-
Notifications
You must be signed in to change notification settings - Fork 0
/
dcgan_faces_change_optimizers.py
347 lines (275 loc) · 15.1 KB
/
dcgan_faces_change_optimizers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
'''
Code is modified from tutorial by Felix Mohr
source: https://github.com/FelixMohr/Deep-learning-with-Python/blob/master/DCGAN-face-creation.ipynb
'''
import os
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.image import imread
from scipy.misc import imresize, imsave
import tensorflow as tf
import glob
import shutil
plt.switch_backend('agg') # To not open window with plots on the server
out_dir = "./dcgan_faces_montage_outputs/dcgan_faces_change_optimizers_.005_lr"
# method to save print messages to txt file
losses_file = "./dcgan_faces_text_outputs/dcgan_faces_change_optimizers_.005_lr_losses.txt"
printfile = "./dcgan_faces_text_outputs/dcgan_faces_change_optimizers_.005_lr.txt"
if os.path.exists(printfile):
os.remove(printfile)
def txtprint(message, outfile=printfile):
print(message, file=open(outfile, 'a'))
# Path to directory containing all the training imgs
# for the original LFW data some bash preprocessing was required to unzip the file and move all images to a single folder
input_dir = '/mnt/d/development/ML-Project-GAN/LFWdata/rawdata'
resized_img_dir = '/mnt/d/development/ML-Project-GAN/LFWdata/resized/'
input_path = os.path.join(input_dir,'*g') # will work for png or jpg
# All images that match input_path
input_files = glob.glob(input_path)
# resize the images if not already done
if not os.path.exists(resized_img_dir):
txtprint("Resizing Images")
os.makedirs(resized_img_dir)
for img in input_files:
input_img = imread(img)
resize_img = imresize(input_img, (40,40)) # resizing needs to be a multiple of 4
img_name = img.split("/")[-1]
imsave(resized_img_dir + "/" + img_name + ".png", resize_img)
txtprint("Done resizing images")
else:
txtprint("Images already resized")
# now grab the resized images we want to work with
input_path = os.path.join(resized_img_dir,'*g') # will work for png or jpg
input_files = glob.glob(input_path)
# Total number of input images
total_input = len(input_files)
# Read in one img to get the dimensions
example_input = imread(input_files[0])
w, h, c = example_input.shape # c = # of channels #for original faces data (250,250,3)
# Create directory for output
if os.path.exists(out_dir):
shutil.rmtree(out_dir)
os.makedirs(out_dir)
# Method to pull random batch of images
def next_batch(num, data=input_files):
idx = np.arange(0 , len(data))
np.random.shuffle(idx)
idx = idx[:num]
data_shuffle = [imread(data[i]) for i in idx]
shuffled = np.asarray(data_shuffle)
return shuffled
# Code by Parag Mital (https://github.com/pkmital/CADL/)
# Makes montage of output images from the generator
def montage(images):
if isinstance(images, list):
images = np.array(images)
img_h = images.shape[1]
img_w = images.shape[2]
n_plots = int(np.ceil(np.sqrt(images.shape[0])))
if len(images.shape) == 4 and images.shape[3] == 3:
m = np.ones(
(images.shape[1] * n_plots + n_plots + 1,
images.shape[2] * n_plots + n_plots + 1, 3)) * 0.5
elif len(images.shape) == 4 and images.shape[3] == 1:
m = np.ones(
(images.shape[1] * n_plots + n_plots + 1,
images.shape[2] * n_plots + n_plots + 1, 1)) * 0.5
elif len(images.shape) == 3:
m = np.ones(
(images.shape[1] * n_plots + n_plots + 1,
images.shape[2] * n_plots + n_plots + 1)) * 0.5
else:
raise ValueError('Could not parse image shape of {}'.format(
images.shape))
for i in range(n_plots):
for j in range(n_plots):
this_filter = i * n_plots + j
if this_filter < images.shape[0]:
this_img = images[this_filter]
m[1 + i + i * img_h:1 + i + (i + 1) * img_h,
1 + j + j * img_w:1 + j + (j + 1) * img_w] = this_img
return m
# Definition of the network
tf.reset_default_graph()
batch_size = 64 # number of real images fed in
n_noise = 64 # inital size of noise images
# Placeholder for real (X_in)
X_in = tf.placeholder(dtype=tf.float32, shape=[None, w, h, c], name='X')
# Placeholder for fake imgs (noise): feed a flat vector of len(n_noise) into generator
noise = tf.placeholder(dtype=tf.float32, shape=[None, n_noise])
# Proportion of neurons to keep after a dropout layer
keep_prob = tf.placeholder(dtype=tf.float32, name='keep_prob')
# Flag for training required for batch-norm layers
is_training = tf.placeholder(dtype=tf.bool, name='is_training')
def lrelu(x): # Leaky-relu to avoid the dying relu problem
return tf.maximum(x, tf.multiply(x, 0.2))
def binary_cross_entropy(x, z): # For multi-label classifications where m=2; x: y, z: y-hat
eps = 1e-12
return (-(x * tf.log(z + eps) + (1. - x) * tf.log(1. - z + eps)))
# img_in: list of image arrays,
# There are two instances of the discriminator (1 for real, 1 for fake)
# for the 1st instance (real), reuse=None
# for the 2nd instance (fake), reuse=True insures both instances are using the same weights
def discriminator(img_in, reuse=None, keep_prob=keep_prob):
activation = lrelu
with tf.variable_scope("discriminator", reuse=reuse):
# Input layer: takes list of image arrays and reshapes them into a tensor object
# Shape: [batch_size, width, height, channels]: sizes for the 4 separate dimensions
x = tf.reshape(img_in, shape=[-1, w, h, c]) # -1: invariate to batch size
