CRA7B4KBpGpWVlUhJSUFaWhquXr2KsWPHIjExETweD15eXmrn3AKBAHFxcRg6dKhO1313QCQzdqyvDzOJRILs7Gy4u7tj+PDh5ObaAxQKBbKzs2FtbY2IiIhuV786OzvZxuWWlhY1R25DNFo8ePAgXnrpJfzyyy9ISEjQ9XJYrl69imeeeQYODg6YNGlSv4iclpYWODk5sXlU586dQ319PRISEmBtbY3jx48jPj4eS5YswUcffQRvb29W6Ny8eRPOzs4GeQ3oGiJyCAYNTdOora1lBc+FCxcwcuRIJCYmss17n332GV588UVdL1UNqVTKCp6WlhY4ODiwXjz6YKrX1taG7OxsnVS/DB2mf6mnAud+36driKiNjQ1b4XFwcND7f5MjR45g6dKl+PHHH/G3v/1N18thYbydtm/fjvXr1yMqKkrrImffvn04deoU3nvvPQQGBkKpVGLKlCkQCARYv349Zs6cCRsbG5w8eRJxcXF47rnnsH79ehJSqgGIyCEYDTRNo66uDmlpafjiiy9w48YNjBkzBlOnTgWPx9Pbh7VcLmcFT1NTE+zs7ODh4aGz3XtLSwv4fD58fX3h5+fX7z/fkJHL5cjOzmab2zXVv6RUKtlJrYaGBr33azp+/DgWLlyInTt3Yu7cubpejhqLFy+Gi4sLPv/8c0ycOLFfRM7GjRvx448/YvLkyXj11VcxfPhwdHZ2Ys6cObh9+zbeffddJCQkwNbWFmfPnsXMmTMxYcIEfPfdd/Dy8tLq2owdwx/7IBD+Dw6HAy8vL4hEIjQ2NuL3339nqzwff/wxgoODkZSUBB6Ph+DgYL0RPJaWlhg8eDAGDx7M+qwIBAJUVlbCxsaGFTx2dnZaX3NTUxNyc3MxbNgwDBkyRKs/y9jQlsABAAsLC9agkqIo1qCyoKAANE2z03z6YF+QkZGBhQsX4uuvv8Yzzzyj07XczS+//IKcnBxcvXq1X3/ue++9BycnJ+zcuRNKpRLLli1DeHg40tLSkJycjA0bNoCiKCQmJmL8+PE4evQoXnrpJTWTUkLvIJUcgtGgUqnw2muv4ciRI/jzzz8REhIC4E6Fp7m5GYcOHUJKSgpOnjwJf39/8Hg8JCUlYcSIEXq3Ewbu7N4bGhogEAjQ0NAAKysrVvBo47hCJBKhoKAAwcHBZPfYQxiBY2tr268TaDRNQywWs5VAmUymZl/Q35Na586dw5w5c7B161Y8//zzerORAIDa2lo89thjOHHiBCIiIgCgXyo5crkclpaW6OjowJo1a5Ceno6JEyfijTfewIgRI0BRFJKTk1FZWYn3338fs2bNgqOjIxQKhdFN2ukCInIIRoNAIMCiRYvw3XffPbQKIRaLcfjwYaSmpuKPP/6At7c3K3iioqL0UvAwxnKM4LGwsFA7rujrw0QgEKCwsBBhYWHEJLOHyGQyZGdn63zEnrEvYASPRCKBi4sL28ej7Zy4ixcvIjk5GRs3bsQrr7yiVwIHuNMEnZycrFbpUqlU4HA4MDMzg0wm03gVjGkcPnPmDF599VWEhYWhuLgY165dw8KFC/Haa6+xUQ1z587F2bNn8fnnn7NHfPr2HhoiROQQTJq2tjYcPXoUqampOHr0KNzc3NjE9JEjR+ql4KEoSs1Jl8PhsILH2dm5x2uuq6tDSUkJwsPD2bwcQvdgBI69vb3eVQQ7OztZwSMWi9nmdnd3d40fg2RlZSExMREfffQRVq5cqZcP57a2NlRXV6u9tnTpUgQHB+O9995DWFiYVn5ufX09xo4di+effx5vvvkmbG1t8fXXX2P79u2IiYnBm2++iaioKADACy+8gLVr18LX11crazFFiMgxcDZs2MAa5dnY2GDs2LHYuHEjhg8fruulGRwdHR04fvw4UlJScOTIEdjb2yMhIQFJSUkYM2aMznsd7gdFUWrxEjRNq8VLPOqhW1tbi/LyckRFRcHFxaWfVm0cMALHwcEBI0aM0MsHO4NMJlOb1LK1tWWvE3t7+z6tPTc3F/Hx8VizZg3efvttvX4f7kZbx1UURbGfvRs3bmD8+PHYtWsXpk6dyv6d7777DsuXL8ezzz6Ll156CU888YRG10C4A2k8NnCYMujIkSOhVCqxZs0aTJs2DdeuXSOeCj1k4MCBSE5ORnJyMqRSKU6ePImUlBTMnz8fAwYMYCs848aN05uzcjMzM7i4uMDFxQXBwcEQi8UQCAQoKSmBUqlU68+4W6RVVVXhxo0biImJgZOTk25+AQNFKpUiOzsbjo6Oei9wAMDKyoptbmd6vYRCIbKysjBgwIBeH30WFhYiISEBb7/9tsEJHG3BCJySkhIUFRUhODgY1tbWEIvFAP7Xo/PSSy9h165dSE9Ph5WVFaKjozFw4EDyHmoYUskxMkQiEdzd3XHmzBmMHz9e18sxChQKBTIyMnDgwAEcOnQIKpUKs2bNQlJSEiZOnKiXzsX3iw7oKniqq6tx8+ZNxMTEwMHBQdfLNSgYgePk5GTwLtAqlYqd1BKJRADAVnhcXFweWr0sLi5GXFwcli1bhg8//NCg3wdNwQgckUiEoUOH4t1338WHH36IRYsW4dSpUzh37hz8/f0B3BkseOGFF+Dj44NFixYhKChIx6s3TojIMTKuX7+OwMBAFBQUaO2M2ZRRKpU4d+4c9u/fj0OHDqGjowPx8fFITEzElClT9NK5uGtDqkAggEQigZmZGfz8/ODj46M3VSlDQCqVIisryyhjLmiaRktLCyuMFQrFA4Nmy8rKEBcXh8WLF2PDhg1G9T70lYaGBlRXV+Onn37Cpk2bYGFhgba2NiQnJ6OoqAjbtm2Dg4MDCgoKsHXrVly4cIGY/mkRInKMCMZnoaWlBefPn9f1cowelUqFCxcusG7LLS0tmD59OpKSkjBt2jS987igaRrFxcVoaGjAoEGD0NTUxGYleXh4gMvlan0Cx5BhBI6LiwtCQkKM+sFO0zSbeC0SiXD+/Hn88ccfiI+Px9ixY7Fo0SI888wz+Pe//61Xzda6RqVSYerUqcjMzMRTTz2F9PR0ttIrFovxxhtvICMjA0qlEhYWFvjqq68QHx+v41UbN0TkGBHLli3DsWPHcP78ebIz6GcoisKVK1dYwVNfX4+pU6ciKSkJM2bMgL29vc7XV1hYiLa2NsTGxrIVJ2YCRyAQoLW1FY6OjqwXjz5WpXQFE1RqCgLnfpSXl+PHH39Eeno6ysrK4OHhgbfeegt/+9vfiCv2XVy5cgVr1qxBSUkJLl68CB8fH7VG5NLSUlhYWMDCwkLneXqmABE5RsJrr72GQ4cO4ezZs+Smo2MoikJubi4OHDiA1NRUVFdXY8qUKeDxeJg5cyYcHR379SGpUqlQUFCAzs5OxMbGPrCHSCqVsm7LTDgkI3j0rSrVn3R2diIrKwtubm565ZTd39y6dQvTp0/HuHHj8Pjjj+PQoUPIyMjAiBEjkJycjOeffx4+Pj66Xma/woRtdoWmaRQVFWH+/PkA7hgkOjk5EXM/HUFEjoFD0zRWrFiBtLQ0ZGZmIjAwUNdLInSBpmkUFhbiwIEDSEtLQ2lpKSZNmoSkpCTEx8fDxcVFqw9NlUqF3NxcqFQqREdHd/smy4RDCgQCduS4a7yEqcAIHC6Xa9JJ7PX19Zg+fTqeeOIJfP/99+yDvbm5Genp6UhLS8N7772HUaNG6Xil/Qdz5CSRSLB7925UVVVh9OjRiIiIQGBgIMrKyvD0009DoVDg7NmzcHNzU6voEPoHInIMnOXLl2Pv3r04dOiQmjeOo6OjXqRZE/4HTdMoLS1FSkoKUlNTkZ+fj/Hjx4PH4yEhIQHu7u4afYgqFArk5uaCw+EgKipKrXG0p9+HiZdobGyEjY0NO3LcV48VfaajowPZ2dkmL3CEQiHi4uIQExOD3bt39/o6MiYYJ+OOjg5ER0fDzs4OAwYMQHl5OUaPHo2XX34ZSUlJKC8vx6JFi1BbW4usrCwMGjRI10s3OYjIMXAedOP94YcfsGTJkv5dDKHb0DSNyspKtsKTnZ2NMWPGgMfjITExEV5eXn16qMrlcuTk5MDKygoREREaMzJk0rCZeAlLS0tW8PT3MZw2YQSOu7s7goKCjOb36ikNDQ2Ij49HcHAw9u7dS45bukDTNBYtWoSWlhb88ssvsLW1xeXLl/Hvf/8bra2t+OCDDzB27FiUlJRg/vz5+Oc//4mEhARdL9vkICKHQNAxNE2jpqYGqampSE1NxcWLFzFy5EjweDzweDwMGTKkRw9ZxonX1tZW42nYXWHytJgJHHNzc7V4CUMVBh0dHcjKyoKHh4dJC5zm5mbMmjULQ4YMwf79+/XSD0qXUBSFSZMmYeLEifjoo4/Y17Ozs7FgwQI888wz7Ovt7e0mdcyrTxCRQyDoETRNo66uDmlpaUhJScH58+cRGRmJpKQk8Hg8+Pv7P/Shy0wBMUZ1/XX+T1EUayonFArB4XDA5XLh4eHRqzwtXSGRSJCdnY1BgwYhMDDQZAWOWCxmj1DT0tKItcBdqFQqyOVyJCUlITQ0FJ9//jnbowMA7777LtLT03H16lWTbtrXB4jIIRD0FJqmIRQKcfDgQaSkpCAzMxMhISGs4Lm7T6SgoAA1NTUICAjQaQ8JTdNobm5mBY9KpWIFz6NcdHWJRCJBVlYWvLy8MGzYMJMVOG1tbUhKSoKdnR0OHz5MrARw/ykqANiyZQvefvtt/PHHH5g2bRr7+rp161BYWIjffvuN9DDpGCJyCAQDgKZpNDU14dChQ0hNTcXJkycREBAAHo+HpKQktLe3Y86cOVi2bBnWrFmjNw9omqYhFotZLx7GRdfDw+O+eVq6or29HdnZ2SYvcCQSCWbPng0zMzOkp6eT/DtArULz008/oaOjAzY2Nli4cCGAO8Mfu3btwubNm9n08Oeeew4ff/wxVqxYoatlE/4PInIIBAOkpaUFhw8fRmpqKo4dOwYzMzNMmjQJq1evRlRUlF4eD3V10RUIBJBKpXB1dWUFj66aWhmB4+3tjYCAAJMVOJ2dnXj66achl8tx7NgxnRtY6gPMFBUATJo0CQ0NDejs7IRCocDAgQNx+PBhDBs2DB999BF27twJlUoFR0dHzJ07Fx988IGOV08AiMghEAyas2fPIiEhAUlJSejs7MSxY8fg5uaGxMREJCcn47HHHtNLwQPgnjwtFxcXNl6iv5pcGYEzePDgR/Y7GTNSqRTz58+HWCzG8ePH4ejoqOsl6RVvvvkmTp06hYyMDAB3ps6WLVuGqqoqZGdnw9nZGRUVFbCwsIBcLid+ZXoEETkEgoFy/PhxzJ49G//5z3/wwgsvALgzGfTHH38gJSUF6enpsLe3R2JiIpKSkvD444/rzfHQ3XR0dLCCp62tDc7OzuyklraaXtva2pCdnQ0fHx8EBARo5WcYAnK5HAsWLEB9fT1OnDgBZ2dnXS9Jr1CpVJg3bx5CQ0PVpqhEIhGmT5+OYcOG4ZdfftHbzYSpQ0QOgWCANDQ0ICgoCNu3b8e8efPu+3ekUilOnDiBlJQU/P7777CyskJCQgKSk5Mxbtw4vW2IlEqlrOARi8VwdHRkBY+mDC4ZgTNkyBD4+/tr5HsaIgqFAosXL8aNGzdw+vRpuLq66npJOqHrsdSlS5cgFAphaWmJGTNmAACmTZsGCwsLHD16FABY5+IPPvgAJ06cwJkzZ4iHkJ5CpCeBYIC4ubmhpKTkgQIHAKytrZGQkID//ve/qK+vx3//+1/QNI3FixcjICAAr776Kk6cOAG5XN6PK3801tbWGDJkCEaOHIknn3wSgwYNQkNDA/766y9cvnwZN27cgEQi6fX3JwLnDkqlEi+++CKuX7+OEydOmKzAAf5nqvr555/jjTfewP79+9HY2Mj++aJFi3Dr1i189913AMBWbby9vdloB1Iv0E9IJYdgcPzrX//C6tWr8frrr2Pr1q26Xo7BoVQqcfbsWRw4cAAHDx5EZ2cnZs2aBR6Ph8mTJ+vtyDCTpyUUCtHY2AhbW1u4u7vDw8MDtra23eqnaW1tRU5ODoYOHWrSQbYqlQqvvPIKcnJykJGRQeIGcEfgfPjhh/jtt98QExMDLpfL/ll9fT3eeecd3Lx5ExMmTMCSJUtQW1uLRYsW4ZlnnsHGjRt1uHLCwyAih2BQXL16Fc888wwcHBwwadIkInL6iEqlwl9//YWUlBSkpaVBLBZjxowZSEpKwtSpU/XWyEypVLKCp6GhAdbW1uyRloODw30FT2trK7Kzs+Hn58eO+poiKpUKK1euxPnz55GZmQlvb29dL0nnXL58Gc8++yw+++wzzJ49m32dpmnQNA0zMzPU1dVh06ZN+OOPP1BVVQVfX188/vjj+OGHH3S4csKjICKHYDC0t7cjJiYG27dvx/r16xEVFUVEjgahKApXrlxh87QEAgGmTZuGpKQkTJ8+XW9HilUqFRoaGth4iQEDBrAVHiZPSywWIycnx+QFDkVRWLVqFU6cOIHMzEwMHTpU10vSC3799Vds3LgRR48ehYeHxz0imTEDpCgKKpUKly5dgpubG0JCQnS0YkJ3ISKHYDAsXrwYLi4u+PzzzzFx4kQicrQIRVHg8/k4cOAAUlNTUVNTgylTpiApKQkzZ858YLVE11AUpZanxeFw4OTkhIaGBgQEBJi8wHn//ffx+++/IyMjw6Qnyu7m/fffx2+//YbKysoH/p1Lly6hvLycNQEkGAak8ZhgEPzyyy/IycnBhg0bdL0Uk8DMzAyxsbHYsGEDSkpKcOXKFURHR2Pr1q3w9fXFnDlzsGfPHjQ1NelVw6WZmRm4XC5GjBiB8ePHw8/PjxU7VVVVKCoqQkNDAyiK0vVS+xWKorBu3TqkpaWxbtmE/8HlctHU1ITr168DwD3Xh1KpxO+//47bt2/rYnmEPkBEDkHvqa2txeuvv46ff/5Zb5tijRkOh4Pw8HD885//RH5+PnJzczF27Fh8++238Pf3B4/Hw86dOyEUCvVK8LS2tqKiogJBQUGYNGkSIiMjYWFhgeLiYpw5cwaFhYVstpYxQ9M0PvnkE+zduxcnTpxAUFCQrpekd8ybNw8WFhb4xz/+AeCOWO56LTc1NSErKwtubm66WiKhl5DjKoLec/DgQSQnJ6sZ2alUKnA4HJiZmUEmk+mtyZ0xQ9M0KioqkJKSgtTUVOTk5GDs2LHg8XhITEyEp6enzo60WlpawOfzMWzYMPj4+Nyz7tbWVtaLRy6Xw83NDe7u7nBzc9Nb/6DeQNM0PvvsM2zfvh2nT59GeHi4TtezYcMGpKamoqSkBDY2Nhg7diw2btyI4cOHa/1nM144jY2NauPyNE1DqVRi27ZteOeddzB79mx89dVXrKC5fv06Fi1aBGdnZ6Snp2t9nQTNQkQOQe9pa2tDdXW12mtLly5FcHAw3nvvPYSFheloZQQGmqZRU1PDCp5Lly5h1KhR4PF44PF48PHx6TfB09zcDD6fj8DAwHsEzv3W3d7eDoFAAKFQiM7OTrV4CUM2eKNpGlu3bsXmzZtx6tQpREdH63pJmDFjBubNm4eRI0dCqVRizZo1KCwsxLVr1/olDLSgoADx8fG4cuXKPWPzIpEIO3fuxGeffYaBAwciIiICUqkUTU1NcHNzw8mTJ7W+PoLmISKHYJCQxmP9haZp1NXVITU1FampqTh//jyioqKQlJQEHo8HPz8/rQkeRuAEBQVh8ODBPf56iUTCCp729na4uLiwo+n9laelCWiaxldffYUNGzbg+PHjGDVqlK6XdF9EIhHc3d1x5swZjB8/Xus/78KFC5g7dy7y8/PvG18hkUhQUVGBL7/8Ek1NTfDw8MDIkSOxdOlSra+NoB2IyCE8FOby0LdJGiJyDAOapiEQCHDw4EGkpqYiMzMToaGhrOAJCgrS2LXV1NSE3NzcXgucu2HytIRCIVpbW+Hk5MQKHn3uDaNpGt999x0++OADHDt2DGPHjtX1kh7I9evXERgYiIKCgn6pyDLhmZs3b8acOXMe+ne7Rj0QDBcicggPRCKR9EsJmWAa0DSNpqYmHDp0CCkpKTh58iQCAwPB4/GQlJSEkJCQXoccMgJn+PDhWjG3Y/K0hEIhWlpa4ODgwHrxaCpPSxPQNI3du3fj/fffx5EjR/qlOtJbKIpCYmIiWlpacP78ea18/67XE0VRUCgUmDBhAmbPno133nnnvl9HxI1xQUQO4YHMmzcPdnZ2+Oqrr9gkaObGQW4EhL5A0zTEYjEOHz6MlJQU/Pnnn/Dx8UFiYiKSk5MRERHRbcHT2NiIvLw8BAcHw8vLS8srv1MNYARPU1MT7Ozs1OIldAVN09i7dy9WrVqFQ4cOYfLkyTpbS3dYtmwZjh07hvPnz2uk8nY/rl+/Dj6fjzFjxsDe3h6Ojo747LPPwOfzsW/fPtbkj2C8EJFDeCDnzp1DfHw8amtr4ejoyAqb+vp6knVD0ChtbW1IT09HSkoKjh07Bnd3d1bwxMbGPlDw9LfAuRuFQqGWp2VjY8MKHjs7u37bCNA0jf379+O1117DgQMH2PRsfeW1117DoUOHcPbsWa1kiNE0jY6ODiQmJiInJwdcLhdisRhjxoxBbm4ubGxskJ2djYEDBxKhY+QQkUN4IJWVlUhISMA//vEPzJ8/H21tbdi1axdWr16NzZs3Y9myZbpeIsEIkUgk+OOPP5CSkoL09HQ4OjoiMTERSUlJGD16NPtAYqa43nzzTXh6eup41XcM45h4iYaGBlhaWsLDw+OheVqa4uDBg3jppZfwyy+/ICEhQWs/p6/QNI0VK1YgLS0NmZmZCAwM1OrPa2xshKOjI65du4asrCw0NTXh1KlTqK6uRnh4OL7//nvY29sToWPEEJFDuC/MsdS4ceMwefJkvP3221i4cCHKy8uxYsUKLF++HMCjz68pigKHwyFHW4Re0dnZiRMnTiA1NRW///47rK2tkZCQAG9vb2zYsAEbNmzAyy+/rOtl3oNKpVKLlzA3N2crPE5OThr9PBw5cgRLly7Fjz/+iL/97W8a+77aYPny5di7dy8OHTqk5o3j6Oiold6mu/tyAEAmkyElJQVbt26Ft7c3du/eDQcHh/v+XYLhQ0QO4aHs3bsX69evR1tbG4YMGYKvvvoKUVFRAO5/A2G4386I9PEQ+oJcLsfp06exdetWnDhxAhEREYiOjkZSUhLGjx+vtyPeFEWhqakJAoGAjZjgcrnw8PCAs7Nznx6sx48fx4IFC7Br1y7MnTtXg6vWDg/6/P/www9YsmSJ1n4uc+9h7llyuRy//vorvv32W9A0zVYMCcaH8Vh7EjQGcyO4ffs2ioqKUFJSgueeew5ffPGFmrdE15szcxNRKBTYu3cv+Hw+CgoK4Ofnh6VLl2LcuHFE4BD6hKWlJZRKJc6fP4+ff/4Z7u7u2L9/P/7+979DJpNh1qxZ4PF4mDx5Mtsorw+YmZnBzc0Nbm5uoCgKLS0tEAgEKCwsBE3T4HK5cHd3h6ura48ET0ZGBhYuXIgdO3bgmWee0eJvoDl0tadm7j3M0ISlpSWeffZZyOVyHD161OSyzEwJUskhqMFUYKqqqvD000/Dzc0Nx48fx9atW7Fy5UooFIoHusA2Nzfj2WefxfHjxzFt2jRMnDgRubm5yMrKQmRkJDZv3mzSKdCEvnH48GHMmzcPe/bswezZs9nXVSoV/vrrLxw4cAAHDx5Ea2srZsyYgaSkJEyZMgUDBw7U4aofDDNhxpgPKhQKVvC4ubk9tEfk3LlzmDNnDv7zn/9g6dKlZAPRQ7pWdmQymV7ZABA0CxE5hHs4e/YsFixYgOHDh+PHH3/EP/7xDwiFQqSlpT3wxiuXy/HWW2/hp59+wrZt2/Dcc8+xFaGqqips2LABVlZW+OKLL/r5tyEYAzRNY+7cuZg3b95D+04oisLly5dx4MABpKWlQSQSYdq0aUhKSsL06dNhZ2fXj6vuPl3ztIRCIaRSKZunxeVy1fK0Ll68iOTkZGzcuBGvvPIKETi9hByfmwZE5BBYlEolXn31VRw7dgwzZ87El19+iQEDBuDYsWOYP38+ampq4ODgcN+vvXr1KuLi4rBs2TKsXbsWlpaWajeR8vJyXLlyBc8995xavw5N06wYIjccwsPo6UOJoijk5OTgwIEDSE1Nxc2bNzFlyhTweDzMnDlT6xNPvYXJ02IEz6+//oqioiIkJCQgODgYS5YswT//+U+sWLFCL9dPIOgTpJWcwMLhcBAeHo7PP/8c27dvx4ABA0DTNIYPH45Bgwbh6NGjD/zawsJCtLS0YPbs2WwDaNcbcGBgIJ577jkAgLm5OUpKSlBRUQEOhwNzc3Nys76LW7duYcGCBXB1dYWNjQ3Cw8ORlZWl62XplJ5eI2ZmZnjsscfwr3/9CyUlJbh06RKioqLw+eefw9fXF08//TR+/PFHNDU16axX5H5wOBzY29sjICAAY8aMwcsvv4xRo0Zh165dmD17Ntzd3TFgwAAIBAJdL5VA0HtIJYfwUJjd89ixYxEZGYmvv/5abUfNVGHWrFmDffv24cqVK+ByuQ/9ns899xwKCwtRXV0NBwcH/POf/8SiRYvuabpkmgFNbayzubkZ0dHRmDRpEpYtWwYul4vy8nIEBAQgICBA18szeGiaRklJCVvhKSoqwoQJE8Dj8ZCQkAA3Nze9E90FBQWYOXMmnn/+eXh6erIeQWPHjsXf/vY3LFiwAG5ubrpeJoGgd5jW04PQY5ib/T//+U/2iKnrA4ARICqVCh0dHZDL5QDUpyiY/25qasKqVatw9OhRrFmzBiUlJVixYgU+++wzVFZW3vN1ZmZm7Pc3JS