Skip to content
/ pmnet Public

A Scalable and Generalizable Pathloss Map Prediction

License

Notifications You must be signed in to change notification settings

abman23/pmnet

Repository files navigation

A Scalable and Generalizable Pathloss Map Prediction

This repo is the implementation of our paper "A Scalable and Generalizable Pathloss Map Prediction", as well as the follow-ups.

animation_pmnet

Highlights

  • PMNet (NN tailored for Pathloss Map Prediction (PMP)) is described in arxiv, which serves as a backbone for the PMP task.
  • PMNet achieves strong performance on the PMP task ($10^{-2}$ level RMSE on val), surpassing other models by a large margin.
  • Proposed a method to predict pathloss in unseen network scenarios using transfer learning (TL) with three pre-trained models: VGG16 and two PMNet models. Our PMNet pre-trained model generalizes well, adapting to new scenarios 5.6× faster and using 4.5× less data, while maintaining high accuracy (RMSE $10^{-2}$ level).
  • This repository includes the training/test dataset and pre-trained model/checkpoints.
overview_pmnet

Citation

@article{lee2024scalable,
    title={A Scalable and Generalizable Pathloss Map Prediction}, 
    author={Ju-Hyung Lee and Andreas F. Molisch},
    year={2024},
    journal={IEEE Transactions on Wireless Communnications (TWC)}
}
@inproceedings{lee2023pmnet,
    title={PMNet: Robust Pathloss Map Prediction via Supervised Learning},
    author={Ju-Hyung Lee and Omer Gokalp Serbetci and Dheeraj Panneer Selvam and Andreas F. Molisch},
    year={2023},
    month={December},
    booktitle={Proc. of IEEE Global Communicaions Conference (GLOBECOM)},
}

Dataset: Ray-Tracing (RT)-based Channel Measurement

map_USC bldmap_3D_USC
map_UCLA map_Boston v6_city_map v6_tx_map v6_power_map
# Dataset (Map) # of samples Download Link
1 USC 4754 Download
2 UCLA 3776 Download
3 Boston 3143 Download
4 USC-Upgraded 8912 Download
5 Rural 328 Download

Available checkpoints for PMNet

# Feature Size Data-Augmentation Fine-Tuning RMSE Download Link
1 16/H X 16/W 4-way rotation - 0.012599 Download
2 8/H X 8/W 4-way rotation - 0.010570 Download
3 16/H X 16/W - UCLA Dataset 0.031449 Download
4 16/H X 16/W - Boston Dataset 0.009875 Download
5 8/H X 8/W 4-way rotation - 0.008944 Download
  • #3,4 checkpoints were fine-tuned using (1), a pre-trained model with USC Dataset.
  • #5 was trained on USC-Upgraded dataset.

Train

To train PMNet, please refer to train.sh

python train.py -d [dataset-root] -n [network-type] -c [config-class-name]
# e.g., python train.py -d '/USC/' -n 'pmnet_v3' -c 'config_USC_pmnetV3_V2'

Evaluation

To evaluate above models, refer to the following commands. Or, you can run eval.sh

python eval.py \
    --data_root [dataset-directory] \
    --network [network-type] \ # pmnet_v1 or pmnet_v3
    --model_to_eval [model-to-eval] \
    --config [config-class-name]
# e.g.,
# python eval.py \
#    --data_root '/USC/' \
#    --network 'pmnet_v3' \
#    --model_to_eval 'config_USC_pmnetV3_V2_epoch30/16_0.0001_0.5_10/model_0.00012.pt' \
#    --config 'config_USC_pmnetV3_V2'

About

A Scalable and Generalizable Pathloss Map Prediction

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published