-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
66 lines (45 loc) · 1.45 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import os
import argparse
from build_dataset import load_data
from model.mlp import GazeNet
def train_model(model, train_features, train_labels):
"""
Compile and train a GazeNet model with the given training data
"""
model.compile(
optimizer=model.optimizer,
loss=model.loss
)
history = model.fit(
train_features,
train_labels,
epochs=model.epochs,
validation_split=0.2,
verbose=1
)
return history
def main(args):
"""
Load data, build the model, and train.
"""
X_train, y_train, X_test, y_test = load_data(args.datapath)
model = GazeNet()
history = train_model(model, X_train, y_train)
model.save(os.path.join(args.savepath, 'model'))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--datapath',
type=str,
default='./data/',
help='Path to directory containing test and train data')
parser.add_argument('--epochs',
type=int,
default=25,
help='Number of training epochs')
parser.add_argument('--savepath',
type=str,
default='trained_models/',
help="Path for saving trained model")
args = parser.parse_args()
assert(os.path.exists(args.datapath))
main(args)