-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.m
395 lines (318 loc) · 11.1 KB
/
main.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
%{
Continuation Power Flow
Author: Abodh Poudyal
Last updated: December 14, 2020
%}
clear;
clc;
% format short % to display less significant digits in the result
%% Reading bus and branch data in common data format/ Initializations
% external function to extract the data from IEEE common data format
% select the system on which the power flow should be performed
% currently works for 'IEEE14' and 'IEEE30'
System = "IEEE-14";
bus_path = strcat(System,'bus_data/bus_data.txt');
branch_path = strcat(System,'bus_data/branch_data.txt');
[bus_imp, branch_imp, bus_data, branch_data] = ...
data_extraction(bus_path, branch_path, System);
%{
to reduce the computational complexity, we will only compute
for existing branches
%}
% define some important variables
% from which bus
from = branch_data(:,1);
% to which bus
to = branch_data(:,2);
% extract voltage data
V_flat = bus_data.data(:,11);
% flat start means |V| = 1.0 pu and delta = 0
% exact values for PV and slack bus whereas flat start for the rest
V_flat(find(V_flat == 0)) = 1;
delta_flat = zeros(length(V_flat),1)*pi/180;;
% V = V_flat;
% delta = delta_flat;
% number of buses in the entire system
n_bus = length(bus_data.data(:,3));
% number of branches
n_branch = length(branch_imp);
% number of pq buses
n_pq = length(find(bus_data.data(:,3) == 0));
% number of PV buses
n_pv = length(find(bus_data.data(:,3) == 2));
% stores an array of PQ bus IDs
pq_bus_id = find(bus_data.data(:,3) == 0);
% stores an array of PV bus IDs
pv_bus_id = find(bus_data.data(:,3) == 2);
% iterate unless power mismatch < 0.01 (tolerance)
tolerance = 0.01;
% base power
base_MW = 100;
% scheduled power
Ps = (bus_data.data(:,8) - bus_data.data(:,6))/base_MW;
Qs = (bus_data.data(:,9) - bus_data.data(:,7))/base_MW;
% ek vector analysis
% check if a bus is pq
pq_bus_logic = (bus_data.data(:,3) ~= 2) & (bus_data.data(:,3) ~= 3);
% converts logical array to double
pq_bus_logic = double(pq_bus_logic);
% name the pq buses
pq_bus_logic(pq_bus_logic == 1) = transpose(1:length(pq_bus_logic ...
(pq_bus_logic == 1)));
% positions and logic for ek vector
ek_positions = [transpose(1:n_bus) (pq_bus_logic == 0) pq_bus_logic];
% K vector
K = [Ps(2:end);Qs(bus_data.data(:,3) == 0)];
% % define the bus for which the CPF analysis is to be done
busCPF = 11;
volts = [];
lambdas = [];
% bus = [1:n_bus];
%% Calculating the Y-bus matrix
Y_bus = Ybus(n_bus, n_branch, branch_imp, bus_imp, from, to);
G = real(Y_bus); % conductance (G) <- real part of admittance
B = imag(Y_bus); % susceptance (B) <- the imaginary part of admittance
%% computes the power flow
% lambda = 1;
% [V_flat, delta_flat, ~] = powerflow(tolerance, n_bus, bus_data, ...
% base_MW, G, B,Y_bus, V_flat, delta_flat,n_pq, n_pv, pq_bus_id, ...
% pv_bus_id, lambda*Ps, lambda*Qs);
%% Continuation power flow
% looping to get the result for all the buses
% for i = 1:length(pq_bus_id)
% volts = [];
% lambdas = [];
% busCPF = bus(pq_bus_id(i));
% PV curve - Part 1: Changing Lambda
sigma = 0.1;
lambda = 0;
[V_flat,delta_flat,~] = powerflow(tolerance, n_bus, bus_data,...
base_MW, G, B, Y_bus, V_flat, delta_flat,n_pq, n_pv, ...
pq_bus_id, pv_bus_id, lambda*Ps, lambda*Qs);
% delta_CPF = delta_flat(bus_data.data(:,3) ~= 3);
% V_CPF = V_flat(bus_data.data(:,3) == 0);
iter = 0;
while iter < 10
%%%%%%%%%%%%%%%%%%%%%%%%%% PREDICTOR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% saves the last value when power flow diverges
plot_lambda = lambda;
plot_V = V_flat;
plot_delta = delta_flat;
% % delta/V/lambda solution vector
% d_V_L = [delta_CPF; V_CPF; lambda];
% Jacobian
[J] = Jacobian(V_flat, delta_flat, n_bus, n_pq, pq_bus_id, G,...
