Skip to content

Latest commit

 

History

History
222 lines (187 loc) · 12 KB

README.md

File metadata and controls

222 lines (187 loc) · 12 KB

Video-Bench: Human Preference Aligned Video Generation Benchmark

<<<<<<< HEAD

HABench Overview

HABench is a benchmark tool designed to systematically leverage MLLMs across all dimensions relevant to video generation assessment in generative models. By incorporating few-shot scoring and chain-of-query techniques, HA-Video-Bench provides a structured, scalable approach to generated video evaluation.

Video-Bench is a benchmark tool designed to systematically leverage MLLMs across all dimensions relevant to video generation assessment in generative models. By incorporating few-shot scoring and chain-of-query techniques, Video-Bench provides a structured, scalable approach to generated video evaluation.

f5a97cb267f2dbec3cad56b786871ac4aec9866d

Multi-Modal Foundation-Model Foundation-Model Video-Understanding Video-Generation Video-Recommendation Video-Recommendation Video-Recommendation

⭐Overview | 📝Literature | 📒Leaderboard | 🤗HumanAlignment | 🛠️Installation | 🗃️Preparation | ⚡Instructions | 🚀Usage | 📭Citation

Overview

Literature

Video Generation Models

(A Table to be filled, providing name, year, paper link, github link, accepted conference)

Video Generation Evaluation Methods

(A Table to be filled, providing name, year, paper link, github link, accepted conference)

Leaderboard

Model Imaging Quality Aesthetic Quality Temporal Consist. Motion Effects Avg Rank Video-text Consist. Object-class Consist. Color Consist. Action Consist. Scene Consist. Avg Rank Overall Avg Rank
Cogvideox [57] 3.87 3.84 4.14 3.55 3.00 4.62 2.81 2.92 2.81 2.93 1.60 2.22
Gen3 [42] 4.66 4.44 4.74 3.99 1.00 4.38 2.81 2.87 2.59 2.93 2.40 1.78
Kling [24] 4.26 3.82 4.38 3.11 2.75 4.07 2.70 2.81 2.50 2.82 4.60 3.78
VideoCrafter2 [5] 4.08 3.85 3.69 2.81 3.75 4.18 2.85 2.90 2.53 2.78 2.80 3.22
LaVie [52] 3.00 2.94 3.00 2.43 7.00 3.71 2.82 2.81 2.45 2.63 5.00 5.88
PiKa-Beta [38] 3.78 3.76 3.40 2.59 5.50 3.78 2.51 2.52 2.25 2.60 6.80 6.22
Show-1 [60] 3.30 3.28 3.90 2.90 5.00 4.21 2.82 2.79 2.53 2.72 3.80 4.33

Notes:

  • Higher scores indicate better performance.
  • The best score in each dimension is highlighted in bold.

HumanAlignment

Metrics Benchmark Imaging Quality Aesthetic Quality Temporal Consist. Motion Effects Video-text Consist. Object-class Consist. Color Consist. Action Consist. Scene Consist.
MUSIQ [21] VBench [19] 0.363 - - - - - - - -
LAION VBench [19] - 0.446 - - - - - - -
CLIP [40] VBench [19] - - 0.260 - - - - - -
RAFT [48] VBench [19] - - - 0.329 - - - - -
Amt [28] VBench [19] - - - 0.329 - - - - -
ViCLIP [53] VBench [19] - - - - - 0.445 - - -
UMT [27] VBench [19] - - - - - - - 0.411 -
GRiT [54] VBench [19] - - - - - - - - -
Tag2Text [16] VBench [19] - - - - 0.469 0.545 - - 0.422
ComBench [46] ComBench [46] - - - - 0.611 0.696 0.633 0.633 0.631
Ours Ours 0.733 0.702 0.402 0.514 0.735 0.750 0.718 0.733 0.733

Notes:

  • Higher scores indicate better performance.
  • The best score in each dimension is highlighted in bold.