2+ceNG+Pj44IcffsCoUaPg5+eHadOmEYGjITgcDkJCQrB27Vrk5OTg2rVreOqpp7Bnzx4MGzYM8fHx+Oabb3D79m29uO6Ki4uRkJCA1157DZ999hlWrVqF8+fPo7a2FvPmzcPhw4dRV1en62USCHoJqeQQNEJ+fj6ioqLwzTff4KWXXlL7M6YH58iRI1i/fj2ee+45rFixAgBQV1eH+Ph4zJgxAxs2bABwx6V0//79uHHjBhISEvDEE0/c8/OM2bgrNDQU06dPx82bN3HmzBl4e3tj+fLl97yvBM1C0zSqq6uRkpKCtLQ0XL58GaNGjQKPxwOPx8PgwYP7vcJTVlaGuLg4LFmyBJ9++qneVZgIBH3HOJ8ShH4nPDwcH374Ib766iscOXIENE2zDZRMBai4uBgAEBcXB+BOo7OXlxfs7OzQ2NgIADh16hSSk5OxefNmlJaWgsfjYf78+Whvb1f7eYzAoSgKKpWqv37NfqGyshJff/01AgMDcfz4cSxbtgwrV67E7t27db00o4bD4cDX1xdvvfUWzp07hxs3bmDu3Lk4evQowsLCMGnSJGzduhU3btzolwpPZWUlZs2ahfnz5+OTTz4hAodA6AWkkkPQGA0NDfjkk0+wa9cueHp6YsqUKairq0NQUBD+9a9/4eOPP8Zvv/2GgoICta9zdHTEli1b8MILLyA6Ohr+/v5Ys2YNYmNjwefzkZSUhA8++ADPP/88gDsmaHZ2dhg5cuQ9a7h7AkcsFhuck6mlpSUee+wxXLhwgX1t5cqVuHr1Ki5evKjDlZkmNE1DIBDg4MGDSElJQWZmJsLCwpCUlAQej4fAwECNC5Dq6mrMmDEDCQkJ+OKLL4y2akkgaBvyySFoDDc3N3z++edoaWnBxo0b4eTkhMWLF7NBng4ODqivr0d1dTX7NT/88AMUCgWmTp2K8vJy5OXl4c0330RsbCwAIDo6Gt7e3mwVCABWr16NZcuW4bvvvsPTTz+NzMxMtkn5boGzaNEivP7663rRW9FdPD09ERoaqvZaSEgIampqdLQi04bD4WDQoEF45ZVX8Oeff+L27dt47bXXcPnyZYwePRqPP/44Pv30U1y7dk0j19mtW7cwc+ZMzJgxgwgcAqGPkE8PQeNwOBzweDysX78ePB4PQ4cOBQAsXLgQUVFRWLlyJTIyMrBy5UqsW7cOy5cvx5AhQ3D48GH4+fkhNDSUfViIxWL4+PiwjZX19fUoKytDdXU1mpubYWdnhz///BMUReHGjRs4f/48e3xVWlqK5uZmuLi4gMPhoLS0FJMnT0Z6erpu3phuMm7cOJSWlqq9VlZWxr6PBN3B4XDg5uaGF154Aenp6RAIBHjnnXdQUFCAJ598ErGxsfjwww+Rl5fXq6iA+vp6zJw5ExMnTsT27duJwCEQ+gjJriL0Gy4uLvjss8+wYcMGLFy4EMOGDcMHH3zABgu2t7fD3d0dCoWCrcgUFRWhoaEBEyZMAAAcPHgQSqUSKSkpmDRpEgCgtbUVe/bswaZNmyAWi9Ha2opt27axVvkzZswAAAQEBGDt2rXs8ZW+Op6++eabGDt2LD799FM888wzuHLlCr799lt8++23ul4aoQscDgdOTk5YtGgRFi1ahNbWVqSnpyMlJQVTp06Fh4cHEhMTkZycjJiYmEcKFqFQiPj4eIwaNQrff//9Q2MdCARC9yA9OQSd0djYCFdXV1Zs5OTkYNq0afjvf/+LWbNmgaIoLF26FGVlZdi2bRtiY2MxceJEeHp64scff2St7lNSUvDmm2+Cx+Nh7dq1yM/Px9atW0FRFKysrPDrr7/C0tLyntwtffbhOXLkCFavXo3y8nL4+flh1apVZLrKgJBIJDh27BhSU1ORnp4OJycnJCYmgsfjYfTo0fcImIaGBsTHxyMkJAR79+5Vi3EgEAh9gCYQdAhFUex/y+Vy+s0336S5XC49a9YseurUqbSNjQ197NgxmqZpWigU0paWlvTBgwdpmqZplUpF0zRNjxkzhl6wYAHd2dnJfq9ly5bR1tbW9IYNG2iapuni4mJ65MiR9M8//3zfdahUKlqpVGrldySYNh0dHfShQ4foRYsW0c7OzrSnpyf997//nT527BgtFovpmzdv0lFRUTSPx6NlMpmul0sgGBX6t4UlmBRdj4sGDBiALVu24Pfff0dAQAAmTpyIv/76iz1uOnr0KJycnDB27FgAdyowEokEV69exfz582FlZcX28lhZWcHT0xPjx48HcCd0lKZptpKTnp6OF198ETU1Nejo6ICZmRk5HiBoBRsbGyQmJmL37t2or6/Hzp07oVQqsXDhQvj7+yMqKgoeHh5sxZFAIGgOUhMl6B2PP/44Hn/88Xte//bbbxEeHq4WG8Hn8+Hm5gZPT09WMEkkEty+fRvh4eGIiYkBcGfsfOjQoRg1ahQA4M8//8R///tfmJmZgc/nQ6FQYNOmTZg6daraz6RJgChBg1haWiIuLg5xcXHYsWMHjh07hk8++QRpaWmwsrLS9fIIBKODVHIIBsPu3bvx5Zdfqr3m6ekJBwcHnDp1in3t8uXLyMrKQnR0NKytrVFVVYWKigqEhoayE0onTpzAsGHD8OSTT+Knn35ip2Ju3brFfh+lUqkWIEr/n8EhgaAJLCwskJCQgEuXLsHGxkbXyyEQjBJSySEYDMOGDbvntYCAAMycORO7du2Cg4MD2tvb8c0330ChUOCpp54CcEfQAEBUVBT7v1tbW7Fx40Y2Gf2tt95CWFgYGhsb4e3tDQD44osvcOHCBURFRWHx4sXw8fEB8L+Yirq6OjQ2NiI8PFxvJ7UIBALBlCGVHILBw4yh//DDD6iqqsLAgQPh7+/PGgqeO3cO3t7erMhJSUnB8OHD1RyTa2tr4evry8ZHtLW1QSqVYtSoUTh+/DieeOIJ7NixAwDY3h0+n4/p06fjjz/+AIfD6ZUvCoFAIBC0BxkhJxgVnZ2dOHv2LK5fv45XX30VVVVViIuLw+zZs7F+/XoAdwIwk5KSsHbtWvaYYNmyZaiqqsLnn3+O4ODge77vpk2bsGfPHpw6dQrOzs7Ys2cPvv32W7S3t6OoqKhff0cCgUAgdA9SySEYFTY2Npg+fTpeffVVAIBcLscTTzyBiIgIAMDJkyfR1taG0aNHswJHqVTi8uXLiIyMhL+/P5RKJXbs2IHFixdjyZIlOHXqFMaPHw8nJydcvXoVAwYMgKOjI4qKinDjxg04OTnhnXfeQWtr6z3rUSqVpI+HQCAQdATpySEYNUFBQfjuu+9YoVFcXAxfX18EBASwfyczMxNyuRyjRo2CpaUl1q9fj3Xr1uGdd95BU1MTnn/+eTQ3N8PMzAyBgYEA7oyoBwQEYPXq1bC3t8elS5fQ1NQEBwcHiMViNDY2wt/fn5i6EQgEgg4hx1UEk0Mul8Pc3JztrVm0aBGKi4vx008/gcvlIi4uDk888QQ2b94MAGhqasLLL7+MsrIy5OfnQ6FQ4OOPP8bBgwdx4cIF2NnZsd97x44dOHr0KIqKiiCRSLBo0SKsXr0azs7OOvldCQQCwZQhx1UEk8PS0lLN+G/RokVYvnw5fHx84OLiAisrK4jFYgCATCbDkSNHcOHCBcTFxQEAKisrwefzER0dDTs7O9ZL5/fff8e6deuwaNEinDp1Ct988w3OnTuHvXv36uT3NBRUKhXWrl0LPz8/2NjYICAgAB9//DE55iMQCH2G1NIJJs+UKVPU/veyZcvw+uuvIzAwEBMmTEBGRgbq6+uxePFiAHcSwWtra9n/zeFwcP36dezZswcSiQR2dnawt7cHj8eDhYUFli5dimXLlullRpY+sHHjRnz99dfYvXs3RowYgaysLCxduhSOjo5YuXKlrpdndHz11VfYtGkT6uvrERkZiS+//JI1ySQQjA0icgiEu5g/fz7mzp2LI0eOoKOjA4MHD8bWrVsRGhoKmqYhFApRV1en5o5848YNZGdnIz4+HmvWrEF5eTnGjBnDujFXV1fDz89Ph7+V/nLhwgXweDzEx8cDAHx9fbFv3z5cuXJFxyszPn799VesWrUKO3bswOjRo7F161ZMnz4dpaWlcHd31/XyCASNQ7aWBMJ9MDMzQ2JiIubNm4cPP/wQly5dAnCnauPl5QULCwu10XFLS0vU1dXht99+Q05ODi5fvozx48ejsrISfn5+5OjlIYwdOxanTp1CWVkZACAvLw/nz59njwcJmmPLli146aWXsHTpUoSGhmLHjh0YOHAgdu3apeulEQhagYgcAqEbdPXOGTVqFObPn48nnngCSUlJaGtrg7OzM+zs7PDTTz8BuOPF849//AOXLl3Czp074e/vr6ul6z3vv/8+5s2bh+DgYAwYMADR0dF44403WDdqgmaQy+XIzs5WO541MzPDlClTcPHiRR2ujEDQHuS4ikDoIa6urti8eTM2b96M69evg8PhIDIyEitWrMD27dvh6OiICRMmoK6uDs7OzvDw8ND1kvWa3377DT///DP27t2LESNGIDc3F2+88Qa8vLzYvidC32loaIBKpbrnevTw8EBJSYmOVkUgaBcicgiEPtA1T2vZsmWQSCRYsmQJ7OzsEBgYiOeffx5/+9vfYG1trcNV6jfvvPMOW80BgPDwcFRXV2PDhg1E5BAIhD5BRA6BoCE8PDywadMmbNq0CXw+HxUVFZgwYQIROI+go6Pjnskzc3NzkgWmYdzc3GBubg6BQKD2ukAgwKBBg3S0KgJBu5CeHAJBC0RHR2POnDngcrm6Xorek5CQgE8++QTp6emoqqpCWloatmzZguTkZF0vzaiwtLREbGwsTp06xb5GURROnTqFMWPG6HBlBIL2II7HBAJBp7S1tWHt2rVIS0uDUCiEl5cX5s+fj3Xr1sHS0lLXyzMqfv31VyxevBjffPMNRo0aha1bt+K3335DSUkJ6R0jGCVE5BAIBIIJsW3bNtYMMCoqCl988QVGjx6t62URCFqBiBwCgUAgEAhGCenJIRAIBAKBYJQQkUMgEAgEAsEoISKHQCAQCASCUUJEDoFAIBAIBKOEiBwCgUAgEAhGCRE5BAKBQCAQjBIicggEAoFAIBglROQQCAQCgUAwSojIIRAIBAKBYJQQkUMgEAgEAsEoISKHQCAQCASCUUJEDoFAIBAIBKOEiBwCgUAgEAhGCRE5BAKBQCAQjBIicggEAoFAIBglROQQCAQCgUAwSojIIRAIBAKBYJQQkUMgEAgEAsEoISKHQCAQCASCUUJEDoFAIBAIBKOEiBwCgUAgEAhGCRE5BAKBQCAQjBIicggEAoFAIBglROQQCAQCgUAwSv4/fAXJydIG5bYAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "import networkx as nx\n", + "\n", + "def visualize_navigation_graph():\n", + " G = nx.DiGraph()\n", + " G.add_nodes_from([1, 2, 3, 4, 5])\n", + " G.add_edge(1, 2, weight=1.5)\n", + " G.add_edge(1, 3, weight=2.0)\n", + " G.add_edge(2, 4, weight=1.2)\n", + " G.add_edge(3, 4, weight=0.9)\n", + " G.add_edge(4, 5, weight=1.8)\n", + " G.add_edge(3, 5, weight=1.5)\n", + "\n", + " # Define layout\n", + " pos = nx.spring_layout(G)\n", + " plt.figure(figsize=(8, 6))\n", + " nx.draw(G, pos, with_labels=True, node_size=700, node_color=\"lightblue\", edge_color=\"gray\", arrows=True)\n", + "\n", + " # Annotate with edge weights\n", + " edge_labels = nx.get_edge_attributes(G, 'weight')\n", + " nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=10)\n", + " plt.title(\"Drone Navigation Graph\")\n", + " plt.show()\n", + "\n", + "# Test the graph visualization\n", + "visualize_navigation_graph()\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 659 + }, + "id": "zto0OQMm34ft", + "outputId": "4b91410d-428c-429d-a4a7-7119459def9e" + }, + "execution_count": 10, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzMAAAKCCAYAAADlSofSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACJw0lEQVR4nOzdd3hUZd4+8PvMTGbSKyGF9MwQSOhVQJCOAoJILwmJurv2dXfffd19ddXtfXVZXcuuJiShiyCISi+CNKUTSkJIQggJIb3NZMr5/aGZn5GaZJJnyv25Lq5dppxzDxNk7jnn+R5JlmUZREREREREDkYhOgAREREREVF7sMwQEREREZFDYpkhIiIiIiKHxDJDREREREQOiWWGiIiIiIgcEssMERERERE5JJYZIiIiIiJySCwzRERERETkkFhmiIiIiIjIIbHMEBFRm2RkZECSJBQUFAjZf2pqKmJiYoTs297FxMRg+vTpomMQEXUZlhkicjotH7Zbfrm7uyM8PBxTpkzBsmXLUFdXJzpih8TExECSJDz33HM33bdnzx5IkoQPP/xQQDLbKSkpwWuvvYYTJ06IjnKT2tpa/P73v8eQIUPg5+cHjUaD6OhozJ8/H1u2bBEdj4jIpbDMEJHT+s1vfoOsrCy8/fbb1g/+L7zwAvr27YtTp04JTtdx//nPf1BSUtLl+01OTkZTUxOio6M7bR8lJSX49a9/fcsy85///AcXLlzotH3fSV5eHgYOHIhXX30VsbGx+O1vf4u3334bjz32GAoKCjB9+nRkZWUJyUZE5IpUogMQEXWWhx56CEOGDLH+/pe//CV27dqF6dOnY8aMGTh37hw8PDxu+/yGhgZ4eXl1RdQ2S0pKwoULF/CnP/0Jy5Yt69J9K5VKKJXKLt3nd7m5uQnZr8lkwqxZs1BWVoa9e/di1KhRre5/9dVXsW3bNpjN5jtux55/roiIHA2PzBCRSxk/fjx+9atfobCwENnZ2dbbU1NT4e3tjUuXLmHq1Knw8fHB4sWLAXzz4fNnP/sZIiMjodFokJCQgL/97W+QZbnVtiVJwrPPPouNGzeiT58+0Gg0SEpKwueff35TjqtXr+Kxxx5DSEiI9XEffPDBPb+OmJgYpKSk3NPRmcLCQjz99NNISEiAh4cHgoKCMHfu3FZrXr766itIkoTly5ff9PytW7dCkiR88sknAG69ZsZiseC1115DeHg4PD09MW7cOOTk5CAmJgapqanWx1VWVuJ//ud/0LdvX3h7e8PX1xcPPfQQTp48aX3Mnj17MHToUABAWlqa9XTBjIwMALdeM9MZ79H3rVu3DmfOnMGvfvWrm4pMi8mTJ+Ohhx6y/r7lz2rv3r14+umn0b17d0RERAC4t/flu9vYt28ffvSjHyEoKAi+vr5ISUlBVVXVLXPs378fw4YNg7u7O+Li4pCZmXnX10dE5IhYZojI5SQnJwMAtm3b1up2k8mEKVOmoHv37vjb3/6G2bNnQ5ZlzJgxA6+//joefPBB/OMf/0BCQgJ+/vOf46c//elN296/fz+efvppLFiwAH/5y1+g1+sxe/ZsVFRUWB9TVlaG++67Dzt27MCzzz6Lf/7zn9BqtXj88cfxxhtv3PPreOmll2AymfCnP/3pjo87evQovvzySyxYsADLli3Dk08+iZ07d2Ls2LFobGwEAAwZMgRxcXFYu3btTc9fs2YNAgICMGXKlNvu45e//CV+/etfY8iQIfjrX/8KnU6HKVOmoKGhodXj8vPzsXHjRkyfPh3/+Mc/8POf/xynT5/GAw88YC1lvXv3xm9+8xsAwA9/+ENkZWUhKysLY8aMueW+O+M9upXNmzcDAJYsWXLHx93K008/jZycHLzyyiv4xS9+AeDe3pfvevbZZ3Hu3Dm89tprSElJwYoVK/DII4/cVNjy8vIwZ84cTJo0CX//+98REBCA1NRUnD17ts25iYjsnkxE5GTS09NlAPLRo0dv+xg/Pz954MCB1t8vXbpUBiD/4he/aPW4jRs3ygDk3/3ud61unzNnjixJkpyXl2e9DYCsVqtb3Xby5EkZgPyvf/3Letvjjz8uh4WFyTdu3Gi1zQULFsh+fn5yY2PjHV9fdHS0PG3aNFmWZTktLU12d3eXS0pKZFmW5d27d8sA5HXr1lkff6vtHTx4UAYgZ2ZmWm/75S9/Kbu5ucmVlZXW2wwGg+zv7y8/9thj1tta/nwvX74sy7Isl5aWyiqVSn7kkUda7eO1116TAchLly613qbX62Wz2dzqcZcvX5Y1Go38m9/8xnrb0aNHZQByenr6TdmXLl0qR0dHW3/fGe/RrQwcOFD29/e/6fb6+nq5vLzc+qumpsZ6X8uf1f333y+bTKZWz7vX96VlG4MHD5abm5utt//lL3+RAcgff/yx9bbo6GgZgLxv3z7rbdevX5c1Go38s5/97I6vj4jIEfHIDBG5JG9v71tONXvqqada/f7TTz+FUqnE888/3+r2n/3sZ5BlGZ999lmr2ydOnIj4+Hjr7/v16wdfX1/k5+cD+OYowvr16/Hwww9DlmXcuHHD+mvKlCmoqanBsWPH7vl1vPzyy3c9OvPddUFGoxEVFRXQarXw9/dvta/58+fDaDTio48+st62bds2VFdXY/78+bfd/s6dO2EymfD000+3uv1W09Y0Gg0Uim/+6TGbzaioqIC3tzcSEhLa9Lq/y9bv0e3U1tbC29v7pttfeuklBAcHW38tWrTopsf84Ac/uGmd0b2+Ly1++MMftlov9NRTT0GlUuHTTz9t9bjExESMHj3a+vvg4GAkJCTc9fURETkilhkickn19fXw8fFpdZtKpbKuZ2hRWFiI8PDwmx7bu3dv6/3fFRUVddO+AgICrGsbysvLUV1djffee6/VB+Dg4GCkpaUBAK5fv37PryMuLg7Jycl47733cO3atVs+pqmpCa+88op1PUm3bt0QHByM6upq1NTUWB/Xv39/9OrVC2vWrLHetmbNGnTr1g3jx4+/bYaWPwOtVtvq9sDAQAQEBLS6zWKx4PXXX4dOp2uV5dSpU62ytIWt36Pb8fHxQX19/U23P/3009i+fTu2b9+OkJCQWz43Njb2ptvu9X1podPpWv3e29sbYWFhN62xae/rIyJyRJxmRkQup7i4GDU1NTd9+P7uUYP2ut2UL/nbdQ0WiwXAN+suli5desvH9uvXr037fOmll5CVlYU///nPeOSRR266/7nnnkN6ejpeeOEFjBgxAn5+fpAkCQsWLLDmaTF//nz8/ve/x40bN+Dj44NNmzZh4cKFUKls88/FH/7wB/zqV7/CY489ht/+9rcIDAyEQqHACy+8cFOWznK39+h2evXqhRMnTuDq1avo0aOH9faePXuiZ8+eAAB3d/dbPvdWU/Pa8r60RXtfHxGRI2KZISKX03IdkDstaG8RHR2NHTt2oK6urtU3/+fPn7fe3xbBwcHw8fGB2WzGxIkT2/Tc24mPj8eSJUvw7rvvYvjw4Tfd/+GHH2Lp0qX4+9//br1Nr9ejurr6psfOnz8fv/71r7F+/XqEhISgtrYWCxYsuOP+W/4M8vLyWh2BqKiouOlowIcffohx48bh/fffb3V7dXU1unXrZv29JEl33Of392/L9+h2pk+fjtWrV2PFihX43//93w5vry3vCwDk5uZi3Lhx1t/X19fj2rVrmDp1aoezEBE5Kp5mRkQuZdeuXfjtb3+L2NhY6+jlO5k6dSrMZjPefPPNVre//vrrkCSp1Rjee6FUKjF79mysX78eZ86cuen+8vLyNm2vxcsvvwyj0Yi//OUvt9zn97+V/9e//nXL66H07t0bffv2xZo1a7BmzRqEhYXddopYiwkTJkClUuHtt99udfv3/8xul2XdunW4evVqq9tarsNyuw/232Xr9+h25s2bh8TERPz2t7/FoUOHbvmYthz9aMv7AgDvvfcejEaj9fdvv/02TCaTzV4fEZEj4pEZInJan332Gc6fPw+TyYSysjLs2rUL27dvR3R0NDZt2nTbU4K+6+GHH8a4cePw0ksvoaCgAP3798e2bdvw8ccf44UXXmi1kPxe/elPf8Lu3bsxfPhw/OAHP0BiYiIqKytx7Ngx7NixA5WVlW3eZsvRmVtdJ6blqvR+fn5ITEzEwYMHsWPHDgQFBd1yW/Pnz8crr7wCd3d3PP7443c99S4kJAQ//vGP8fe//x0zZszAgw8+iJMnT+Kzzz5Dt27dWh1lmT59On7zm98gLS0NI0eOxOnTp7FixQrExcXd9Hr8/f3xzjvvwMfHB15eXhg+fPgt1550xnt0K25ubtiwYQOmTJmC+++/H48++ihGjx4NLy8vXL16FZs2bUJRURGmTZt2T9tr6/vS3NyMCRMmYN68ebhw4QL+/e9/4/7778eMGTNs8vqIiBwRywwROa1XXnkFAKBWqxEYGIi+ffvijTfeQFpa2k2LxW9HoVBg06ZNeOWVV7BmzRqkp6cjJiYGf/3rX/Gzn/2sXblCQkJw5MgR/OY3v8FHH32Ef//73wgKCkJSUhL+/Oc/t2ubwDdHZ7Kzs2/6Zv+f//wnlEolVqxYAb1ej1GjRmHHjh23Pc1u/vz5ePnll9HY2HjHKWbf9ec//xmenp74z3/+gx07dmDEiBHYtm0b7r///lal8f/+7//Q0NCAlStXYs2aNRg0aBC2bNlivfZKCzc3Nyxfvhy//OUv8eSTT8JkMiE9Pf2WZaYz3qPb6dmzJ06cOIFly5Zhw4YN+Oyzz9Dc3IyQkBAMHz4cr776KqZPn35P22rr+/Lmm29ixYoVeOWVV2A0GrFw4UIsW7asTafkERE5G0nmikAiIuoE1dXVCAgIwO9+9zu89NJLouM4rIyMDKSlpeHo0aMYMmSI6DhERHaFa2aIiKjDmpqabrrtjTfeAACMHTu2a8MQEZHL4GlmRETUYWvWrEFGRgamTp0Kb29v7N+/H6tWrcLkyZMxatQo0fGIiMhJscwQEVGH9evXDyqVCn/5y19QW1trHQrwu9/9TnQ0IiJyYlwzQ0REREREDolrZoiIiIiIyCGxzBARERERkUNimSEiIiIiIofEMkNERERERA6JZYaIiIiIiBwSywwRERERETkklhkiIiIiInJILDNEREREROSQWGaIiIiIiMghscwQEREREZFDYpkhIiIiIiKHxDJDREREREQOiWWGiIiIiIgcEssMERERERE5JJYZIiIiIiJySCwzRERERETkkFhmiIiIiIjIIbHMEBERERGRQ2KZISIiIiIih8QyQ0REREREDollhoiIiIiIHBLLDBEREREROSSWGSIiIiIickgsM0RERERE5JBYZoiIiIiIyCGxzBARERERkUNimSEiIiIiIofEMkNERERERA6JZYaIiIiIiBwSywwRERERETkklhkiIiIiInJILDNEREREROSQWGaIiIiIiMghscwQEREREZFDYpkhIiIiIiKHxDJDREREREQOSSU6gCPRm8yo1htRYzDBaLHAIgMKCXBTKOCnUcHf3Q3uKqXomERERERELoFl5i5q9EbkVzeipF4Pg9kCAJBu8Tj52//VKBUI93ZHnL8n/NzduiwnEREREZGrkWRZlu/+MNciyzJK6g24WFmPKr0REv5/WbkXLY8PdHeDLtAb4d4aSNKtKhAREREREbUXy8z36E1mHC+twbUGQ4e31VJqwrw0GBjqx1PQiIiIiIhsiGXmO4rrmnCstAZmi9ymIzF3IwFQKiQMCvVDhI+HDbdMREREROS6WGa+lVtZj9PldZ2+n37BvtAGenX6foiIiIiInB1HM6PrigwAnCqvRV5lQ5fsi4iIiIjImbl8mSmua+qyItPiVHktiuuaunSfRERERETOxqXLjN5kxrHSGiH7PlZaA73JLGTfRERERETOwGXLjCzLOP7tYn8RzBYZx8tqwCVLRERERETt47JlpqTegGsNBptOLWsLGcC1egNK6js+ApqIiIiIyBWpRAcQJbeyvs3PyTt9Ars3rMWZI1+i/OoV+PgHQNd/MBb9+H8RHhvf5u1J3+bo4ePe5ucSEREREbk6lxzNXKM3YmfhjTY/76/P/wDnjx/FyCnTEZ3QG9U3yvHZinToGxvwx9WfIKpnr3blmRDTDX4at3Y9l4iIiIjIVblkmTleWoOCmsY2n2J2/thRxPfpDze12npbSUE+fjpjAkZMmYYf//XNNmeRAMT4eWJgqF+bn0tERERE5Mpccs1MSb2+XWtleg0a2qrIAEB4TBwitT1RfCm3XVnkb/MQEREREVHbuFyZ0ZvMMJgtNtueLMuorrgBn4DAdm/DYLZwTDMRERERURu5XJmp1httur19mz9CZdk1jJo6o0PbsXUuIiIiIiJn53JlpsZggmSjbRXn5+K/v/k/JAwYjLGPzGv3dqRvcxERERER0b1zuTJjtNjmFLOq8uv4w49S4Onjg//553+gVCrtIhcRERERkatwuevMWGwwu62hrha//+FiNNTW4ncrNiAwJNQuchERERERuRKXKzOKDp5j1mzQ449PLUVJQT5e/WANIrU97SIXEREREZGrcbky46Zo/5l1ZrMZ//jJk7h44mu8+FY6EgYOsYtcRERERESuyOXKjJ9G1a5rzADA8j//Gkd3bcOQcZNQX1ONvZvWt7r/gRmz27Vd+dtcRERERER071zuE7S/u1u7n1tw7iwA4Kvd2/HV7u033d/eMtPRXERERERErkiSZdnllp5vySuz6YUzO0qjVGCaNkR0DCIiIiIih+KSCzXCvd1tdq2ZjpLwTR4iIiIiImoblywzcf6e7V43Y2sygLgAT9ExiIiIiIgcjkuWGT93NwTawRoVCUCguxv8NOKzEBERERE5GpcsMwCgC/QWHQGyneQgIiIiInJELltmwr01CPPSCFs7IwEI89Yg3FsjKAERERERkWNz2TIjSRIGhvpBqRBTZ5QKCQND/CBJ9jKKgIiIiIjIsbhsmQEAd5USg0L9hOx7UIgf3FVKIfsmIiIiInIGLl1mACDCxwP9gn27dJ8lx77E0Z2fw2Kxn2vdEBERERE5GpcvMwCgDfTqskLTr7svxvZNwJkzZ7Bu3TqYTKYu2S8RERERkbORZFm2l0uuCFdc14RjpTUwW2SbXodGwjdrZAaF+iHCxwMAcPHiRaxbtw5RUVGYP38+1Gq1DfdIREREROT8WGa+R28y43hpDa41GCABHSo1Lc8P89Zg4C3WyBQUFGDVqlUICQnBokWL4O7u3oG9ERERERG5FpaZW5BlGSX1BuRW1qNSb2xzqWl5fKC7G3SB3gj31tx2allxcTFWrFgBf39/LFmyBF5eXjZ4BUREREREzo9l5i5q9EbkVzeipF4Pg/mbBfu3qiUtf4hK2QxfyYxB0eHwc3e7p32UlZUhKysLHh4eSE5Ohq9v1w4kICIiIiJyRCwzbaA3mVGtN6LGYILRYoFFBhQS4KZQwE+jgr+7G17/619gNBrxxBNPIDw8/J63XVFRgczMTCgUCqSkpCAgIKATXwkRERERkeNjmbEhk8mE3//+9wAAd3d3PPHEEwgKCrrn59fU1CAzMxPNzc1ISUlBcHBwZ0UlIiIiInJ4HM1sQ9evX7f+f4PBgOXLl6O2tvaen+/n54e0tDR4enoiPT0dJSUlnRGTiIiIiMgpsMzYUGlpqfX/y7KM+vp6ZGZmoqmp6Z634e3tjdTUVAQGBiIzMxOFhYWdEZWIiIiIyOGxzNhQWVkZFIr//0cqyzIqKirwySeftGk7LYMAwsLCkJ2djby8PFtHJSIiIiJyeCwzNlRSUgKLxWIdw6xUKtGzZ08MGjSozdvSaDRYtGgRYmNjsWrVKpw7d87WcYmIiIiIHBrLjA25ubkhICAAQ4cOhVKpxJgxY7Bw4ULEx8e3e3vz589H7969sW7dOpw8edLGiYmIiIiIHJdKdABnkpKSYv3/1dXVyM/Px5gxYzq0TaVSiUcffRRqtRobN26EwWDAsGHDOhqViIiIiMjh8chMJ9HpdCgqKoJer+/wthQKBR5++GHcd999+Oyzz/DFF1/YICERERERkWPjkZlOotVqIcsy8vPzkZiY2OHtSZKEyZMnQ6PRYNeuXTAYDJgwYYJ1fQ4RERERkathmekk/v7+CA4ORm5urk3KDPBNoRk7diw0Gg22bdsGg8GAqVOnstAQERERkUtimelEWq0Wp0+fhizLNi0cI0aMgFqtxieffILm5mbMnDmz1UhoIiIiIiJXwE/AnUin06G+vr7VxTRtZfDgwZg9ezbOnDmDDz/8ECaTyeb7ICIiIiKyZywznSgqKgpqtRq5ubmdsv0+ffpg/vz5uHjxIlavXg2j0dgp+yEiIiIiskcsM51IqVQiLi4OeXl5nbaPnj17YvHixSgqKkJ2drZNpqcRERERETkClplOptPpUFxcjKampk7bR2xsLFJSUnD9+nVkZmaisbGx0/ZFRERERGQvWGY6WcuI5kuXLnXqfiIiIrB06VLU1tYiIyMDdXV1nbo/IiIiIiLRWGY6ma+vL0JCQjr1VLMWoaGhSE1NhcFgQHp6Oqqqqjp9n0REREREorDMdAGtVovc3FzIstzp++rWrRvS0tIgSRLS09NRXl7e6fskIiIiIhKBZaYL6HQ6NDY2oqSkpEv25+/vj7S0NHh4eCAjIwPXrl3rkv0SEREREXUllpkuEBERAY1G0yWnmrXw9vZGamoq/P39sXz5chQVFXXZvomIiIiIugLLTBdQKpWIj4/vtOvN3I6HhwdSUlIQGhqK7OzsTh9CQERERETUlVhmuohWq8XVq1fR0NDQpfvVaDRYvHgxYmJisGrVKpw7d65L909ERERE1FlYZrqIVqsFACFHR9zc3DB//nwkJCRg3bp1OHXqVJdnICIiIiKyNZaZLuLj44OwsLAuXTfzXUqlErNnz0b//v2xYcMGHD16VEgOIiIiIiJbUYkO4Eq0Wi2++uorWCwWKBRd3yMVCgVmzJgBjUaDTz/9FAaDAffff3+X5yAiIiIisgUemelCOp0OTU1NuHr1qrAMkiRhypQpGDNmDHbu3ImdO3d2yfVviIiIiIhsjUdmulCPHj3g4eGBvLw8REZGCsshSRLGjRsHjUaD7du3w2Aw4KGHHoIkScIyERERERG1FY/MdCGFQiFkRPPtjBw5EtOnT8fRo0exadMmWCwW0ZGIiIiIiO4Zj8x0Ma1WizNnzqC+vh7e3t6i42Dw4MFQq9XYsGEDmpub8eijj0KpVIqORURERER0Vzwy08VaRjSLmmp2K3379sX8+fNx4cIFrF69GkajUXQkIiIiIqK7YpnpYl5eXggPD7erMgMACQkJWLRoEQoLC5GdnQ2DwSA6EhERERHRHbHMCKDT6XDp0iW7W6MSFxeH5ORklJWVITMzE42NjaIjERERERHdFsuMADqdDnq9HsXFxaKj3CQyMhKpqamorq5GRkYG6urqREciIiIiIrollhkBwsPD4enpaTdTzb4vNDQUaWlpMBgMSE9PR3V1tehIREREREQ3YZkRQJIkaLVauy0zANCtWzekpaUBAD744APcuHFDcCIiIiIiotZYZgTRarUoKytDbW2t6Ci35e/vj7S0NLi7uyM9PR3Xrl0THYmIiIiIyIplRpD4+HhIkmR3U82+z8fHB6mpqfD398fy5ctx5coV0ZGIiIiIiACwzAjj6emJHj162H2ZAb7JmpKSgtDQUGRlZSE/P190JCIiIiIilhmRWkY0m81m0VHuSqPRYPHixYiOjsbKlStx/vx50ZGIiIiIyMWxzAik0+nQ3NzsMKduubm5YcGCBUhISMDatWtx6tQp0ZGIiIiIyIWxzAgUGhoKLy8vu55q9n1KpRKzZ89G//79sWHDBnz11VeiIxERERGRi2KZEUiSJOh0OocqMwCgUCgwY8YMDBs2DFu2bMGBAwdERyIiIiIiF6QSHcDVabVanDhxAjU1NfDz8xMd555JkoQHH3wQGo0GO3bsgMFgwLhx4yBJkuhoREREROQieGRGsJYRzY52dAb4ptCMHz8eEydOxBdffIGtW7dClmXRsYiIiIjIRbDMCObu7o7IyEiHGNF8O6NGjcK0adNw+PBhbNq0CRaLRXQkIiIiInIBPM3MDuh0Ouzbtw8mkwkqlWO+JUOGDIFarcbGjRvR3NyMRx99FEqlUnQsIiIiInJiPDJjB7RaLYxGI4qKikRH6ZB+/fph3rx5uHDhAlavXg2j0Sg6EhERERE5MZYZOxASEgIfHx+HXDfzfb169cKiRYtQWFiIFStWwGAwiI5ERERERE6KZcYOSJIErVbr0OtmvisuLg7JyckoLS1FZmYmGhsbRUciIiIiIifEMmMndDodbty4gaqqKtFRbCIyMhJLly5FdXU1li9fjrq6OtGRiIiIiMjJsMzYibi4OCgUCqc41axFWFgYUlNT0dTUhIyMDFRXV4uOREREREROhGXGTmg0GkRFRTnNqWYtgoODkZaWBlmWkZ6ejhs3boiOREREREROgmXGjuh0Oly+fNnppoAFBAQgLS0NGo0G6enpKC0tFR2JiIiIiJwAy4wd0Wq1MJlMKCwsFB3F5nx8fJCamgo/Pz8sX74cV65cER2JiIiIiBwcy4wdCQ4Ohp+fn1Otm/kuT09PpKSkoHv37sjKykJ+fr7oSERERETkwFhm7IizjWi+FXd3dyxZsgRRUVFYuXIlLly4IDoSERERETkolhk7o9PpUFlZiYqKCtFROo2bmxsWLFiAnj17Ys2aNTh9+rToSERERETkgFhm7ExsbCyUSqXTnmrWQqVSYc6cOejXrx8++ugjfP3116IjEREREZGDYZmxM2q1GtHR0U59qlkLhUKBmTNnYujQofjkk09w8OBB0ZGIiIiIyIGoRAegm2m1WuzcuRPNzc1Qq9Wi43QqSZLw0EMPQaPRYNu2bTAYDHjggQcgSZLoaERERERk53hkxg7pdDqYzWYUFBSIjtIlJEnChAkTMGHCBOzduxfbtm2DLMuiYxERERGRneORGTsUFBSEgIAA5ObmomfPnqLjdJn7778fGo0Gn376KQwGA6ZPnw6Fgn2biIiIiG6NZcYOtYxozs3NhSzLLnXK1dChQ6FWq/Hxxx+jubkZs2bNglKpFB2LiIiIiOwQv/a2UzqdDtXV1bhx44boKF2uf//+mDt3Ls6fP481a9bAaDSKjkREREREdohlxk7FxMRApVK5xFSzW+nduzcWLlyIy5cvY+XKlTAYDKIjEREREZGdYZmxU25uboiJiXH6683cSXx8PJKTk3Ht2jVkZWWhqalJdCQiIiIisiMsM3ZMq9WisLDQpY9KREVFYenSpaisrERGRgbq6+tFRyIiIiIiO8EyY8d0Oh0sFgsuX74sOopQYWFhSEtLQ1NTE9LT01FTUyM6EhERERHZAZYZOxYYGIigoCCXPtWsRXBwMNLS0mCxWPDBBx+goqJCdCQiIiIiEoxlxs5ptVrk5eXxIpIAAgICkJaWBrVajfT0dJSVlYmOREREREQCsczYOZ1Oh9raWpSXl4uOYhd8fX2RmpoKHx8fZGRkoLi4WHQkIiIiIhKEZcbORUdHw83NjaeafYeXlxeWLl2K4OBgZGZmuvyaIiIiIiJXxTJj51QqFWJjY1lmvsfd3R1LlixBVFQUVqxYgYsXL4qORERERERdjGXGAWi1Wly5cgV6vV50FLuiVquxYMEC6HQ6rFmzBmfOnBEdiYiIiIi6EMuMA2gZ0Zyfny86it1RqVSYO3cu+vTpg/Xr1+PYsWOiIxERERFRF2GZcQD+/v7o1q0bTzW7DYVCgUceeQRDhgzB5s2bcejQIdGRiIiIiKgLqEQHoHuj0+lw+vRpyLIMSZJEx7E7kiRh6tSp0Gg02Lp1KwwGA8aMGcM/KyIiIiInxiMzDkKn06G+vp7XVrkDSZIwceJEjB8/Hnv27MH27dt5fR4iIiIiJ8YjMw4iKioKarUaubm5CA0NFR3Hro0ePRoajQafffYZDAYDpk2bBoWCvZ2IiIjI2fATnoNQKpWIi4vjupl7NGzYMMycORPHjx/Hhg0bYDabRUciIiIiIhtjmXEgWq0WxcXFaGpqEh3FIQwYMABz5sxBTk4O1q5dC5PJJDoSEREREdkQy4wD0el0kGUZly5dEh3FYSQmJmLhwoXIz8/HypUr0dzcLDoSEREREdkIy4wD8fX1Rffu3ZGXlyc6ikPRarVYsmQJSkpKkJWVxSNbRERERE6CZcbB6HQ65OXlcUpXG0VHRyMlJQUVFRVYvnw56uvrRUciIiIiog5imXEwWq0WDQ0NuHbtmugoDic8PBypqaloaGhARkYGampqREciIiIiog5gmXEwkZGR0Gg0nGrWTt27d0daWhrMZjPS09NRUVEhOhIRERERtRPLjINRKpWIj4/nupkOCAwMRFpaGtzc3JCens4LkRIRERE5KJYZB9QyormxsVF0FIfl6+uL1NRU+Pj4ICMjA1evXhUdiYiIiIjaiGXGAWm1WgDg0ZkO8vLywtKlSxEcHIzMzEwUFBSIjkREREREbcAy44B8fHwQGhrKMmMD7u7uWLJkCSIiIrBixQquRSIiIiJyICwzDqplRLPFYhEdxeGp1WosXLgQ8fHxWL16Nc6ePSs6EhERERHdA5YZB6XVatHU1ISSkhLRUZyCSqXC3LlzkZSUhPXr1+P48eOiIxERERHRXahEB6D2iYiIgLu7O3JzcxERESE6jlNQKpWYNWsW1Go1Nm3aBIPBgPvuu090LCIiIiK6DR6ZcVAKhQJarZbrZmxMkiRMmzYNI0eOxNatW7Fv3z7Isiw6FhERERHdAsuMA9NqtSgpKUF9fb3oKE5FkiRMnDgR48ePx+7du7F9+3YWGiIiIiI7xDLjwDiiufNIkoTRo0fjwQcfxMGDB7FlyxYOWyAiIiKyMywzDszLywvh4eEsM51o+PDhmDlzJo4dO4aNGzfCbDaLjkRERERE32KZcXBarRaXLl3iUYNONGDAAMyZMwdnz57lGhoiIiIiO8JpZg5Op9Nh3759KC4uRlRUlOg4TisxMdF6sVJZliFJ0h0fX1hYCC8vL3Tr1q2LEhIRERG5Hh6ZcXDh4eHw9PTkleu7QGRkJFQqFRSKO/+1uXLlCt58800sXLgQhw4d6qJ0RERERK6HZcbBKRQKxMfHc91MF7nbERngm9Izbdo0JCYmYuTIkfj666+7IBkRERGR62GZcQI6nQ6lpaWoq6sTHcXlGY1GAMDYsWNx5coVBAUF4fr161xnQ0RERNQJWGacQHx8PACOaBbNYrHAzc0NAPD4449j586dSE9Px4QJE+7piA4RERERtQ3LjBPw9PREREQE180IZLFYrGtpfvzjH2P16tX4z3/+g8mTJ0OtVgtOR0REROScWGachFarRX5+Pq+D0sWMRiOMRqO1yLz88st4++238e9//xszZsxgkSEiIiLqRCwzTkKn08FgMODKlSuio7gMWZbx3//+F08++SQA4M9//jP++Mc/4p///Cfmzp0Ld3f32z6PiIiIiDqO15lxEmFhYfDy8kJubi5iYmJEx3EJkiRh4sSJeP7553H48GFcvHgRf/vb35CSkgJPT887Ps9oNKKiogKhoaFdmJiIiIjIufDIjJOQJAlarZZDALqYTqdDUVERZFlG9+7d8cgjj8DLy+uOz5FlGX/729/w85//HK+99lrXBCUiIiJyQiwzTkSn0+H69euoqakRHcWlhIWF4csvv4RCocBTTz3V6s//VqeUSZKEGTNmYNSoUVi/fj1mzZrVlXGJiIiInAbLjBOJi4uDJEk8OiOAn58fcnNz0bNnT5hMJly+fBnl5eW3HcmclJSEJ598Etu3b8fly5fxyiuvdHFiIiIiIsfHMuNEPDw8EBkZyRHNgmg0GixbtgwKhQI/+tGP8OMf/xi1tbW3XfBvMBgQGhqKGTNm4MKFC7BYLF2cmIiIiMixcQCAk9Fqtdi/fz9MJhNUKr69IgQEBKBPnz4ICQmBr6/vbR+n0WgAAEeOHAEA63hnIiIiIro3/LTrZHQ6HXbt2oWioiLExcWJjuOy/vGPf1j//8WLF9HY2AhZlqFUKlFeXo6mpiZUV1cjIyMDpaWlePHFFwWmJSIiInJMLDNOJiQkBD4+PsjNzWWZsQM7d+7EvHnzUFVVhb59+0Kv16O6uhp+fn4IDw+Ht7c3/vGPf2DkyJGioxIRERE5HEnmFfyczqZNm3DlyhU888wzoqMQgF/96lf4/e9/j127dmHs2LGoqqqCp6en9TSzFrIs33ZgABERERHdjEdmnJBOp8Px48dRVVWFgIAA0XFc3m9/+1vU1dXhkUcewdatWzF8+PBWQwFaSgyLDBEREVHbcMWxE4qLi4NCoeCIZjvyxhtv4LnnnsPIkSOxd+/eVsWFJYaIiIiofVhmnJBGo0FUVBRHNNuZ3/72t/jrX/+Kd999F/X19aLjEBERETk8nmbmpLRaLfbs2cMRzXbmpz/9KSoqKuDt7X3TfVwzQ0RERNQ2PDLjpHQ6HUwmEwoKCkRHoe8JCgq66TZZlnHu3DlUVVUJSERERETkmFhmnFRwcDB8fX15qpmDMJlM2LVrFz744AOUl5eLjkNERETkEFhmnJQkSdDpdBwC4CDc3NyQmpoKLy8vpKeno6SkRHQkIiIiIrvHMuPEdDodKisrUVFRIToK3QNvb28sXboUgYGByMzMRGFhoehIRERERHaNZcaJxcbGQqlU8uiMA/Hw8EBycjLCwsKQnZ3N946IiIjoDlhmnJharUZ0dDQ/EDsYjUaDxYsXIy4uDqtWrcK5c+dERyIiIiKySywzTk6r1eLy5cswGo2io1AbqFQqzJs3D4mJiVi3bh1OnjwpOhIRERGR3WGZcXI6nQ5msxmXL18WHYXaSKlUYtasWRgwYAA2btyII0eOiI5EREREZFd4NUUnFxQUBH9/f+Tl5aFnz56i41AbKRQKPPzww9BoNPjss89gMBgwevRo0bGIiIiI7ALLjJNrGdGcm5vLK8w7KEmSMHnyZLi7u2PXrl0wGAyYMGEC30siIiJyeTzNzAVotVpUV1dzRLMDkyQJDzzwACZPnowDBw7g008/hSzLomMRERERCcUjMy6gZURzbm4uunXrJjoOdcCIESOg0WiwefNmNDc3Y+bMmVAo+J0EERERuSZ+CnIBbm5uiI2N5YhmJzFo0CDMnj0bZ86cwbp162AymURHIiIiIhKCZcZFaLVaFBQUoLm5WXQUsoE+ffpg/vz5yM3NxerVq/m+EhERkUtimXEROp0OFosF+fn5oqOQjfTs2ROLFy/GlStXkJ2dDb1eLzoSERERUZdimXERgYGBCAwM5KlmTiY2NhbJyckoLy9HZmYmGhoaREciIiIi6jIsMy5Eq9VaRzST84iIiEBqaipqa2uRkZGB2tpa0ZGIiIiIugTLjAvR6XSora1FeXm56ChkYyEhIUhLS0NzczPS09NRVVUlOhIRERFRp2OZcSExMTFQqVTIzc0VHYU6QVBQEB577DEoFAqkp6eztBIREZHTY5lxISqViiOanZyfnx/S0tLg4eGBjIwMXLt2TXQkIiIiok7DMuNidDodioqKYDAYREehTuLt7Y3U1FQEBARg+fLlKCoqEh2JiIiIqFOwzLgYrVbLEc0uwMPDA8nJyQgLC0N2djYuXbokOhIRERGRzbHMuJiAgAB069aN62ZcgEajwaJFixATE4NVq1bh3LlzoiMRERER2RTLjAvSarXIy8vjiGYX4Obmhvnz56NXr15Yt24dTp06JToSERERkc2wzLggnU6Huro6lJWViY5CXUCpVOLRRx/FgAEDsGHDBhw9elR0JCIiIiKbUIkOQF0vKioKarUaubm5CA0NFR2HuoBCocDDDz8MtVqNTz/9FAaDAffff7/oWEREREQdwiMzLogjml2TJEmYMmUKHnjgAezcuRM7d+7kqYZERETk0FhmXJROp8OVK1fQ1NQkOgp1IUmSMHbsWEyaNAn79+/HZ599xkJDREREDotlxkVptVrIsswRzS5q5MiRmD59Oo4ePYqPP/4YFotFdCQiIiKiNmOZcVF+fn7o3r07RzS7sMGDB+PRRx/F6dOn8eGHH8JkMomORERERNQmLDMujCOaqW/fvpg3bx4uXryI1atXw2g0io5EREREdM9YZlyYTqdDQ0MDrl27JjoKCZSQkIDFixejqKgI2dnZ0Ov1oiMRERER3ROWGRcWGRkJjUbDU80IsbGxSElJwfXr15GZmYnGxkbRkYiIiIjuimXGhSmVSsTFxXFEMwEAIiIisHTpUtTW1iIjIwN1dXWiIxERERHdEcuMi9PpdCguLuY38QQACA0NRWpqKgwGA9LT01FVVSU6EhEREdFtscy4OK1WCwC4dOmS4CRkL7p164a0tDQAQHp6Om7cuCE4EREREdGtscy4OB8fH4SGhnLdDLXi7++PtLQ0eHh4ID09nUMiiIiIyC6xzBC0Wi0uXbrECydSKz4+Pli6dCn8/f2xfPlyXLlyRXQkIiIiolZYZgg6nQ6NjY0oKSkRHYXsjKenJ1JSUhAaGoqsrCzk5+eLjkRERERkxTJDiIiIgLu7O081o1vSaDRYvHgxoqOjsXLlSpw/f150JCIiIiIALDMEQKFQID4+niOa6bbc3NywYMECJCQkYO3atTh16pToSEREREQsM/QNnU6HkpIS1NfXi45CdkqpVGL27Nno378/NmzYgK+++kp0JCIiInJxLDMEAIiPjwfAEc10ZwqFAjNmzMCwYcOwZcsWHDhwQHQkIiIicmEq0QHIPnh7eyM8PBx5eXno37+/6DhkxyRJwoMPPgh3d3fs2LEDBoMB48aNgyRJoqMRERGRi2GZISutVosjR47AYrFAoeBBO7o9SZIwbtw4qNVqa6F58MEHWWiIiIioS7HMkFW/fv0QFBQkOgY5kFGjRkGj0WDLli1obm7Gww8/zCJMREREXUaSZVkWHYLsh9lshlKpFB2DHMzp06exYcMG9O7dG48++ih/hoiIiKhLsMwQkU2cP38eH374IWJjYzFv3jy4ubmJjkREREROjmWGiGwmPz8fq1evRnh4OBYuXAiNRiM6EhERETkxlhlqE5PJhPz8fJhMJiQmJoqOQ3boypUrWLFiBYKCgrB48WJ4enqKjkREREROiit1qU2MRiMyMzPx8ssvw2QyiY5DdigyMhKpqamorq5GRkYG6urqREciIiIiJ8UyQzcxmUywWCwAAFmWW/3ew8MDKSkpyMnJwdatW0XGJDsWGhqKtLQ06PV6pKeno7q6WnQkIiIickIsM3ST3/3ud1i3bh2Ab64nolKpoFAoUF9fj7Vr1+LnP/85Ll68iN27dwtOSvasW7dueOyxxwAA6enpuHHjhuBERERE5GxYZugmFy9eREZGBgDgzJkzePnll9GnTx/4+vriySefhNlsxt///nfMmzdPbFCye/7+/khLS4NGo0F6ejpKS0tFRyIiIiInwgEAdJMvv/wS999/PwICAlBdXY2EhASMGzcO48ePR58+fRAWFgZvb29eHJHuWWNjI7Kzs1FVVYVFixYhMjJSdCQiIiJyAiwzdEt+fn6YM2cOnnjiCcTExCAwMJBjdqlDDAYDVq5ciWvXrmHBggWIi4sTHYmIiIgcHL9ap1vq27cvVCoVRowYgbCwMBYZ6jCNRoMlS5YgOjoaK1euxIULF0RHIiIiIgfHMkO39MMf/hBVVVUwm83gwTuyFTc3NyxYsAA9e/bEmjVrcPr0adGRiIiIyIHxNDO6JaPRiPr6egQEBIiOQk7IYrFg8+bNOHHiBKZPn47BgweLjkREREQOiEdm6Jbc3Nywf/9+/PCHP0ReXh4A8AgN2YxCocCMGTMwbNgwfPLJJ/jyyy9FRyIiIiIHxDJDt1VYWIgdO3ZYy4wkSbd8nMFg6MpY5CQkScKDDz6I0aNHY/v27di9ezcLMxEREbUJTzOj26qrq0NzczOCgoJa3W42m9HY2Ijy8nKcOHECu3btwv/+7/8iKipKUFJydAcOHMCOHTswfPhwTJky5bbFmYiIiOi7VKIDkP3y8fEBANTX10Oj0cDNzQ0AkJ+fjzfffBPvv/8+lEol6urq4OXlhT//+c8i45IDGzVqFNRqNT799FM0Nzdj+vTpvI4RERER3RU/LdAdHTx4EK+88or1VDMA8PT0RGlpKRITE1FTU4PMzEx89NFHAlOSMxg6dChmzZqFEydO4KOPPoLZbBYdiYiIiOwcywzdUVVVFfbs2dPqVLMePXrgySefRHV1NQBg7NixKCoqQl1dnaCU5Cz69euHefPm4fz581izZg2MRqPoSERERGTHWGbojkaMGIHz58/DaDRClmXrAm21Wg2LxYKLFy8iIiICXl5eWLFiheC05Ax69eqFhQsXoqCgACtWrOCACSIiIrotlhm6o4CAACQkJGDFihWQJMm6MDsjIwMREREIDg4GALz77rvo27evyKjkROLj47FkyRKUlpYiKysLTU1NoiMRERGRHeI0M7qr999/H++++y7Cw8Mxbtw4XLx4EZs3b8aLL76IZ555RnQ8cmLXrl1DdnY2vL29kZycDG9vb9GRiIiIyI6wzNBdmUwmbNmyBb///e/R3NwMT09PzJ49Gz/96U85Qpc6XXl5ObKysuDm5obk5GT4+/uLjkRERER2gmWG7lljYyOKiooQFxcHtVotOg65kKqqKmRmZsJisSAlJeWmax8RERGRa2KZoXaxWCyt1tAQdbba2lrr+pnk5GSEhISIjkRERESCscwQkcNobGxEdnY2qqqqsHjxYkRERIiORERERAKxzBCRQ9Hr9Vi1ahWuXbuGhQsXIjY2VnQkIiIiEoRlhogcjtFoxJo1a1BQUIB58+ahZ8+eoiMRERGRACwz1GayLHOtDAlnMpnw0Ucf4cKFC5g1axb69OkjOhIRERF1MV40k9pElmVcv34d7MAkmkqlwpw5c9C3b1+sX78ex44dEx2JiIiIuhjLDLXJpUuX8M4776CiokJ0FCIoFArMnDkTQ4cOxebNm3Hw4EHRkYiIiKgLqUQHIMcSFRUFpVKJ3NxcdOvWTXQcIkiShIceeggajQbbtm2DwWDAAw88wFMhiYiIXACPzFCbqNVqxMTEIC8vT3QUIitJkjBhwgRMmDABe/fuxbZt23gqJBERkQtgmaE20+l0KCwsRHNzs+goRK3cf//9mDp1Kg4dOoTNmzfDYrGIjkRERESdiGWG2kyr1cJsNuPy5cuioxDdZOjQoXjkkUdw4sQJfPTRRzCbzaIjERERUSdhmaE2CwoKQmBgIHJzc0VHIbql/v37Y+7cuTh37hzWrl0Lo9EoOhIRERF1ApYZahetVou8vDyuSyC71bt3byxcuBD5+flYuXIlDAaD6EhERERkYywz1C46nQ41NTUoLy8XHYXotrRaLZKTk3Ht2jVkZWWhqalJdCQiIiKyIZYZapfo6GioVCqeakZ2LyoqCkuXLkVlZSWWL1+O+vp60ZGIiIjIRlhmqF3c3NwQGxvLEc3kEMLCwpCWlobGxkakp6ejpqZGdCQiIiKyAZYZajetVouioiKuRSCHEBwcjLS0NFgsFnzwwQeoqKgQHYmIiIg6iGWG2k2n08FisSA/P190FKJ7EhAQgLS0NKjVaqSnp6OsrEx0JCIiIuoAlhlqt4CAAHTr1o3rZsih+Pr6IjU1FT4+PsjIyMDVq1dFRyIiIqJ2YpmhDuGIZnJEXl5eWLp0KYKDg5GZmYmCggLRkYiIiKgdWGaoQ3Q6Herq6ni6Djkcd3d3LFmyBBEREVixYgWPMBIRETkglhnqkKioKLi5uXGqGTkktVqNhQsXQqvVYvXq1Th79qzoSERERNQGLDPUISqVCnFxcfxWmxyWSqXC3Llz0adPH6xfvx7Hjx8XHYmIiIjuEcsMdZhWq8WVK1eg1+tFRyFqF4VCgUceeQSDBw/Gpk2bcOjQIdGRiIiI6B6oRAcgx6fT6SDLMi5duoSkpCTRcYjaRZIkTJ06FRqNBlu3boXBYMCYMWMgSZLoaERE5IT0JjOq9UbUGEwwWiywyIBCAtwUCvhpVPB3d4O7Sik6pt1jmaEO8/PzQ3BwMPLy8lhmyKFJkoSJEydCo9Fg165dMBgMmDRpEgsNERHZRI3eiPzqRpTU62EwWwAAt/oXpmVGrEapQLi3O+L8PeHn7tZlOR0JywzZhE6nw8mTJyHLMj/4kcMbPXo0NBoNPvvsMxgMBkybNg0KBc/KJSKitpNlGSX1BlysrEeV3ggJ/7+s4Hv///sMZgsKahpxuaYRge5u0AV6I9xbw89a38F/nckmdDodGhoaUFpaKjoKkU0MGzYMM2fOxPHjx7FhwwaYzWbRkYiIyMHoTWYculqFwyVVqNIbAdy5vNxKy+Or9EYcLqnCoatV0Jv4b1ILlhmyicjISKjVak41I6cyYMAAzJkzBzk5OVi7di1MJhMAwGKx4OLFi7BYLIITEhGRvSqua8K2y+UobTDYZHstpaa0wYBtl8tRXNdkk+06OpYZsgmlUon4+HiWGXI6iYmJWLhwIfLz87Fy5UoYDAZ88sknWLVqFcc4ExHRLeVW1uNISTVMFrnNR2LuRgZgssg4UlKNvMoGG2/d8UiyLNv6z5hc1LFjx/DJJ5/gf/7nf+Dp6Sk6DpFNFRYWYsWKFVCr1Who+OYfj4iICDz++OP3vA1OriEicn65lfU4XV7XZfvrF+wLbaBXl+3P3nAAANnMd0c09+3bV3QcIpuKjo5G3759cezYMettxcXFqKqqQkBAwG2fx8k1RESuo7iuqUuLDACcKq+Fu5sCET4eXbpfe8HTzMhmfHx8EBISgry8PNFRiGzu0KFDrYoM8M0o51OnTt30WFmWcbVOj92FN7Cz8AYKahqtRQb4prh8/1eLlsk1OwtvYE/hDVyt04MH0ImI7J/eZMax0hoh+z5WWuOyQwFYZsimdDod8vLy+OGLnE5OTg4AtBrRLMsyjh071urnnZNriIhcjyzLOF5aA7NFzOcfs0XG8bIal/z8xTJDNqXT6dDY2IiSkhLRUYhsaunSpUhJScGwYcPg5+dnvb22thYXL14EwMk1RESuqqTegGsNBpsv9r9XMoBr9QaU1Nvm3x9HwjUzZFMRERFwd3dHbm4uevToIToOkc0olUrExsYiNjYWkydPxo0bN3D69GmcOHECQOcu+Pzu5Bp9sMWlF3oSEdmj3Mr6Nj/nzOEv8erSObe874+rN6PngMFt2p70bY4ePu5tzuLIWGbIphQKhXVE89ixY0XHIeoUkiQhODgY48ePx/jx47t0cs2p8loAYKEhIrITNXojKr89rbg9piY/Dm3fAa1uC42OafN2ZACVeiNqDEb4aVxngAzLDNmcVqvFxx9/jIaGBnh58QMXOTdOriEicm351Y2Q0Pb1kS0SBw/HiAen2ySLBCC/qhEDQ/3u+lhnwTUzZHNarRYAONWMnB4n1xARUUm9vsNrZZrq62E2mTqcRf42jyvhkRmyOW9vb4SFhSEvLw/9+/cXHYeoU9jL5Jr7wgMgSbe6cg2RfbBYLDAavzkFR61W3/XntaGhAfn5+aivr4ebmxsiIyMREhLSFVGJ2kxvMrcavd8eb/7fT6BvbIBCqUTvwcOR8vNfQdu3/Z+fDGYL9Cazy1yEmWWGOoVOp8ORI0dgsVhajbIlchYtk2tE+e7kGldb7EmO4+OPP8brr7+O48ePw2KxYOvWrRg5cuRtH19VVYXXXnsNW7ZsQXNzM9zd3dG3b1/86U9/gk6n68LkRN/Yt28fTpw4gZEjR2LAgAFQqVp/dK7uwFoZlZsb7ps8DYMeGA/fgEBcybuITR+8g18tmYXfr/oYcYntvwB5td6IUG/XKDP8lEmdQqvVQq/X4+rVq6KjEHWK9kyuuZUP3/knZvcKxwsPj2vzc1sm1xDZI1mW0dzcjKlTp+LNN9+E0Wi86YPg961duxbvvPMO1qxZg6KiIqxfvx5FRUX4yU9+Yt0mUVeqrKxEVVUVtmzZgjfeeAOHDh2yHmkEgBqDCe09Nt5r0FD8fNl/MGH2QgwdPwWP/vA5/HHNJ4AErPjHH9udWfo2l6vgkRnqFD169ICHhwdyc3MRGRkpOg6RTXV0ck2LitISfPTuMrh7erbr+a46uYYcgyRJmDt3LgDg6tWraG5uhsVy+9NxmpubcfnyZSQkJGDw4G9G0vbt2xdjxozB3r17uyQzOSdZlmGxWG776073NzY2QpIkyLKMhoYGbN26Fbt370bv3r0xffp0GO/wM90eYdGxGDp+Cg5v/wxmsxlKZfuOrtg6lz1jmaFOoVAooNVqkZeXh/Hjx4uOQ2RTHZ1c02L5X36Dnv0Hw2I2o7a6sl3bcMXJNeR4Wj6Qmc23H1qhVqsxdepUrF+/Hu+88w4GDhyIc+fO4ciRI3jxxRcBgOvD7oEsy9YP5x35EG+L++/2mFvd1xmZbK25uRknT55EbGwspLBYm2+/W1g4TMZmGJoa4ent065tCFrOKQTLDHUarVaL06dPo66uDj4+7fvLSGSPbDG55uzRQzi4dQv+9tE2vP+7l9u9nZbJNQPBMkP2q+X0srt9sBw9ejSeffZZ/PznP4eHhweam5sxbtw4PPTQQ7d9znc/vHfVh/D23t/WD/bt3WdXUigUkCQJCoXitr/aer+bm9tdn9/Rfd7rNvbv34+cnBxYLBbrEZrw8HCMHTsWOp0OZ7699pctlV0pglrjDnfP9l/eQuFCvZ9lhjpNfHw8gG9GNA8cOFBwGiLbsMXkGrPZjPd/9zImzlmE6ITeHc7kapNrXN2tPrx35bft378/Pj4ekZGRdxz20nJk5m4ftDdv3ozf//732LBhA0aOHInLly/jueeew+zZs7F169ZbPmfVqlXIzc1t/x9oG9nqw/R371epVPf03K76AH+v90uS5PRHy7y8vKw/tyEhIZg4cSLi4uKsr9utA0OOaior4BcY1Oq2gvNn8dXubRg4elyHBih1JJejYZmhTuPl5YUePXqwzJBT6cjkmhbbVmeivKQYr6avsUGibzjz5BqeMnPzbV3pbh90/fz8EBERccdttByZudNpZgaDAW+//TYWLFiAiRMnAgCSkpLwt7/9DUOGDEF1dTX8/f1vet6wYcPQu3fvLvkA7wof3qm1sLAwhIeHY/To0UhISLjp/ffTqNp9pP4fP3kSand3JAwcAr/Abii+dBHb12ZD7e6BJT97qd2Z5W9zuQrXeaUkhE6nw8GDBzu0iI3InrRMrmnvP151VZVYvexvmPvUCzd9I9cRxTeqYK5xzlNmRH54t8U33kqlEm5ubjfdb+tTczrrW3pbuN1pZg0NDTCbzfD19YVSqYSPjw/y8/NhMBig0WhgNptx9OhReHp6QqPR3HLbLRdqJuoM/fv3v+M18/zd2z98ZdiEKfjikw3YnP4emhrq4BsQhOGTpmLeMz9FWHTH1uJ0JJejYZmhTqXVarFnzx4UFxcjOjpadByiDuvohJiV//wLvP398dCSx2yUCLCYzfjq+GmUnTrSrufb+rSUu50yY2+nynTGh3f6Rl1dHS5cuIDGxkYAwLFjx6BUKhEWFoaEhAT85Cc/wfXr17Fx40aoVCosWrQIaWlp+NWvfoVBgwbh6tWrePfdd5GWlgYPDw/Br4boZu4qJTRKRbtOP56W8gSmpTxh80wapcKlTjtmmaFOFR4eDk9PT+Tm5rLMkFPoyISYkoJ87FibjbRf/hpV18ustzc3G2A2GnG9+Ao8vL3h4x/Qpu0qlUr0HzAAcSMHtflDPD+8U2c6cuQIJk2aBJVKBU9PT7z22msAgMceewxvvvkmNBoNPL8zmvyRRx6BJEl49913sXnzZgQHB+NHP/oRfvrTnwp6BUR3F+7tjoKaxg4PhrEFCd/kcSWSzCtQUSfbuHEjSktL8eSTT4qOQtRhZ8prkVvZ0K5/tM4c/hKvLp1zx8dMS3kCj/3fb9q0XQmALtALfYJ925GKiIg6okZvxM7CG6JjWE2I6eZS1x7jkRnqdFqtFidPnkRtbS18fflhixxbRybERPVMwP+++f5Nt6/651/Q1FCPx/7vNwiNjOnyXERE1H5+7m4IdHezycWUO0ICEODu5lJFBmCZoS4QHx8PSZKQm5trvaozkaPqyOQa34AgDJ948/Uytiz/LwDc8r574WqTa4iI7I0u0BuHS6qEZpC/zeFq+FUedToPDw9EREQgLy9PdBSiDrPXCTH2mouIyBWEe2sQ5qWBqFWIEoAwbw3CvW899c+Z8as86hJarRYHDhzgiGZyeB2ZXHM7v8la36Hnu9rkGiIieyNJEgaG+mHb5XKYOjIppp2UCgkDQ/xccqgLj8xQl9DpdGhubkZRUZHoKEQdFu7tLuzbt+9zxck1RET2yF2lxKBQPyH7HhTq57JfavHIDHWJ0NBQeHt7Izc3F7GxHbsQFJFocf6euFzTKDoGgG/OkY4L8Lzr44iIyPZkWcaNGzdw/vx5HD58GH5+fhg3exFOldd2WYZ+wb6I8HHd6zCxzFCXkCQJWq0WeXl5mDx5sug4RB3CyTVERK7LYrGgsLAQFy5cwPnz51FTU2O9LyQkBNpALwDokkLTr7svtAFenb4fe8YyQ11Gp9PhxIkTqK6uhr+/v+g4RB3CyTVERK7p+PHj+OSTTyBJEr5/ucbx48cDALSBXnB3U+BYaQ3MFtmmF9SU8M0amUGhfi59RKYF18xQl4mLi4MkSZxqRk6Bk2uIiFxTr169EBAQcNPtAQEBCA8Pt/4+wscDk2ODEer1zX+nO/rvRcvzQ701mBwbzCLzLZYZ6jLu7u6IiopCbm6u6ChEHdYyuUapEFNnXHlyDRGRSF5eXpg/f36r//5KkoQBAwbc9N9kd5US9/UIwPDwAAR8O0K/rf/Vbnl8gLsbhocH4L7wAJdd7H8rPM2MupRWq8W+fftgMpmgUvHHjxxby+SaIyXVXb5vV55cQ0QkUn19PTZs2AA3NzdIkgS9Xg9ZltGvX79bPl6SJPTwcUcPH3fU6I3Ir25ESb3eOuL/VuWm5bQ0jVKBcG93xPl7wo/XE7slfpqkLqXT6bBz504UFhYiPj5edByiDovw8YA+2MLJNURELqCmpgaZmZlobm7G448/DlmW8cEHHyAkJOSe1gP7ubthYKgfBsIPepMZ1XojagwmGC0WWGRAIQFuCgX8NCr4u7vxS6t7wDJDXap79+7w8fFBbm4uyww5DU6uISJyfhUVFcjKyoIkSXjssces62aeeeYZKBRtX7nhrlIi1FuJUM5x6RCWGepSkiRBp9NxCAA5HU6uISJyXmVlZcjKyoKHhweSk5Ph6+trvc/Hx0dgMuIAAOpyOp0OFRUVqKysFB2FyKY6a3KNvwqcXENEJMjVq1eRkZEBHx8fpKamtioyJB7LDHW52NhYKBQKHp0hp2TryTVFB7bjixX/wbnTp266ngEREXWugoICZGZmIjg4GEuXLoWXF0/ztTcsM9TlNBoNoqOjOaKZnFbL5Jqx0d0wIbobYvw8oVH+///cSrf41UKjVCDGzxMTorthbHQ36K+XQJZlbNq0CatWrUJDQ0PXvhgiIheVm5uLFStWICIiAkuWLIG7u7voSHQLXDNDQmi1WuzevRtGoxFubhw1SM6ro5Nr3N3dYTAYAAB5eXl48803MXPmTPTq1UvEyyEicglnz57FRx99BJ1Ohzlz5vByEnaMR2ZICJ1OB5PJhIKCAtFRiLrMN5Nr3JEQ5I0+wb7o190XfYJ9kRDkjVBv91uO4Pxu2ZdlGXq9HmvWrMHJkye7MjoRkcs4fvw41q9fj6SkJMydO5dFxs6xzJAQ3bp1g5+fH081I7oLtVp9021hYWGIiIgQkIaIyLkdPnwYmzZtwqBBgzBr1iwolbzOi71j1SQhvjuiWZZlSFJH5z4ROafvl5n+/ftj5syZ/DtDRGRDsizjiy++wO7duzFixAhMmjSJ/511EDwyQ8LodDpUVVVxRDPRHfj5+UGj0eDBBx9E//79cfHiResaGiIi6jhZlrFjxw7s3r0b48aNY5FxMDwyQ8LExMRAqVQiNzcXQUFBouMQ2aXp06dj+vTpUKlUqK2txdmzZ3HgwAFMmDBBdDQiIocnyzK2bNmCr7/+GlOmTMF9990nOhK1EY/MkDBqtRoxMTFcN0N0ByqVyrr41NfXFyNGjMChQ4dQU1MjOBkRkWOzWCzYuHEjvv76a8yYMYNFxkGxzJBQWq0WhYWFaG5uFh2FyCGMGjUKarUae/bsER2FiMhhmUwmrFu3DmfOnMHs2bMxcOBA0ZGonVhmSCidTgez2YzLly+LjkLkEDQaDR544AGcOHECZWVlouMQETmc5uZmrFq1Cnl5eZg/fz769OkjOhJ1AMsMCRUYGIiAgACeakbUBoMHD0ZgYCC2b98uOgoRkUPR6/XIzs5GcXExFi9ejJ49e4qORB3EMkNCfX9EMxHdnVKpxMSJE3Hp0iVcunRJdBwiIofQ0NCA5cuXo7y8HMnJyYiJiREdiWyAZYaE02q1qKmpwY0bN0RHIXIYvXr1QmRkJHbs2MEvAoiI7qK2thYZGRmoq6tDamoqLzzsRFhmSLiYmBioVCqeakbUBpIkYdKkSSgtLcWpU6dExyEisltVVVVIT09Hc3Mz0tLSEBISIjoS2RDLDAnn5uaG2NhY5OXliY5C5FAiIyPRu3dv7Nq1CyaTSXQcIiK7U15ejvT0dCgUCjz22GO8rp0TYpkhu9AyoplXNidqmwkTJqC+vh6HDx8WHYWIyK5cu3YNGRkZ8PDwQFpaGvz8/ERHok7AMkN2QafTwWKxID8/X3QUIocSFBSEwYMH44svvkBjY6PoOEREdqGoqAjLly9HQEAAUlNT4e3tLToSdRKWGbILAQEBCAoK4qlmRO3wwAMPQJZlfPHFF6KjEBEJd+nSJWRnZyM0NBTJycnw8PAQHYk6EcsM2Q2tVovc3FxOZiJqIy8vL4waNQpHjhxBVVWV6DhERMKcP38eq1atQkxMDBYvXgyNRiM6EnUylhmyGzqdDnV1dbh+/broKEQOZ8SIEfDy8sKuXbtERyEiEuLUqVNYu3YtEhISMH/+fLi5uYmORF2AZYbsRnR0NNzc3Diimagd3NzcMHbsWJw5cwZXr14VHYeIqEt99dVX2LBhA/r374/Zs2dDqVSKjkRdhGWG7IZKpUJcXBzXzRC104ABAxAcHIzt27fzdE0ichkHDhzAli1bMGzYMMyYMQMKBT/euhK+22RXtFotioqKoNfrRUchcjgKhQKTJk1CYWEhj3ASkdOTZRm7du3Cjh07MHr0aDz44IOQJEl0LOpiLDNkV7RaLWRZxqVLl0RHIXJIWq0WMTEx2LFjBywWi+g4RESdQpZlfP755/jiiy8wceJEjB8/nkXGRbHMkF3x9/dHcHAwTzUjaidJkjBp0iSUl5fj+PHjouMQEdmcxWLBpk2bcOTIEUybNg2jRo0SHYkEYpkhu6PVapGXl8dz/onaKTw8HH379sWePXvQ3NwsOg4Rkc2YzWasX78eJ0+exKxZszBkyBDRkUgwlhmyOzqdDvX19SgtLRUdhchhjR8/Hk1NTTh48KDoKERENmE0GrFmzRpcuHAB8+bNQ79+/URHIjvAMkN2JyoqCmq1mguYiTrA398fw4YNw4EDB1BfXy86DhFRhxgMBqxYsQIFBQVYuHAhevXqJToS2QmWGbI7SqWSI5qJbGD06NFQKpXYu3ev6ChERO3W1NSErKwslJaWYsmSJYiPjxcdiewIywzZJZ1Oh+LiYjQ1NYmOQuSwPDw8MHr0aHz99de4ceOG6DhERG1WX1+PjIwMVFVVYenSpYiKihIdiewMywzZJY5oJrKNYcOGwdfXFzt37hQdhYioTWpqapCeno6mpiakpqYiLCxMdCSyQywzZJd8fX0REhLCdTNEHaRSqTB+/HicP38eRUVFouMQEd2TiooKfPDBB7BYLEhLS0NwcLDoSGSnWGbIbnFEM5Ft9O3bF2FhYdi+fTv/PhGR3SsrK0N6ejrUajXS0tIQEBAgOhLZMZYZsls6nQ6NjY0oKSkRHYXIobVcSLO4uBjnzp0THYeI6LaKi4uRkZEBHx8fpKamwtfXV3QksnMsM2S3IiMjodFoeKoZkQ3ExsZCq9Vi586dMJvNouMQEd2koKAAWVlZCA4OxtKlS+Hl5SU6EjkAlhmyWwqFAvHx8RzRTGQjkyZNQlVVFb766ivRUYiIWrl48SJWrFiBiIgILFmyBO7u7qIjkYNgmSG7ptPpcPXqVTQ0NIiOQuTwunfvjv79+2Pfvn3Q6/Wi4xARAQDOnj2LNWvWQKvVYuHChVCr1aIjkQNhmSG7ptVqAYAjmolsZNy4cWhubsaBAwdERyEiwvHjx7F+/Xr06dMHc+fOhUqlEh2JHAzLDNk1b29vhIWFcd0MkY34+vpixIgROHToEGpra0XHISIXdujQIWzatAmDBg3CI488AoWCH0up7fhTQ3ZPq9Xi0qVLsFgsoqMQOYVRo0ZBrVZj9+7doqMQkQuSZRl79+7F1q1bMXLkSEybNg2SJImORQ6KZYbsnk6nQ1NTE65evSo6CpFT0Gg0eOCBB3DixAmUlZWJjkNELkSWZWzfvh179uzBuHHjMHHiRBYZ6hCWGbJ7PXr0gIeHB081I7KhwYMHIzAwEDt27BAdhYhchMViwZYtW3Dw4EE8+OCDGDNmDIsMdRjLDNk9jmgmsj2lUokJEyYgLy8P+fn5ouMQkZMzm83YuHEjjh07hhkzZmD48OGiI5GTYJkhh6DT6XDt2jXU19eLjkLkNHr37o2IiAhs374dsiyLjkNETspkMmHdunU4e/YsZs+ejYEDB4qORE6EZYYcQnx8PADw6AyRDUmShEmTJqG0tBSnT58WHYeInFBzczNWrVqFS5cuYcGCBUhKShIdiZwMyww5BC8vL/To0YPrZohsLCoqCr169cKuXbtgMplExyEiJ6LX65GdnY3i4mIsXrwYOp1OdCRyQiwz5DA4opmoc0ycOBG1tbU4fPiw6ChE5CQaGhqwfPlylJeXIyUlBTExMaIjkZNimSGHodPpYDAYcOXKFdFRiJxKUFAQBg8ejC+++AKNjY2i4xCRg6utrUVGRgbq6uqQmpqKHj16iI5EToxlhhxGeHg4PD09eaoZUSd44IEHIMsyvvjiC9FRiMiBVVVVIT09HUajEWlpaQgJCREdiZwcyww5DEmSoNVqOQSAqBN4e3tj1KhROHr0KKqqqkTHISIHVF5ejg8++AAKhQJpaWkICgoSHYlcAMsMORStVouysjLU1taKjkLkdO677z54eHhg165doqMQkYMpKSlBeno6PD09kZaWBj8/P9GRyEWwzJBDiY+PhyRJPDpD1AnUajXGjRuHM2fOoKSkRHQcInIQRUVFyMzMRGBgIFJTU+Ht7S06ErkQlhlyKJ6enoiIiGCZIeokAwYMQHBwMLZt28YLaRLRXV26dAlZWVkICwtDcnIyPDw8REciF8MyQw6nZUSz2WwWHYXI6SgUCkycOBGFhYUctkFEd3Tu3DmsWrUKsbGxWLRoETQajehI5IJYZsjh6HQ6NDc3o6ioSHQUIqek0+kQExODHTt28LpORHRLJ0+exLp169CrVy/Mnz8fbm5uoiORi2KZIYcTGhoKb29vfmtM1EkkScKkSZNQXl6OEydOiI5DRHbm6NGj2LhxI/r3749HH30USqVSdCRyYSwz5HA4opmo84WHh6NPnz7YvXs3mpubRcchIjuxf/9+fPrppxg+fDhmzJgBhYIfJUks/gSSQ9JqtSgvL0d1dbXoKEROa/z48WhqasLBgwdFRyEiwWRZxs6dO7Fz506MGTMGU6ZMgSRJomMRscyQY+KIZqLOFxAQgKFDh+LLL79EfX296DhEJIgsy/j888+xf/9+TJo0CePGjWORIbvBMkMOyd3dHVFRUSwzRJ1szJgxUCgU2Lt3r+goRCSAxWLBpk2bcOTIEUybNg0jR44UHYmoFZYZclharRb5+fkwmUyioxA5LQ8PD4wePRpff/01bty4IToOEXUhs9mM9evX4+TJk5g1axaGDBkiOhLRTVhmyGHpdDoYjUYUFhaKjkLk1IYNGwZfX1/s3LlTdBQi6iJGoxGrV6/GhQsXMG/ePPTr1090JKJbYpkhh9W9e3f4+PjwVDOiTqZSqTB+/HicP3+e13cicgEGgwErVqxAYWEhFi1ahF69eomORHRbLDPksFpGNPN6M0Sdr2/fvggNDcX27dshy7LoOETUSRobG5GZmYnS0lIkJycjLi5OdCSiO2KZIYem0+lQUVGBqqoq0VGInFrLhTSLi4tx7tw50XGIqBPU1dUhIyMD1dXVWLp0KSIjI0VHIrorlhlyaHFxcVAoFDw6Q9QF4uLioNVqsXPnTpjNZtFxiMiGqqurkZGRAb1ej9TUVISFhYmORHRPWGbIoWk0Go5oJupCEydORGVlJb7++mvRUYjIRm7cuIH09HRYLBakpaUhODhYdCSie8YyQw5Pp9Ph8uXLMBqNoqMQOb2QkBAMGDAAe/fuhcFgEB2HiDqotLQUGRkZUKvVSEtLQ0BAgOhIRG3CMkMOT6fTwWQycUQzURcZN24cmpubsX//ftFRiKgDiouLsXz5cvj6+iItLQ2+vr6iIxG1GcsMObxu3brBz8+P62aIuoivry/uu+8+HDp0CLW1taLjEFE7XL58GZmZmQgODkZKSgo8PT1FRyJqF5YZcngc0UzU9UaNGgW1Wo3du3eLjkJEbXTx4kWsWLECUVFRWLJkCdzd3UVHImo3lhlyCjqdDlVVVaioqBAdhcgluLu744EHHsCJEydQVlYmOg4R3aMzZ85gzZo10Ol0WLBgAdRqtehIRB3CMkNOITY2FkqlkkdniLrQ4MGDERgYiB07doiOQkT34NixY1i/fj369OmDuXPnQqVSiY5E1GEsM+QU1Go1oqOjOaKZqAsplUpMmDABeXl5yM/PFx2HiO7g4MGD2Lx5M4YMGYJHHnkECgU/ApJz4E8yOQ2dToeCggI0NzeLjkLkMnr37o2IiAhs374dsiyLjkNE3yPLMvbs2YNt27Zh1KhRmDp1KiRJEh2LyGZYZshpaLVamM1mFBQUiI5C5DIkScKkSZNQWlqK06dPi45DRN8hyzK2b9+OvXv3Yvz48Zg4cSKLDDkdlhlyGkFBQQgICOC6GaIuFhUVhV69emHXrl0wmUyi4xARAIvFgk8++QQHDx7Egw8+iNGjR4uORNQpWGbIaXx3RDNPdyHqWhMmTEBtbS2OHDkiOgqRyzObzdiwYQOOHz+OmTNnYvjw4aIjEXUalhlyKjqdDjU1Nbhx44boKEQupVu3bhg8eDC++OILNDU1iY5D5LJMJhPWrl2LnJwczJkzBwMGDBAdiahTscyQU4mJiYFKpeKpZkQCPPDAA7BYLNi3b5/oKEQuqbm5GStXrkR+fj4WLFiAxMRE0ZGIOh3LDDkVNzc3xMTEcEQzkQDe3t4YOXIkjh49iqqqKtFxiFxKU1MTsrKycPXqVSxevBg6nU50JKIuwTJDTken06GwsBAGg0F0FCKXM2LECHh4eGD37t2ioxC5jIaGBixfvhw3btxASkoKYmJiREci6jIsM+R0tFotLBYLLl++LDoKkctRq9UYN24cTp8+jZKSEtFxiJxeTU0N0tPTUV9fj9TUVPTo0UN0JKIuxTJDTicwMBBBQUFcN0MkyIABAxAcHMwLaRJ1ssrKSqSnp8NkMiEtLQ0hISGiIxF1OZYZckparRZ5eXn8IEUkgEKhwMSJE1FQUMD1a0Sd5Pr160hPT4dKpUJaWhqCgoJERyISgmWGnJJOp0NtbS2uX78uOgqRS9LpdIiJicH27dthsVhExyFyKiUlJcjIyICXlxdSU1Ph5+cnOhKRMCwz5JSio6Ph5ubGU82IBJEkCRMnTkRFRQWKi4tFxyFyGnV1dVi+fDkCAwOxdOlSeHt7i45EJJQk8zwcclKrVq2CwWBAamqq6ChELqu+vh5eXl4Avik4RNRxOTk5iI+Ph0ajER2FSDgemSGnpdVqUVRUBL1eLzoKkcvy8vKCJEksMkQ2lJiYyCJD9C2WGXJaOp0OsiwjPz9fdBQil8USQ3Tvvv76a9ERiBwOyww5LX9/fwQHB3PdDJEdMxqNOHr0KAoLC9HU1CQ6DpEwr776KoYOHYqioiLRUYgcCssMOTWOaCayTzdu3MCLL76I8PBwPPbYY+jbty/S0tJw4cIF0dGIutz//u//4vXXX8eOHTsQFRUlOg6RQ1GJDkDUmXQ6HQ4ePIjS0lKEhYWJjkNEAP7zn//gxRdfhK+vL/7nf/4HgwYNQm1tLTZs2ICUlBQcPnxYdESiLvPjH/8Yy5cvx4EDB9C3b19cvnwZFRUVqKmpQa9evdCjRw8AgCzLPG2T6BZYZsipRUVFQa1WIzc3l2WGSLDm5ma8/PLLeO+99/DMM8/g2WefRWhoqPUDWv/+/TFixAgcO3YMgwYNEpyWqPMVFxdjy5Yt0Gq16Nu3L3bu3IlnnnkGCoUC58+fx4gRI7Bo0SI888wzLDJEt8HTzMipKZVKxMXF8SrkRHbg3LlzWLt2Lf7whz/gpZdeQlhYWKsPaKWlpejWrRuvZE4uIzw8HJmZmSgtLUVSUhJ+9KMf4Qc/+AE++ugjHDt2DAMGDMDbb7+N7du3i45KZLdYZsjpabVaFBcXc3ExkWAHDx5EcHAwlixZAk9Pz1b3HTlyBM8++yy6d++O7t27C0pI1LUUCgVGjhyJzMxMSJKEuXPn4qc//Sl69eqFAQMG4Cc/+QlMJhNOnTolOiqR3eJpZuT0WkY0X7p0CX369BEdh8hl6fV6mEwm+Pj4WG8rKirCtm3b8PHHHyMoKAhvvPEGPDw8BKYk6npjxoxBZmYmfHx8Wh2t1Gq18Pb2Rm1trcB0RPaNZYacnq+vL7p37468vDyWGSKBXnjhBfzxj3/E448/jrFjx+LChQvIy8vD2bNnERsbi9deew19+/YVHZOoy6lUKgwYMAAKResTZvLz82E2m/n3gugOeJoZuQSdTofc3FyOaCYSbMWKFVAoFHj22WexZ88eqFQq/OIXv8DmzZsxevRo0fGIOoUsy3f99+e7Raa+vh4nT57ErFmzEBsbizlz5nR2RCKHJcn8dEcuoLCwEBkZGXjiiSesYy6JSAyTyYTm5mbIsgw3Nzeo1WoAgNlshlKphMVigSRJkCSJ42jJ4VVWVuLll1/GkiVLMHLkyDs+VpZl1NTU4J133sHatWvRs2dPrF69uouSEjkmnmZGLiEiIgIajQZ5eXksM0SCqVQqqFQqnDp1Cv369QMAWCwWKJVKa6EBgIaGBnh5eYmMStQh5eXlmDRpEk6dOoUzZ87g3//+9x1Pd5YkCf7+/hg9ejQSEhIwa9asLkxL5Jh4mhm5BKVSifj4eOTm5oqOQkQA3nrrLTz88MP46KOPAPz/U2yUSiVqamrw5JNPYsaMGXjuueewbds2kVGJ2sVoNOL9999HVFQUDh48iMLCQjzzzDO4cOHCLR+/e/du/OEPfwAAjBo1ikWG6B6xzJDL0Gq1uHr1KhoaGkRHIXJ5EydOxOTJkxEZGdnq9pKSEjz00EP46quvMHz4cBQWFuL555/Hl19+KSgpUfuoVCoMGTIE8+bNw/Dhw/HVV1/h/PnzeOGFF3Dp0iXr42RZhsFgwKeffoply5bxZ52ojbhmhlxGXV0d/vGPf2DWrFnWU1uISJxbrYfZtm0bnnjiCbz//vuYNGkSAOCXv/wltm3bhq+//lpETKJ2+/7PeH5+PgYNGoTx48fjjTfeQFRUFACgsbERBoMBJ06cwLhx40TFJXJIPDJDLsPHxwehoaHIy8uD3mRGab0eFyrqcaa8Fqeu1+JMeS0uVNSjtF4PvcksOi6R05MkCQ0NDTh9+jQaGxsBAOfOnYOfnx8mTZpknf60cOFCSJKEK1euiIxL1GbfLTJmsxlxcXHYu3cvPv/8c7z00ksoKSnBf//7XzzyyCMwm80sMkTtwCMz5DJq9EYcOHcJjSoNFGp3AMCtZiS1/IXQKBUI93ZHnL8n/NzduiwnkSs5duwY3nzzTfziF79Az549UV5ejpCQEBw9ehSDBw8GAPzkJz/B7t27cejQIbi7uwtOTNR+JpMJKpUKBw8exMSJE5GQkIATJ07g/fffR1pamuh4RA6JZYacmizLKKk34GJlPar0Rkj4/2XlXrQ8PtDdDbpAb4R7azgmlsiGGhsbER4ejuzsbEyfPh0A8H//93/YtWsXHnroIdTU1ODgwYN47rnnsGjRIsFpiTrOYrFAoVAgOTkZK1aswMaNGzFjxgzRsYgcFkczk9PSm8w4XlqDaw0G621tbe4tj6/SG3G4pAphXhoMDPWDu0pps5xErszT0xPPPfccXnrpJajVakyePBlPPfUUVCoVfv3rXwMAHn/8cTz44IOCkxK1zZ2ukfTaa69hxYoV2Lp1q3VtGBG1D4/MkFMqrmvCsdIamC1ymwvMnUgAlAoJg0L9EOHjYcMtE7m25ORkHD58GAaDAcHBwSgrK4OnpyeWLVuGKVOmiI5H1CZnz55Fr169oFAobio0FosFK1euRFxc3F0voklEd8cyQ04nt7Iep8vrOn0//YJ9oQ3kBf2IbKG5uRmnTp3C0aNH0djYiOjoaMyZM8d6/52+5SayF7IsY+/evdi7dy8eeeQR9OvXjz+3RJ2MZYacSlcVmRYsNESdq2V9AZG9k2UZ27Ztw6FDhzB+/HiMHj1adCQil8A1M+Q0iuuaurTIAMCp8lq4uyl4yhmRjbUciWGRIUdgsVjwySef4Pjx43jooYcwbNgw0ZGIXAbLDDkFvcmMY6U1QvZ9rLQG3TzUHApAZEM8NYcchdlsxoYNG5CTk4OZM2diwIABoiMRuRR+5UUOT5ZlHP92sb8IZouM42U14BmbRLbHv1dkz4xGI9auXYtz585hzpw5LDJEArDMkMMrqTfgWoPBplPL2kIGcK3egJJ6w10fS0T3RpZlmM1mnD17loWG7FJzczNWrlyJ/Px8LFy4EImJiaIjEbkknmZGDi+3sr5dz2tqaMDH7/8buaeOI+/0CdTXVOOZP7yO8Y/Ob/O2pG9z9PDh1cmJbEGSJBQUFGD9+vXQaDTQ6XSiIxFZNTU1YeXKlbh+/TqWLFmC6Oho0ZGIXBaPzJBDq9EbUak3tuu5dVWVWPfv11Gcn4vohI59oyYDqNQbUWNoXxYiullcXByio6OxY8cOWCwW0XGIAAD19fVYvnw5KioqsHTpUhYZIsFYZsih5Vc3or3LhAO6d8d/vziBd3cdRcrPf9XhLBKA/KrGDm+HiL4hSRImTZqE69ev4+TJk6LjEKGmpgYZGRloaGhAamoqwsPDRUcicnksM+TQSur17V4r46bWICC4u82yyN/mISLb6dGjB5KSkrB79240NzeLjkMurLKyEunp6TCZTEhLS0P37rb794OI2o9lhhyW3mSGwWxfp54YzBboTWbRMYicyoQJE9DQ0IBDhw6JjkIu6vr160hPT4dKpUJaWhoCAwNFRyKib7HMkMOqbudamc5mr7mIHFVAQACGDh2KAwcOoKGhQXQccjFXr15FRkYGvLy8kJaWBj8/P9GRiOg7WGbIYdUYTO1eL9NZJHyTi4hsa8yYMZAkCXv37hUdhVxIYWEhMjMzERQUhKVLl8LLy0t0JCL6HpYZclhGO51uZK+5iByZp6cnRo8eja+//hoVFRWi45ALyM3NRXZ2Nnr06IHk5GR4eHiIjkREt8AyQw7LYqfX0bPXXESObtiwYfD29sbOnTtFRyEnl5OTg9WrVyMuLg6LFi2CWq0WHYmIboNlhhyWwt7OMfuWveYicnRubm4YP348zp07hytXroiOQ07qxIkT+PDDD5GYmIh58+ZBpeL1xYnsGcsMOSw3hX3++NprLiJn0K9fP4SEhGD79u2QZR4GJds6fPgwPv74YwwYMACzZs2CUqkUHYmI7oJfN5DD8tOo2n2NmRafZn+AxrpaVF4vAwB8tXs7KsuuAQAeWvIYvHx827Q9+dtcRNQ5Wi6kmZ2djfPnz6N3796iI5GT+OKLL7Br1y7cd999mDx5MiSJh9mJHIEk86stclB6kxmfXrreoW08OX4YykuKb3nf2zsOo3tEZJu3OTW+O9xV/DaPqDNlZ2ejqqoKTz/9NL89pw6RZRk7d+7EgQMH8MADD+CBBx5gkSFyICwz5NC25JXZ1YUzFWYTxoR68YJqRJ2stLQU7777LqZOnYqhQ4eKjkMOSpZlfPrpp/jqq68wefJkjBgxQnQkImojng9DDi3c2x0FNY0dPt3MJmQZFQV5+Ne6fQgLC0NSUhISExMREBAgOhmR0wkNDUX//v2xZ88e9OvXDxqNRnQkcjAWiwUff/wxTp06henTp2Pw4MGiIxFRO/DIDDm0Gr0ROwtviI5hNaaHH8oKLyMnJwcXL16EyWRCeHi4tdj4+/uLjkjkNGpqavDmm29ixIgRGD9+vOg45EBMJhPWr1+PixcvYtasWejTp4/oSETUTiwz5PD2FN5Apd4oNIMEIMDdDWOju1lva25uxsWLF5GTk4Pc3FyYTCb06NEDiYmJSEpKgp+fn7jARE5ix44dOHz4MJ5//nn4+PiIjkMOoLm5GWvXrkVBQQHmzp2LhIQE0ZGIqANYZsjhXa3T43BJlegYGB4egB4+7re8z2AwtCo2ZrMZERERSExMRGJiIosNUTvp9XosW7YMvXr1wowZM0THITun1+uxatUqXLt2DQsXLkRsbKzoSETUQSwz5PBkWcahq1UobTAIWTsjAQj11uC+8IB7moDTUmzOnj2LvLw8mM1mREZGWouNr2/bxkETubrDhw9j69atePLJJ9G9e3fRcchONTY2WqfgLV68GBEREaIjEZENsMyQU9CbzNh2uRwmS9f/OKsUEibHBrdrHLNer7cWm0uXLlmLTcsaG542Q3R3ZrMZb731Frp164ZFixaJjkN2qK6uDllZWWhoaEBycjJCQ0NFRyIiG2GZIadRXNeEIyXVXb7fYeH+iPDx6PB29Ho9Lly4YC02FosFUVFRSEpKQu/evVlsiO7g7Nmz+PDDD5GSksJTh6iVqqoqZGVlwWw2Izk5Gd26dbv7k4jIYbDMkFPJq2zAqfLaLttfv2BfaAO9bL7dpqYmXLhwATk5OdZiEx0dbT0Vzdvb2+b7JHJksizj/fffh8ViwQ9+8ANe9JAAAOXl5cjKyoJKpUJKSgonShI5IZYZcjpdVWj6dfeFNsD2Reb7mpqacP78eeTk5CA/Px8WiwUxMTFITExE7969WWyIvlVYWIiMjAw8+uij6Nu3r+g4JNi1a9eQnZ0NLy8vJCcn8+g2kZNimSGnVFzXhGOlNTBbZJsOBZAAKBUSBoX62eTUsrZqbGxsVWwAtCo2Xl6dX66I7Nnq1atRVlaGZ555BioVrwvtqoqKirBy5UoEBQVh8eLF8PT0FB2JiDoJyww5Lb3JjOOlNbjWYIAEdKjUtDw/zFuDgSF+7Vrsb2uNjY04d+4ccnJycPnyZQBAbGystdjwH29yRTdu3MC///1vTJo0CSNGjBAdhwTIz8/H6tWrERYWhkWLFkGj0YiORESdiGWGnJosyyipNyC3sh6VemObS03L4wPd3aAL9Ea4t8Yuz8VvaGjA+fPncfbsWRQUFAD4ptgkJSWhV69eLDbkUj755BOcPXsWzz//PDw8uv4IKolz/vx5fPjhh4iNjcW8efPg5uYmOhIRdTKWGXIZNXoj8qsbUVKvh8FsAfBNWfm+lr8QGqUC4d7uiPP3hJ+74/yD2NDQgHPnzuHs2bMoLCwEAMTFxVmLDT/ckbOrr6/HsmXLMGTIEEyePFl0HOoip06dwsaNG9GrVy/Mnj0bSqX4I+hE1PlYZsgl6U1mVOuNqDGYYLRYYJEBhQS4KRTw06jg7+5mF6eSdVR9fb31VLSCggIoFArExcUhMTGRxYac2p49e7B//348++yznGDlAr766its2bIF/fv3x4wZM6BQKERHIqIuwjJD5CLq6uqsxaawsBAKhQLx8fHWYuPu7i46IpHNNDc341//+hfi4uIwa9Ys0XGoE3355ZfYvn07hg4dioceesguTwUmos7DMkPkgurq6pCTk4OcnBwUFRVBoVBAq9UiMTERCQkJLDbkFL7++mt88skn+OEPf4iwsDDRccjGZFnGnj17sG/fPtx///0YP348iwyRC2KZIXJxtbW11jU2V65cgVKpbFVsOAmIHJXFYsHbb78NHx8fJCcn84OuE5FlGVu3bsXhw4cxYcIE3H///aIjEZEgLDNEZFVbW4ucnBycPXsWxcXF1mKTlJSEnj17stiQw7lw4QJWr16NRYsWQafTiY5DNmCxWPDJJ5/g+PHjmDp1KoYOHSo6EhEJxDJDRLdUU1NjLTZXr16FUqmETqezFhu1Wi06ItFdybKM5cuXo6mpCT/60Y+4MNzBmc1mbNiwATk5OZg5cyb69+8vOhIRCcYyQ0R3VV1dbV1jc/XqVahUKmux0el0LDZk165evYr//ve/mDFjBgYOHCg6DrWT0WjEunXrcOnSJcyZMwe9e/cWHYmI7ADLDBG1SVVVlbXYlJSUQKVSoWfPnkhMTGSxIbv14YcfoqioCM899xwvpOiADAYDVq9ejeLiYsyfPx9arVZ0JCKyEywzRNRuVVVVOHv2LHJycnDt2jW4ubm1Kjb80Ej2orKyEm+99RbGjh2L0aNHi45DbdDU1IQVK1bgxo0bWLhwIaKjo0VHIiI7wjJDRDZRWVlpXWNTWloKNzc3JCQkIDExEVqtlsWGhPv8889x/PhxPP/88/Dy8hIdh+5BfX09srKyUFdXhyVLliA8PFx0JCKyMywzRGRzFRUV1mJTVlYGtVqNnj17IikpCVqtFiqVSnREckGNjY1YtmwZ+vXrh6lTp4qOQ3dRU1ODzMxMNDc3Izk5Gd27dxcdiYjsEMsMEXWqGzduWIvN9evXoVarkZCQgKSkJMTHx7PYUJfav38/du/ejaeffhpBQUGi49BtVFRUIDMzEwqFAsnJyQgMDBQdiYjsFMsMEXWZGzduWNfYXL9+HRqNxnoqGosNdQWj0Yg333wTERERmDt3rug4dAtlZWXIysqCu7s7UlJS4OvrKzoSEdkxlhkiEqK8vBxnz57F2bNncePGDWg0GvTq1ctabJRKpeiI5KROnjyJjRs34rHHHkNkZKToOPQdV69eRXZ2Nvz9/bFkyRKubSKiu2KZISLhrl+/bj1ic+PGDbi7u1uLTVxcHIsN2ZTFYsF7770HtVqNtLQ0SJIkOhIBKCgowKpVq9C9e3csXrwY7u7uoiMRkQNgmSEiuyHLMq5fv25dY1NRUWEtNklJSYiNjWWxIZu4dOkSsrOzMX/+fPTq1Ut0HJeXm5uLtWvXIjIyEgsWLOD1qojonrHMEJFdaik2LaeiVVZWwsPDw1psYmJiWGyoQ7Kzs1FdXY2nnnqKP0sCnT17Fh999BF0Oh3mzJnDtXNE1CYsM0Rk92RZRllZmbXYVFVVwcPDA71797YWG4VCITomOZjS0lK8++67mDp1KoYOHSo6jks6fvw4Nm/ejD59+mDmzJkslUTUZiwzRORQZFlGaWmpdY1NVVUVPD09Wx2xYbGhe7Vx40bk5eXhueeeg0ajER3HpRw+fBiff/45Bg0ahGnTpvHvLRG1C8sMETksWZZx7do1a7Gprq6Gp6en9YhNdHQ0PyDRHdXU1OBf//oXRo0ahXHjxomO4xJkWcYXX3yB3bt3Y8SIEZg0aRKHMBBRu7HMEJFTkGUZJSUl1mJTU1MDLy8va7GJiorqULExGAwwGo3w9va2YWqyBzt27MCRI0fw3HPPwcfHR3QcpybLMnbs2IEvv/wSY8eOxZgxY1hkiKhDWGaIyOnIsoyrV69ap6LV1tbC29vbWmwiIyPbXGz+/ve/Y/PmzdDr9Xj00UfxxBNP8KrkTkKv12PZsmXo1asXZsyYITqO05JlGVu2bMHXX3+NKVOm4L777hMdiYicAMsMETm1lmLTcsSmpdgkJiZai83dvhmWZRm/+tWv0L9/fxQWFmLz5s1QKBRYtWoVQkNDu+iVUGc6dOgQtm3bhieffBLdu3cXHcfpWCwWfPzxxzh16hQefvhhDBo0SHQkInISLDNE5DJkWUZxcbG12NTV1cHHxweJiYno168fwsPD72k7V65cwbRp0zBp0iT8/e9/7+TU1BXMZjPeeustBAcHY+HChaLjOBWTyYT169fj4sWLmDVrFvr06SM6EhE5EQ5zJyKXIUkSIiMjERkZiSlTpuDKlSvWcc8KhQKhoaG3PP3MYrFAkiRIkoTm5mZERkZCp9OhsLDQej8HDTg2pVKJCRMm4MMPP0RBQQFiYmJER3IKzc3NWLNmDQoLCzF//nz07NlTdCQicjI8MkNELk+WZTQ3N0OtVt/TYuQTJ05g1KhReP311/HDH/7wto8rLS3F3r17UVNTg7lz5yIgIMCWscnGZFnGf//7XwDAE088wYXpHaTX67Fy5UqUlpZi4cKFiI2NFR2JiJwQywwR0R1896hLTU0N3nnnHfznP/+BTqfDZ599dtPjZVmGJEk4cuQIUlJS4O3tjebmZhQVFeH1119HWlpaV78EaoPCwkJkZGRg9uzZPB2qAxoaGpCdnY3q6mosXrwYERERoiMRkZPieRFERHegUChQWVmJf/7znxg6dCg2bNiAF198EZs2bQLwTdlp0VJkysrK8MILLyA+Ph4ffvghTp48iVdffRV/+tOfUFxcLOql0D2Ijo5GQkICdu7cCZPJJDqOQ6qtrUVGRgbq6uqQmprKIkNEnYplhojoNsxmM95++23MmjUL//znP/Hiiy9iz549+MEPfgA3NzcAaLVWxmw2AwAyMjJQVVWFX/7yl4iJiYEkSZg2bRquX7+OK1euCHktdO8mTJiAmpoaHD16VHQUh1NVVYX09HQ0NzcjLS0NISEhoiMRkZNjmSEiuo19+/bhmWeeQW1tLfbv34/HH38c7u7uNz3OYrFAlmVrsUlPT8e4ceMwYMAA62MqKysRFxeHc+fOdVV8aqfg4GAMHDgQ+/btQ1NTk+g4DqO8vBzp6elQKBRIS0tDUFCQ6EhE5AJYZoiIbqN///7461//CoPBgJiYGIwZMwbvvPMOGhoaWj1OoVBAkiQoFAoUFxfjypUrmDRpEry9va2PKSsrw/Xr15GUlNTVL4PaYdy4cTCbzdi/f7/oKA7h2rVryMjIgIeHB9LS0uDv7y86EhG5CJYZIqLbCAwMxM9+9jPk5OTg4sWLGDNmDF599VW88cYb1kLz1ltv4Z133kFNTQ0A4MCBA4iNjW11Mc3GxkYcOXIEKpUKw4cPF/JaqG28vb0xcuRIHD58GNXV1aLj2LWioiIsX74c/v7+SE1NbVXiiYg6G8sMEdE9iImJwe9+9zuUlZXhpz/9Kby8vGA2m5GdnY3169dDqVQCAEJDQ9HU1ASNRmN97pkzZ7Bv3z7MnDlTVHxqh5EjR8Ld3R27d+8WHcVuXbp0CdnZ2QgNDUVKSgo8PDxERyIiF8MyQ0TURh4eHpBlGUqlEhs3bsQf//hH67fRCQkJMJlMOHz4MIBvRtT+9a9/hclkwuOPP37TtlqGBpD9UavVGDt2LE6dOoVr166JjmN3zp07h1WrViE6OhqLFy9uVeCJiLoKrzNDRGRj//3vf/Hzn/8cffv2hUKhwKlTp7B+/XqMGzeu1eMsFgsOHDiA06dPIykpCUlJSejWrZug1HQrFosF//73v+Hr64vk5GReSPNbp06dwsaNG9G7d288+uij1iOTRERdjWWGiKgT5OXlYcWKFQgKCsKUKVOg0+lu+biCggIcP34c58+fR3NzM7p3746kpCQkJiay2NiJ8+fPY82aNVi8eDG0Wq3oOMJ99dVX2LJlCwYMGICHH3641XhyIqKuxjJDRGQHTCYT8vLykJOTgwsXLqC5uRkhISFITExEUlISx9wKJMsyMjIyoNfr8aMf/cilP7wfOHAAO3bswLBhw/Dggw/ySBURCccyQ0RkZ4xGY6tiYzQaERoaai02gYGBoiO6nOLiYrz//vuYOXNmq+sHuQpZlrF792588cUXGD16NMaNG8ciQ0R2gWWGiMiOtRSbs2fP4uLFizAajQgLC7MWm4CAANERXca6detw5coVPPfcc3BzcxMdp8vIsozPP/8cR44cwcSJEzFq1CjRkYiIrFhmiIgchNFoRG5urrXYmEwmhIWFWdfYsNh0rsrKSrz11lsYO3YsRo8eLTpOl7BYLNi8eTNOnDiBqVOnYujQoaIjERG1wjJDROSAmpubrcUmNzcXJpMJ4eHh1mLDK7B3js8++wwnTpzA888/Dy8vL9FxOpXZbMZHH32Ec+fO4ZFHHkG/fv1ERyIiugnLDBGRg2tubsbFixeRk5NjLTY9evSwnorm5+cnOqLTaGxsxLJly9C/f3889NBDouN0GqPRiLVr1+Ly5cuYPXs2evfuLToSEdEtscwQETkRg8HQqtiYzWZEREQgMTERiYmJLDY2sH//fuzevRvPPPOMUw5jMBgMWLVqFa5evYoFCxYgPj5edCQiottimSEiclIGgwEXLlxATk4O8vLyYDabERkZaS02vr6+oiM6JKPRiDfffBMRERGYO3eu6Dg21dTUhOzsbFRUVGDRokWIiooSHYmI6I5YZoiIXIBer8fFixdx9uxZXLp0CWazGVFRUdZi4+PjIzqiQzlx4gQ+/vhjPP7444iIiBAdxybq6+uRlZWFuro6JCcnIywsTHQkIqK7YpkhInIxer0eFy5csBYbi8WCqKgoJCUloXfv3iw298BiseC9996DRqNBamqqw19zpbq6GllZWTAajUhOTkZwcLDoSERE94RlhojIhTU1NVlPRWspNtHR0dZi4+3tLTqi3crLy8OKFSswf/589OrVS3ScdquoqEBmZiYUCgVSUlI44puIHArLDBERAfim2Jw/fx45OTnIz8+HLMuIjo5GYmIii81tZGVloaamBk899RSUSqXoOG1WVlaGrKwseHh4IDk5meuoiMjhsMwQEdFNGhsbWxUbAIiJibEWG2e/xsq9unbtGt577z1MmzYNQ4YMER2nTYqLi7FixQr4+/tjyZIlfE+JyCGxzBAR0R01Njbi3LlzyMnJweXLlwEAsbGx1mLj6ekpOKFYGzZswKVLl/Dcc89Bo9GIjnNPLl++jFWrViE0NBSLFi2Cu7u76EhERO3CMkNERPesoaEB58+fx9mzZ1FQUAAAiIuLQ2JiInr16uWSxaampgb/+te/MGrUKIwbN050nLu6ePEi1q1bh6ioKMyfPx9qtVp0JCKidmOZISKidmloaMC5c+dw9uxZFBYWQpIkxMbGIikpCb169YKHh4foiF1m+/btOHr0KJ577jm7ngZ35swZbNiwATqdDnPmzIFKpRIdiYioQ1hmiIiow+rr662nohUUFEChUCAuLg5JSUlISEhw+mKj1+uxbNky9O7dGw8//LDoOLd07NgxbN68GX379sXMmTMdcmABEdH3scwQEZFN1dfXIycnBzk5OSgsLIRCoUB8fLz1VDRnXZ9x6NAhbNu2DU899ZTdXafl0KFD2Lp1KwYPHoxp06Y5/HVxiIhasMwQEVGnqaursxaboqIiKBQKaLVaJCYmIiEhwamKjclkwltvvYXu3btj4cKFouMAAGRZxr59+7Bnzx6MHDkSEydOZJEhIqfCMkNERF2itrbWusbmypUrUCqVrYqNo0wCu5MzZ85g/fr1WLp0KWJiYoRmkWUZ27dvx8GDBzFu3DiMHj2aRYaInA7LDBERdbna2lrk5OTg7NmzKC4uthabpKQk9OzZ02GLjSzL+O9//wsAeOKJJ4SVB4vFgk8//RRff/01pkyZgvvuu09IDiKizsYyQ0REQtXU1FiLzdWrV6FUKqHT6azFxtFGBxcUFGD58uWYPXs2+vTp0+X7N5vN+Pjjj3HmzBk8/PDDGDhwYJdnICLqKiwzRERkN6qrq61rbK5evQqVSmUtNjqdzmGKzapVq3D9+nU888wzXTr+2GQy4cMPP0Rubi4effRRJCUlddm+iYhEYJkhIiK7VFVVZS02JSUlUKlU6NmzJxL/X3t3FxtVWsdx/HdmOp3TdmD6AnYoGEtpKZkqocQVkr3RjUIQs5qoxBJgCdkb9oLExKyJxmzUmKwXhgtM8FZLUNYoJs1mI4mKrDGocVdZCjEUUFJKp9NOZzp9OdN5OV5AR1nKLvPSmXna7+eSds7zn5tOvsx5nhMO13zYRKNRnT17Vvv27Vv2Fi8nk1XcSSuRyiidyynnSh5L8nk8Cvrr1Gz7ZNcVdnTy4uKiLly4oHv37unQoUPq6ekp19sBgJpFzAAAat709LSGh4d148YNPXjwQD6f77Gw8fl81R7xCUNDQ7p586ZOnTol27aVcNK6E5/X2KyjVDYnSVpuR83Sh7Lf61FHwFZXc6OC9ge/P8dxdP78eUUiEQ0MDFT98AEAqBRiBgBglFgslt9jMz4+Lp/Pp97eXoXDYXV3d9dM2CSTSZ05c0Z7PntAnvaPatpJy9L/YuVZLP1+q+1TT2tAHQH/E4cKzM3N6dy5c4rH4zpy5Ig2b95cxncBALWNmAEAGGtqaiofNpFIRPX19dq+fbv6+vrU3d1d0f0q7+dksvrTnQeacQu7XWw5S1Gzqcmv/lAwfwvazMyMBgcHtbCwoKNHj6q9vb3ktQDAJMQMAGBVmJqayt+KthQ2vb296uvr07Zt2yoaNqPJBb0znlA25xb0TcyHsSR5PZZ2h4JqTC9ocHBQuVxOx44dU1tbWxlXAgAzEDMAgFVncnIyHzYTExOqr6/Xjh07FA6HVzxsbsVm9V40uWLXXzI1/Hc59+/q2LFjCgaDK74eANQiYgYAsKpFo9F82ESjUfn9/sfCxust/TawJZUKmSW9Qb/6Qq0VWw8Aag0xAwBYMyYmJvJ7bCYnJ2Xbdj5surq6lg2bbDar69evKxwOf+DhAqPJBf11LL6C0y/vUx3N2rKuoeLrAkAtIGYAAGuO67r5b2yGh4c1NTWVD5u+vj5t3bo1HzbXrl3TxYsX1dnZqcOHDy8bNE4mq0t3o8rkKv+RWuextG/rxoKfSwMAqwExAwBY01zX1cTERD5sYrGYGhoa8mFz9epVjYyMyLIsdXZ2amBg4LGgcV1XV+9Pa3wuVdbN/s/KkhQK+LW3o+WJY5sBYLUjZgAAeMR1XUUikfwem1gs9tjPlwua+0lHfxmbrsa4j9nT0aLN6+xqjwEAFUXMAACwDNd1deXKFV2+fPmJn4VCIR0/flx+v1+X/zOpmJMu6Nr3bv1Lb/z4R7o9fE3xyQn57QZt6d6uL544qede2FfwrJakFtunT39sQ8GvBQCTeao9AAAAtciyLI2Oji77s/HxcQ0NDSnhpAsOGUmKjo1qYW5Wn/nSV3XiW9/XV175uiTp9VeO69KFcwVfz5UUc9JKpAqfBQBMxjczAAA8xenTpzUzMyPbttXW1qYNGzaopaVFXq9Xu3bt0q3ZrP6dmC/LXplsNqtXv7xfi6mUzrz1dsGvtyR1BhvVH+KZMwDWjso9DhkAAMOcPHlSkmTby+9FGRuPlG3Tv9frVVuoQ7ev/7Oo17uSxmYd9YuYAbB2EDMAADzF0yJGengccyqbK+n6zvy8FlMLmk8m9bffX9K7b/9Bzx94sejrpbI5OZksxzQDWDOIGQAAihAvYq/M+/30h9/VpQuDkiSPx6M9n/u8Xv7OD0qeKxQgZgCsDcQMAABFSKQysqSSbjM7+NLL2rv/oKYnIvrzW0PK5bLKpIuPJOvRXKFACUMBgEE4AAAAgCJcj87oVmyurA/K/N6Jr2kuOaPX33izqAdgWpJ6Wpv08Y3ryzgVANQujmYGAKAIuRX4r8C9+7+gkff+obG7t4u+xkrMBQC1ipgBAKAInsK/OPlQiylHkjQ/myz6GisxFwDUKmIGAIAi+DzFf4Qmpiaf+LdMOq0//uaXqrdtbdm2vSpzAYBpOAAAAIAiBP11Re+X+clrr2phdlbhT+5Ra3tI8cmorgz9WvfvjOilb76mhqamoq7rPpoLANYK/uIBAFCEZttX9GufP/Cifvern+u3v/iZkvFpNTQF1NX3CR39xrf13Av7qzYXAJiG08wAACjSmyORkh+cWU5+r0cHu9urPQYAVAw31gIAUKSOgK1a2W9v6eE8ALCWEDMAABSpq7mxrM+ZKYUrqaulsdpjAEBFETMAABQpaPvUWgN7VCxJrbZPQX/1ZwGASiJmAAAoQU9roNojyK2ROQCg0ogZAABK0BHwa1OTv2p7ZyxJmwJ+dQT8VZoAAKqHmAEAoASWZak/FJTXU52c8Xos9bcHZVm1chQBAFQOMQMAQInsOq92h4JVWXt3KCi7zluVtQGg2ogZAADKYMu6Bu3cuL6ia+7cuF5b1jVUdE0AqCV11R4AAIDVoru1SZJ0LTqz4mvt/Mh6dbc0rfg6AFDLLNd1a+WIfAAAVoXR5ILeGU8om3PL+hwaSw/3yOwOBflGBgBEzAAAsCKcTFbvjif0YC4lSyopapZevyngV387e2QAYAkxAwDACnFdV2OzKd2KzSrmpAuOmqXfb7V96mkNqCPg59QyAPg/xAwAABWQcNK6E5/X2KyjVDYnScs+m2bpQ9nv9agjYKuruVFB21exOQHAJMQMAAAV5mSyijtpJVIZpXM55VzJY0k+j0dBf52abR+3kgHAMyBmAAAAABiJ58wAAAAAMBIxAwAAAMBIxAwAAAAAIxEzAAAAAIxEzAAAAAAwEjEDAAAAwEjEDAAAAAAjETMAAAAAjETMAAAAADASMQMAAADASMQMAAAAACMRMwAAAACMRMwAAAAAMBIxAwAAAMBIxAwAAAAAIxEzAAAAAIxEzAAAAAAwEjEDAAAAwEjEDAAAAAAjETMAAAAAjETMAAAAADASMQMAAADASMQMAAAAACMRMwAAAACMRMwAAAAAMBIxAwAAAMBIxAwAAAAAIxEzAAAAAIxEzAAAAAAwEjEDAAAAwEjEDAAAAAAjETMAAAAAjETMAAAAADASMQMAAADASMQMAAAAACMRMwAAAACMRMwAAAAAMBIxAwAAAMBIxAwAAAAAIxEzAAAAAIxEzAAAAAAw0n8B2mCBezUjfE0AAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + } + ] +} \ No newline at end of file From c9826e88c44c997dda44f301750a4aa6f1fe7063 Mon Sep 17 00:00:00 2001 From: Panchadip <165953910+Panchadip-128@users.noreply.github.com> Date: Fri, 25 Oct 2024 15:05:19 +0530 Subject: [PATCH 07/18] Add files via upload --- .../Model/README (17).md | 111 ++++++++++++++++++ 1 file changed, 111 insertions(+) create mode 100644 Drone Navigation Detection using Reinforcement Learning techniques/Model/README (17).md diff --git a/Drone Navigation Detection using Reinforcement Learning techniques/Model/README (17).md b/Drone Navigation Detection using Reinforcement Learning techniques/Model/README (17).md new file mode 100644 index 000000000..8f6898fd0 --- /dev/null +++ b/Drone Navigation Detection using Reinforcement Learning techniques/Model/README (17).md @@ -0,0 +1,111 @@ +# Drone Pathfinding and Navigation with Reinforcement Learning +This project visualizes a drone's pathfinding journey in a grid environment, using both classical A* search and Reinforcement Learning (RL) techniques to achieve optimal navigation. The drone aims to reach a target location while avoiding obstacles and optimizing path cost. This file provides a comprehensive overview of the project’s structure, setup instructions, and available visualizations. + +# Table of Contents +-> Features +-> Project Blocks +-> Setup Instructions +-> Usage +-> Visualizations + + 1. Basic Environment Setup + 2. Static Path Visualization + 3. Heatmap of Pathfinding Costs + 4. Dynamic Movement Visualization + 5. 