B, Y_bus);
% ek vector -> since we are changing lambda we keep 1 at the last
ek = [zeros(1,length(J)) 1];
% augmented Jacobian
aug_J = [J -K; ek];
%inversion using crout's method
delta_d_V_L = croutLU(aug_J, ek);
% % solution
% d_V_L = d_V_L + sigma * delta_d_V_L;
[V_flat,delta_flat,lambda] = Update_Variables(sigma,delta_d_V_L,...
V_flat,delta_flat,lambda,bus_data);
% % extracting and assigning the respective parameters
% % delta for CPF
% delta_CPF = d_V_L(1:length(delta_CPF));
% % update original delta
% delta_flat(bus_data.data(:,3) ~= 3) = delta_CPF;
%
% % V for CPF
% V_CPF = d_V_L(length(delta_CPF) + (1:length(V_CPF)));
% % update original V
% V_flat(bus_data.data(:,3) == 0) = V_CPF;
%
% % lambda
% lambda = d_V_L(end);
%%%%%%%%%%%%%%%%%%%%%%%%%% CORRECTOR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[V_flat,delta_flat,iter] = powerflow(tolerance, n_bus, bus_data,...
base_MW, G, B, Y_bus, V_flat, delta_flat,n_pq, n_pv, ...
pq_bus_id, pv_bus_id, lambda*Ps, lambda*Qs);
% plot(plot_lambda,plot_V(busCPF),'or'); hold on;
% title(['CPF for Bus ' num2str(busCPF)])
% grid('on')
volts = [volts;plot_V(busCPF)];
lambdas = [lambdas;plot_lambda];
end
size_A = length(volts);
% PV curve - Part 2: Changing V
sigma = 0.005;
lambda = plot_lambda;
V_flat = plot_V;
delta_flat = plot_delta;
Nose = 0;
change_factor=0.75;
while lambda > change_factor * Nose
%%%%%%%%%%%%%%%%%%%%%%%%%% PREDICTOR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% delta/V/lambda solution vector
% d_V_L = [delta_CPF; V_CPF; lambda];
% Jacobian
[J] = Jacobian(V_flat, delta_flat, n_bus, n_pq, pq_bus_id, G, B,Y_bus);
% ek vector -> since we are changing V we keep -1 at the bus node
ek = [zeros(1,length(J)) 0];
b = [zeros(1,length(J)) 1]; % used for crout's LU
% put -1 to the bus on which CPF analyis is to be done
ek(length(delta_flat(bus_data.data(:,3) ~= 3)) + ...
ek_positions(busCPF,3)) = -1;
% augmented Jacobian
aug_J = [J -K; ek];
%inversion using crout's method
delta_d_V_L = croutLU(aug_J, b);
% % solution
% d_V_L = d_V_L + sigma * delta_d_V_L;
[V_flat,delta_flat,lambda] = Update_Variables(sigma,delta_d_V_L,...
V_flat,delta_flat,lambda,bus_data);
%%%%%%%%%%%%%%%%%%%%%%%%%% CORRECTOR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
mismatch = power_mismatch(lambda*Ps, lambda*Qs, G, B, V_flat,...
delta_flat, n_bus, pq_bus_id);
while max(abs(mismatch)) <= 0.01
% Jacobian
[J] = Jacobian(V_flat, delta_flat, n_bus, n_pq, pq_bus_id, G,...
B,Y_bus);
% augmented Jacobian
aug_J = [J -lambda*K; ek];
% inversion using crout's method
delta_d_V_L = croutLU(aug_J, [mismatch;0]);
[V_flat,delta_flat,lambda] = Update_Variables(sigma,delta_d_V_L,...
V_flat,delta_flat,lambda,bus_data);
% mismatch
mismatch = power_mismatch(lambda*Ps, lambda*Qs, G, B, V_flat,...
delta_flat, n_bus, pq_bus_id);
end
if lambda>Nose
Nose=lambda;
end
% plot(lambda,V_flat(busCPF),'ob'); hold on;
% title(['CPF for Bus ' num2str(busCPF)])
% grid('on')
volts = [volts;V_flat(busCPF)];
lambdas = [lambdas;lambda];
end
size_B = length(volts) - size_A;
% PV curve - Part 3: Switching back to lambda
sigma = 0.1;
iter = 0;
while iter < 10 && lambda >= 0
%%%%%%%%%%%%%%%%%%%%%%%%%% PREDICTOR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Jacobian
[J] = Jacobian(V_flat, delta_flat, n_bus, n_pq, pq_bus_id, G,...