Installation

Installation Requirements

  • Python >= 3.8
  • OpenAI API access Update your OpenAI API keys in config.json:
    {
        "GPT4o_API_KEY": "your-api-key",
        "GPT4o_BASE_URL": "your-base-url",
        "GPT4o_mini_API_KEY": "your-mini-api-key",
        "GPT4o_mini_BASE_URL": "your-mini-base-url"
    }

Pip Installation

  • Install with pip
    pip install HAbench
  • Install with conda
    pip install xxx

Git Clone

git clone https://github.com/yourusername/Video-Bench.git
cd Video-Bench
conda env create -f environment.yml
conda activate Video-Bench

Download From Huggingface

wget https://huggingface.co/xxx/resolve/main/pytorch_model.bin -O ./pytorch_model.bin

or

curl -L https://huggingface.co/xxx/resolve/main/pytorch_model.bin -o ./pytorch_model.bin

Preparation

Please organize your data according to the following structure:

/Video-Bench/data/
├── color/                           # 'color' dimension videos
│   ├── cogvideox5b/
│   │   ├── A red bird_0.mp4
│   │   ├── A red bird_1.mp4
│   │   └── ...
│   ├── lavie/
│   │   ├── A red bird_0.mp4
│   │   ├── A red bird_1.mp4
│   │   └── ...
│   ├── pika/
│   │   └── ...
│   └── ...
│
├── object_class/                    # 'object_class' dimension videos
│   ├── cogvideox5b/
│   │   ├── A train_0.mp4
│   │   ├── A train_1.mp4
│   │   └── ...
│   ├── lavie/
│   │   └── ...
│   └── ...
│
├── scene/                           # 'scene' dimension videos
│   ├── cogvideox5b/
│   │   ├── Botanical garden_0.mp4
│   │   ├── Botanical garden_1.mp4
│   │   └── ...
│   └── ...
│
├── action/                          # 'action' 'temporal_consistency' 'motion_effects' dimension videos
│   ├── cogvideox5b/
│   │   ├── A person is marching_0.mp4
│   │   ├── A person is marching_1.mp4
│   │   └── ...
│   └── ...
│
└── overall_consistency/             # 'overall consistency' 'imaging_quality' 'aesthetic_quality' dimension videos
    ├── cogvideox5b/
    │   ├── Close up of grapes on a rotating table._0.mp4
    │   └── ...
    ├── lavie/
    │   └── ...
    ├── pika/
    │   └── ...
    └── ...

Instructions

Video-Bench enables video generation assessment from multiple dimensions (add description and scale to the below table):

Dimension Code Path
Image Quality Video-Bench/staticquality.py
Aesthetic Quality Video-Bench/staticquality.py
Temporal Consistency Video-Bench/dynamicquality.py
Motion Effects Video-Bench/dynamicquality.py
Object-Class Consistency Video-Bench/VideoTextConsistency.py
Video-Text Consistency Video-Bench/VideoTextConsistency.py
Color Consistency Video-Bench/VideoTextConsistency.py
Action Consistency Video-Bench/VideoTextConsistency.py
Scene Consistency Video-Bench/VideoTextConsistency.py

Usage

Run the following command to evaluate the dimension you want to evaluate:

python evaluate.py \
 --dimension $DIMENSION \
 --videos_path ./data/{dimension} \
 --config_path ./config.json/

Citation

If you use our dataset, code or find Video-Bench useful, please cite our paper in your work as:

@article{ni2023content,
  title={Video-Bench: Human Preference Aligned Video Generation Benchmark},
  author={Han, Hui and Li, Siyuan and Chen, Jiaqi and Yuan, Yiwen and Wu, Yuling and Leong, Chak Tou and Du, Hanwen and Fu, Junchen and Li, Youhua and Zhang, Jie and Zhang, Chi and Li, Li-jia and Ni, Yongxin},
  journal={arXiv preprint arXiv:xxx},
  year={2024}
}