3D Surface Plot of Pathfinding Costs +-> Reinforcement Learning (RL) Model +-> Contributing +-> License + +# Features +Pathfinding with A Algorithm*: Finds an optimal, shortest path from the starting position to the target using the A* heuristic. Reinforcement Learning Navigation: A reinforcement learning model trains to achieve the navigation goal while avoiding obstacles, rewarding efficient paths. Dynamic Obstacles: Specify obstacle positions to simulate real-world barriers and allow pathfinding adaptations. Comprehensive Visualizations: Includes static, dynamic, and 3D visualizations of the environment, path costs, and drone’s decision-making process. Real-time Animation: Watch the drone’s actions in a step-by-step movement toward the target. + +# Project Structure +pathfinding block: Contains the A* algorithm and helper functions for calculating paths. +reinforcement_learning block: Implements the reinforcement learning environment using OpenAI Gym, where the drone learns an optimal policy for navigation. +visualizations block: Defines visualization functions, including static, dynamic, and heatmap visualizations. + +# Setup Instructions +Clone the repository: + +git clone https://github.com/Panchadip-128/Drone-Navigation_Detection_using_RL.git cd Drone-Navigation_Detection_using_RL + +# Install required dependencies: + pip install -r requirements.txt + +Run the script: Drone-Navigation_Detection_using_RL.ipynb + +# Usage: +Specify Start, Target, and Obstacle Positions: Set coordinates for the drone’s starting position, the target, and obstacles. Choose Navigation Algorithm: Run either the A* pathfinding method or the reinforcement learning model to observe different navigation approaches. + +Select Visualization Type: View different visualizations of the environment, path, costs, and drone movements. + +# Visualizations +The project includes several visualizations to illustrate pathfinding and navigation strategies in the environment. + +- Basic Environment Setup Sets up a grid environment, marking the drone’s starting position, the target, and obstacles. + + def visualize_environment(drone_pos, target_pos, obstacles, grid_size=(10, 10)) + + ![env graph](https://github.com/user-attachments/assets/a6868ac3-d936-4b03-a72d-1d20801c6aac) + + +- Static Path Visualization Displays a static view of the calculated A* path from start to target. + + def visualize_path(drone_pos, target_pos, obstacles, path) + + ![a star graph](https://github.com/user-attachments/assets/d70ec385-9cc2-40d6-adf6-5b22f12723d9) + +- Heatmap of Pathfinding Costs Shows a heatmap for traversal costs to each grid cell, providing insight into pathfinding challenges. + + def visualize_cost_heatmap(start, goal, obstacles, grid_width, grid_height) + + ![pathfinding_heat-map](https://github.com/user-attachments/assets/320baa43-f83b-4567-8d99-131bfb4dd3b7) + +- Dynamic Movement Visualization Animates the drone’s movement toward the target, step-by-step, showing real-time path adjustments. + + ![Navigation Graph](https://github.com/user-attachments/assets/acc92014-bbff-40de-b964-dc649d00a2d7) + + + +- 3D Surface Plot of Pathfinding Costs Visualizes the cost distribution across the grid in 3D, highlighting areas with high or low pathfinding costs. + + ![3D Path Finding Cost Suraface schematic](https://github.com/user-attachments/assets/f243d58c-1948-462a-a50b-cfd763807bf9) + +- Navigation Graph: + +![Drone Navigation Graph](https://github.com/user-attachments/assets/bc69c957-acac-48ce-ad2d-cef3399f3c39) + + +Reinforcement Learning (RL) Model Overview In addition to the A* algorithm, this project includes a reinforcement learning approach to allow the drone to learn optimal navigation strategies through interaction with the environment. The RL agent is implemented using OpenAI Gym and trained with the Proximal Policy Optimization (PPO) algorithm from stable-baselines3. + +RL Environment The RL environment for the drone is defined in DroneEnv, an OpenAI Gym environment that: + +Defines the drone’s possible actions: Up, Down, Left, Right, and diagonal moves. Contains a custom reward function: Positive Reward: Awarded for reaching the target. Penalty: Applied when the drone hits an obstacle or moves away from the target. Exploration vs. Exploitation: Introduces a small exploration rate (epsilon) to encourage the drone to explore initially before converging on optimal paths. + +# Training the RL Model + from stable_baselines3 import PPO + + env = DroneEnv() + model = PPO("MlpPolicy", env, verbose=1) + model.learn(total_timesteps=10000) # Training the model with adjustable timesteps + +# Evaluation +After training, the RL model navigates the drone autonomously, continuously adjusting its path based on learned policies. This approach enhances the drone’s flexibility, enabling it to adapt even with changing obstacles or targets. + +# Visualizing RL Navigation +The RL model’s path can be dynamically visualized, showing how it navigates step-by-step toward the target: + + obs = env.reset() + for _ in range(20): + action, _states = model.predict(obs) + obs, rewards, done, info = env.step(action) + env.render() + if done: + obs = env.reset() + +# Contributing +Contributions are welcome! Please fork the repository and create a pull request with improvements or feature addition or contact @Github:Panchadip-128 or @mail: panchadip125@gmail.com. + +# License +This project is licensed under MIT License policies. From 790fc558dc407d3edfb069dfdb0ae9d132a791fb Mon Sep 17 00:00:00 2001 From: Panchadip <165953910+Panchadip-128@users.noreply.github.com> Date: Fri, 25 Oct 2024 15:06:27 +0530 Subject: [PATCH 08/18] Rename README (17).md to README.md --- .../Model/{README (17).md => README.md} | 0 1 file changed, 0 insertions(+), 0 deletions(-) rename Drone Navigation Detection using Reinforcement Learning techniques/Model/{README (17).md => README.md} (100%) diff --git a/Drone Navigation Detection using Reinforcement Learning techniques/Model/README (17).md b/Drone Navigation Detection using Reinforcement Learning techniques/Model/README.md similarity index 100% rename from Drone Navigation Detection using Reinforcement Learning techniques/Model/README (17).md rename to Drone Navigation Detection using Reinforcement Learning techniques/Model/README.md From 32eb6f447356ed4a1cff9f8de638468424f9d1d3 Mon Sep 17 00:00:00 2001 From: Panchadip <165953910+Panchadip-128@users.noreply.github.com> Date: Fri, 25 Oct 2024 15:06:54 +0530 Subject: [PATCH 09/18] Create requirements.txt --- .../Model/requirements.txt | 1 + 1 file changed, 1 insertion(+) create mode 100644 Drone Navigation Detection using Reinforcement Learning techniques/Model/requirements.txt diff --git a/Drone Navigation Detection using Reinforcement Learning techniques/Model/requirements.txt b/Drone Navigation Detection using Reinforcement Learning techniques/Model/requirements.txt new file mode 100644 index 000000000..8b1378917 --- /dev/null +++ b/Drone Navigation Detection using Reinforcement Learning techniques/Model/requirements.txt @@ -0,0 +1 @@ + From fa6159a1c7bd585fba4e6015cb0b0a80a614122c Mon Sep 17 00:00:00 2001 From: Panchadip <165953910+Panchadip-128@users.noreply.github.com> Date: Fri, 25 Oct 2024 15:07:05 +0530 Subject: [PATCH 10/18] Update requirements.txt --- .../Model/requirements.txt | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/Drone Navigation Detection using Reinforcement Learning techniques/Model/requirements.txt b/Drone Navigation Detection using Reinforcement Learning techniques/Model/requirements.txt index 8b1378917..48bff5b30 100644 --- a/Drone Navigation Detection using Reinforcement Learning techniques/Model/requirements.txt +++ b/Drone Navigation Detection using Reinforcement Learning techniques/Model/requirements.txt @@ -1 +1,8 @@ +numpy==1.24.0 +matplotlib==3.7.1 +seaborn==0.12.2 +scikit-learn==1.2.2 +pandas==2.0.3 +gym==0.21.0 +stable-baselines3==1.8.2 From 8ee7d9475b36691d6488f2c3152061ff20a75afe Mon Sep 17 00:00:00 2001 From: Panchadip <165953910+Panchadip-128@users.noreply.github.com> Date: Fri, 25 Oct 2024 15:07:31 +0530 Subject: [PATCH 11/18] Delete Drone Navigation Detection using Reinforcement Learning techniques/Model/requirements.txt --- .../Model/requirements.txt | 8 -------- 1 file changed, 8 deletions(-) delete mode 100644 Drone Navigation Detection using Reinforcement Learning techniques/Model/requirements.txt diff --git a/Drone Navigation Detection using Reinforcement Learning techniques/Model/requirements.txt b/Drone Navigation Detection using Reinforcement Learning techniques/Model/requirements.txt deleted file mode 100644 index 48bff5b30..000000000 --- a/Drone Navigation Detection using Reinforcement Learning techniques/Model/requirements.txt +++ /dev/null @@ -1,8 +0,0 @@ -numpy==1.24.0 -matplotlib==3.7.1 -seaborn==0.12.2 -scikit-learn==1.2.2 -pandas==2.0.3 -gym==0.21.0 -stable-baselines3==1.8.2 - From c02d6140ea6c2c9ce9cf765bcebccb7996d4fd28 Mon Sep 17 00:00:00 2001 From: Panchadip <165953910+Panchadip-128@users.noreply.github.com> Date: Fri, 25 Oct 2024 15:07:56 +0530 Subject: [PATCH 12/18] Create requirements.txt --- .../requirements.txt | 7 +++++++ 1 file changed, 7 insertions(+) create mode 100644 Drone Navigation Detection using Reinforcement Learning techniques/requirements.txt diff --git a/Drone Navigation Detection using Reinforcement Learning techniques/requirements.txt b/Drone Navigation Detection using Reinforcement Learning techniques/requirements.txt new file mode 100644 index 000000000..79b2d24e0 --- /dev/null +++ b/Drone Navigation Detection using