B,Y_bus);
% ek vector -> since we are changing back to lambda and now it is
% decreasing, we keep -1 at last
ek=[zeros(1,length(J)) -1];
% augmented Jacobian
aug_J = [J -lambda*K; ek];
% inversion using crout's method
delta_d_V_L = croutLU(aug_J, abs(ek));
[V_flat,delta_flat,lambda] = Update_Variables(sigma,delta_d_V_L,...
V_flat,delta_flat,lambda,bus_data);
%%%%%%%%%%%%%%%%%%%%%%%%%% CORRECTOR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[V_flat,delta_flat,iter] = powerflow(tolerance, n_bus, bus_data,...
base_MW, G, B, Y_bus, V_flat, delta_flat,n_pq, n_pv, pq_bus_id, ...
pv_bus_id, lambda*Ps, lambda*Qs);
if lambda < 0
break
end
% plot(lambda,V_flat(busCPF),'og'); hold on;
% title(['CPF for Bus ' num2str(busCPF)])
% grid('on')
volts = [volts;V_flat(busCPF)];
lambdas = [lambdas;lambda];
end
% plot the final results
plot_CPF(volts, lambdas, size_A, size_B, busCPF)
fprintf("\n Completed for Bus %d",busCPF)
% end
%% USER DEFINED FUNCTIONS START HERE
%% Solving for power flow using NRPF algorithm
function [V_final,Angle_final,iter] = powerflow(tolerance, n_bus,...
bus_data, base_MW, G, B, Y_bus, V_flat, delta_flat, n_pq, n_pv,...
pq_bus_id, pv_bus_id, Ps, Qs)
% Newton Rhapson Power Flow
[Volt, Angle, iter] = ...
NewtonRhapson(tolerance, n_bus, n_pv, n_pq, pq_bus_id,...
V_flat, delta_flat, G, B, Y_bus, Ps, Qs);
V_final = Volt(:,end);
Angle_final = Angle(:,end);
% plot_states(Volt, Angle)
end
%% plots of the result
function plot_CPF(volts, lambdas, size_A, size_B, busCPF)
figure('color', [1,1,1])
plot(lambdas(1:size_A),volts(1:size_A),'-^','Markersize',7,...
'Linewidth', 1)
hold on
plot(lambdas(size_A:size_A+size_B),volts(size_A:size_A+size_B),...
'-o','Markersize',5, 'Linewidth', 1)
hold on
plot(lambdas(size_A+size_B:length(lambdas)),volts(size_A+size_B:...
length(volts)),'-d','Markersize',5, 'Linewidth', 1)
hold on
grid on
ylabel('Voltage (pu)')
xlabel('\lambda')
title(strcat('Continuation Power Flow for Bus ',string(busCPF)))
grid on
% set(gca,'XTick',(1:1:10))
set(gca,'gridlinestyle','--','fontname','Times New Roman',...
'fontsize',14);
end
% function to plot the states of the system
function plot_states(Volt, Angle)
% NRLF Voltage
figure('color', [1,1,1])
str = "bus 1";
for i = 1: length(Volt)
plot(Volt(i,:), 'Linewidth', 1.5)
hold on
if i > 1
str = [str , strcat('bus',' ', num2str(i))];
end
end
ylabel('Voltage (pu)')
xlabel('Number of iteration')
title('NRPF')
grid on
set(gca,'XTick',(1:1:10))
set(gca,'gridlinestyle','--','fontname','Times New Roman',...
'fontsize',12);
lgd = legend (str, 'NumColumns', 4);
lgd.FontSize = 9;
hold off
% NRLF Angle
figure('color', [1,1,1])
for i = 1: length(Angle)
plot(Angle(i,:), 'Linewidth', 1.5)
hold on
end
ylabel('Angle (rad)')
xlabel('Number of iteration')
title('NRPF')
grid on
set(gca,'XTick',(1:1:10))
set(gca,'gridlinestyle','--','fontname','Times New Roman',...
'fontsize',12);
lgd = legend (str, 'NumColumns', 3);
lgd.FontSize = 9;
hold off
end
%% Updating function for V, theta, and lambda
function [V,theta,lambda] = Update_Variables(Step_Size,Error,V,theta,...
lambda,bus_data)
n=length(V);
Error=Step_Size*Error;
dtheta = Error(1:n-1);
dV = Error(n:end-1);
dlambda = Error(end);
theta(2:n) = dtheta + theta(2:n);
k = 1;
for i = 2:n
if bus_data.data(i,3) == 0
V(i) = dV(k) + V(i);
k = k+1;
end
end
lambda = lambda + dlambda;
end