Reinforcement Learning techniques/requirements.txt @@ -0,0 +1,7 @@ +numpy==1.24.0 +matplotlib==3.7.1 +seaborn==0.12.2 +scikit-learn==1.2.2 +pandas==2.0.3 +gym==0.21.0 +stable-baselines3==1.8.2 From 796eae19d6ca1f559a0a612d1a49c0eb111663f0 Mon Sep 17 00:00:00 2001 From: Panchadip <165953910+Panchadip-128@users.noreply.github.com> Date: Fri, 25 Oct 2024 15:08:42 +0530 Subject: [PATCH 13/18] Create .gitignore --- .../.gitignore | 39 +++++++++++++++++++ 1 file changed, 39 insertions(+) create mode 100644 Drone Navigation Detection using Reinforcement Learning techniques/.gitignore diff --git a/Drone Navigation Detection using Reinforcement Learning techniques/.gitignore b/Drone Navigation Detection using Reinforcement Learning techniques/.gitignore new file mode 100644 index 000000000..7e89abeac --- /dev/null +++ b/Drone Navigation Detection using Reinforcement Learning techniques/.gitignore @@ -0,0 +1,39 @@ +# Python +__pycache__/ +*.py[cod] +*.pyo +*.pyd +*.egg +*.egg-info/ +dist/ +build/ +*.whl + +# Jupyter Notebook +.ipynb_checkpoints/ +*.ipynb + +# Virtual Environment +venv/ +env/ +ENV/ +.venv/ +.env/ +*.env + +# Logs +*.log + +# Miscellaneous +.DS_Store +Thumbs.db +*.bak +*.tmp +*.swp + +# PyCharm +.idea/ +*.iml + +# VS Code +.vscode/ From d5aec1aca6de4631ecef57ae8385916704c582a9 Mon Sep 17 00:00:00 2001 From: Panchadip <165953910+Panchadip-128@users.noreply.github.com> Date: Fri, 25 Oct 2024 15:15:11 +0530 Subject: [PATCH 14/18] Create datset_info --- .../Dataset/datset_info | 1 + 1 file changed, 1 insertion(+) create mode 100644 Drone Navigation Detection using Reinforcement Learning techniques/Dataset/datset_info diff --git a/Drone Navigation Detection using Reinforcement Learning techniques/Dataset/datset_info b/Drone Navigation Detection using Reinforcement Learning techniques/Dataset/datset_info new file mode 100644 index 000000000..8b1378917 --- /dev/null +++ b/Drone Navigation Detection using Reinforcement Learning techniques/Dataset/datset_info @@ -0,0 +1 @@ + From 2e2f69326fdfd811e044b505c7ec67a909860bb9 Mon Sep 17 00:00:00 2001 From: Panchadip <165953910+Panchadip-128@users.noreply.github.com> Date: Fri, 25 Oct 2024 15:15:37 +0530 Subject: [PATCH 15/18] Update datset_info --- .../Dataset/datset_info | 36 +++++++++++++++++++ 1 file changed, 36 insertions(+) diff --git a/Drone Navigation Detection using Reinforcement Learning techniques/Dataset/datset_info b/Drone Navigation Detection using Reinforcement Learning techniques/Dataset/datset_info index 8b1378917..e4a0f577f 100644 --- a/Drone Navigation Detection using Reinforcement Learning techniques/Dataset/datset_info +++ b/Drone Navigation Detection using Reinforcement Learning techniques/Dataset/datset_info @@ -1 +1,37 @@ +# Dataset Description for Drone Navigation Project + +## Environment State Representation: +The drone's environment is represented as a 2D grid where each cell can represent different entities: +- **Free Space**: Areas where the drone can navigate. +- **Obstacles**: Fixed points on the grid that the drone must avoid. + - Example: (6, 6), (7, 7) +- **Target**: The desired destination for the drone to reach. + - Example: (8, 8) + +## State Space: +The state of the drone is represented as a 2D NumPy array with two elements: +- **state[0]**: The x-coordinate of the drone's current position. +- **state[1]**: The y-coordinate of the drone's current position. + +The observation space is defined within the bounds of the grid, specifically [0, 10], indicating that the drone can move within a 10x10 grid. + +## Action Space: +The actions available to the drone are represented as discrete movements within the grid: +- **0**: Up +- **1**: Down +- **2**: Left +- **3**: Right +- **4**: Up-Right +- **5**: Up-Left +- **6**: Down-Right +- **7**: Down-Left + +## Sample Data: +While the environment does not rely on external datasets, the positions of obstacles and the target can be seen as parameters that define the specific scenario of the navigation task. + +## Data Generation: +The grid layout, obstacle positions, and target location can be adjusted as necessary to create various scenarios for testing the drone's navigation algorithm. + +## Future Dataset Enhancements: +Future versions of the project may incorporate more complex environments with variable obstacle positions, dynamic targets, and real-world data, enhancing the robustness and adaptability of the navigation algorithm. From 992735548640906c4d60e912e8c2e26ced24136c Mon Sep 17 00:00:00 2001 From: Panchadip <165953910+Panchadip-128@users.noreply.github.com> Date: Fri, 25 Oct 2024 15:16:49 +0530 Subject: [PATCH 16/18] Create Dataset- Explanations --- .../Dataset/Dataset- Explanations | 53 +++++++++++++++++++ 1 file changed, 53 insertions(+) create mode 100644 Drone Navigation Detection using Reinforcement Learning techniques/Dataset/Dataset- Explanations diff --git a/Drone Navigation Detection using Reinforcement Learning techniques/Dataset/Dataset- Explanations b/Drone Navigation Detection using Reinforcement Learning techniques/Dataset/Dataset- Explanations new file mode 100644 index 000000000..93df705a2 --- /dev/null +++ b/Drone Navigation Detection using Reinforcement Learning techniques/Dataset/Dataset- Explanations @@ -0,0 +1,53 @@ +Detailed Description of the Dataset for Drone Navigation Project +1. Environment State Representation +The environment for the drone navigation task is modeled as a 2D grid (10x10) where each cell can represent different types of entities that the drone interacts with. The key components are: + +Free Space: This represents areas of the grid where the drone can move freely. Free space cells are the navigable areas where the drone does not encounter any obstacles. + +Obstacles: These are fixed points on the grid that the drone must avoid to prevent collisions. In this project, obstacles are defined as specific coordinates: + +Example: +Obstacle 1: (6, 6) +Obstacle 2: (7, 7) +Target: This is the desired destination that the drone aims to reach. The target position is critical for the navigation algorithm to determine successful completion of the task. + +Example: +Target Position: (8, 8) +2. State Space +The state of the drone is represented using a 2D NumPy array with two elements, denoting the drone's current position on the grid: + +state[0]: Represents the x-coordinate (horizontal position) of the drone. +state[1]: Represents the y-coordinate (vertical position) of the drone. +The observation space is defined within the bounds of the grid, specifically from 0 to 10. This range indicates that the drone's movements and positions are confined within a 10x10 grid. + +3. Action Space +The available actions for the drone are discrete movements within the grid. Each action corresponds to a direction the drone can move: + +0: Up (increases y-coordinate) +1: Down (decreases y-coordinate) +2: Left (decreases x-coordinate) +3: Right (increases x-coordinate) +4: Up-Right (increases both x and y coordinates) +5: Up-Left (decreases x and increases y coordinates) +6: Down-Right (increases x and decreases y coordinates) +7: Down-Left (decreases both x and y coordinates) +This action space allows for basic directional movements, enabling the drone to navigate towards its target while avoiding obstacles. + +4. Sample Data +While the environment is not reliant on external datasets, the positions of obstacles and the target can be treated as parameters that define the specific scenario of the navigation task. Below are examples of the parameters used in the project: + +Initial State: The drone starts at position (5, 5). +Obstacles: [(6, 6), (7, 7)] +Target Position: (8, 8) +This setup allows for a controlled testing environment where various navigation strategies can be implemented and evaluated. + +5. Data Generation +The grid layout, positions of obstacles, and the target location are configurable parameters that can be adjusted to create different scenarios for testing the drone's navigation algorithm. The drone can be tested in various configurations to analyze its performance in navigating towards the target while avoiding collisions. + +6. Future Dataset Enhancements +In future iterations of this project, there are several potential enhancements that can be made to the dataset: + +Dynamic Obstacles: Introducing moving obstacles that change positions over time, simulating more realistic navigation challenges. +Variable Target Locations: Allowing the target position to change during the task to test the drone's adaptability and decision-making. +Real-World Data: Integrating real-world datasets (such as GPS coordinates or aerial maps) to enhance the environment's complexity and realism. +Multiple Drones: Expanding the project to include multiple drones navigating the same environment, which could lead to more complex scenarios and interactions. From 2a101279041b2fde73e38769abdb4b5ce12f11f6 Mon Sep 17 00:00:00 2001 From: Panchadip <165953910+Panchadip-128@users.noreply.github.com> Date: Fri, 25 Oct 2024 19:07:40 +0530 Subject: [PATCH 17/18] Delete Drone Navigation Detection using Reinforcement Learning techniques/.gitignore --- .../.gitignore | 39 ------------------- 1 file changed, 39 deletions(-) delete mode 100644 Drone Navigation Detection using Reinforcement Learning techniques/.gitignore diff --git a/Drone Navigation Detection using Reinforcement Learning techniques/.gitignore b/Drone Navigation Detection using Reinforcement Learning techniques/.gitignore deleted file mode 100644 index 7e89abeac..000000000 --- a/Drone Navigation Detection using Reinforcement Learning techniques/.gitignore +++ /dev/null @@ -1,39 +0,0 @@ -# Python -__pycache__/ -*.py[cod] -*.pyo -*.pyd -*.egg -*.egg-info/ -dist/ -build/ -*.whl - -# Jupyter Notebook -.ipynb_checkpoints/ -*.ipynb - -# Virtual Environment -venv/ -env/ -ENV/ -.venv/ -.env/ -*.env - -# Logs -*.log - -# Miscellaneous -.DS_Store -Thumbs.db -*.bak -*.tmp -*.swp - -# PyCharm -.idea/ -*.iml - -# VS Code -.vscode/ From d78c5425b100408e8840c760505b6ceb7a66390b Mon Sep 17 00:00:00 2001 From: Panchadip <165953910+Panchadip-128@users.noreply.github.com> Date: Fri, 25 Oct 2024 21:12:58 +0530 Subject: [PATCH 18/18] Delete Drone Navigation Detection using Reinforcement Learning techniques/Model/model files --- .../Model/model files | 1 - 1 file changed, 1 deletion(-) delete mode 100644 Drone Navigation Detection using Reinforcement Learning techniques/Model/model files diff --git a/Drone Navigation Detection using Reinforcement Learning techniques/Model/model files b/Drone Navigation Detection using Reinforcement Learning techniques/Model/model files deleted file mode 100644 index 8b1378917..000000000 --- a/Drone Navigation Detection using Reinforcement Learning techniques/Model/model files +++ /dev/null @@ -1 +0,0 @@ -