# First convolutional layer
# Output shape: [batch_size, w/2, h/2, channels=filters]
x = tf.layers.conv2d(x, kernel_size=5, filters=256, strides=2,
padding='same', activation=activation)
x = tf.layers.dropout(x, keep_prob) # sets a fraction (1-keep_prob) of the inputs to 0
# Second convolutional layer
# Output shape: [batch_size, w/2, h/2, channels=filters]
x = tf.layers.conv2d(x, kernel_size=5, filters=128, strides=1,
padding='same', activation=activation)
x = tf.layers.dropout(x, keep_prob)
# Third convolutional layer
# Output layer: [batch_size, w/2, h/2, channels=filters]
x = tf.layers.conv2d(x, kernel_size=5, filters=64, strides=1,
padding='same', activation=activation)
x = tf.layers.dropout(x, keep_prob)
# Reshaping output from 3rd conv. layer before sending it to the fully connected layer
# Shape: [batch_size, w/2*h/2*channels=filters from 3rd convolution]
x = tf.contrib.layers.flatten(x)
# Reduces the dimensionality of the output space before lrelu
x = tf.layers.dense(x, units=128, activation=activation) # Outputs [batch_size, units]
# Gives the probability of the image being real; Outputs [batch_size, units]
x = tf.layers.dense(x, units=1, activation=tf.nn.sigmoid)
# Returns a tensor [batch_size, 1]: a prob for each image in the batch
return x
def generator(z, keep_prob=keep_prob, is_training=is_training):
factor = 4 # Factor required to get the noise to the right size
# ORIGINAL IMGS MUST HAVE DIM DIVISIBLE BY 4 (unless we change the strides)
noise_w = int(w/factor) # Noise fed into the generator is smaller than the input images
noise_h = int(h/factor) # and grows to the input size as it flows through the generator
activation = lrelu # leaky-relu
momentum = 0.9 # Used in batch_norm: decay for the moving average
with tf.variable_scope("generator", reuse=None):
# Input Layer (Noise)
x = z # Shape: [batch_size, n_noise]
# First layer (fully connected): reducing the noise vector by rescaling with 'factor'
# Shape: here, we went from n_noise=64 to (factor**2)*c=48
x = tf.layers.dense(x, units=factor * factor * c, activation=activation)
x = tf.layers.dropout(x, keep_prob)
# First Batch Normalization layer:
x = tf.contrib.layers.batch_norm(x, is_training=is_training, decay=momentum)
# Reshape the noise vector into a stack of c matrices of size (factor x factor)
x = tf.reshape(x, shape=[-1, factor, factor, c])
# Enlarge the noise images using binlinear interpolation
# Resulting sizes: noise_w = original_w*factor noise_h = original_h*factor
x = tf.image.resize_images(x, size=[noise_w, noise_h])
# First convolutional layer: applies 256 different kernels over each image in the batch, with stride of 2
# Kernel shape: [5, 5, 3]
# Output shape: [batch_size, noise_w*2, noise_h*2, filters=256]
x = tf.layers.conv2d_transpose(x, kernel_size=5, filters=256, strides=2, padding='same', activation=activation)
x = tf.layers.dropout(x, keep_prob) #2
# Second batch norm layer
x = tf.contrib.layers.batch_norm(x, is_training=is_training, decay=momentum)
# Second convolutional layer: applies 128 different kernels over each "image" from the previous layer, with stride of 2
# Kernel shape: [5, 5, 256]
# Output shape: [batch_size, noise_w*4=original_w, noise_h*4=original_h, filters=128]
x = tf.layers.conv2d_transpose(x, kernel_size=5, filters=128, strides=2, padding='same', activation=activation)
x = tf.layers.dropout(x, keep_prob) #3
# Third batch norm layer
x = tf.contrib.layers.batch_norm(x, is_training=is_training, decay=momentum)
# Third convolutional layer: applies 64 different kernels over each "image" from the previous layer, with stride of 1
# Kernel shape: [5, 5, 128]
# Output shape: [batch_size, noise_w*4=original_w, noise_h*4=original_h, filters=64]
x = tf.layers.conv2d_transpose(x, kernel_size=5, filters=64, strides=1, padding='same', activation=activation)
x = tf.layers.dropout(x, keep_prob) #4
# Fourth batch norm layer
x = tf.contrib.layers.batch_norm(x, is_training=is_training, decay=momentum)
# Fourth convolutional layer: applied 3 different kernels over each "image" from the previous layer, with stride of 1
# Kernel shape: [5, 5, 64]
# Output shape: [batch_size, noise_w*4=original_w, noise_h*4=original_h, filters=c]
# The resulting output shape is now indentical to that of our original images [w,h,c] where c is 3 for RGB images
x = tf.layers.conv2d_transpose(x, kernel_size=5, filters=c, strides=1, padding='same', activation=tf.nn.sigmoid)
# Returns
return x
# initialize generator object
g = generator(noise, keep_prob, is_training)
# print(g)
# initialize 2 discrimininator obejcts, d_real will be fed real images and d_fake will be fed the generated images
d_real = discriminator(X_in)
d_fake = discriminator(g, reuse=True) # reuse=True ensures that the weights are the same for both discrimininator objects
# define 2 different variable scopes, one for the generator and one for the disrciminator
vars_g = [var for var in tf.trainable_variables() if var.name.startswith("generator")]
vars_d = [var for var in tf.trainable_variables() if var.name.startswith("discriminator")]
# initialize l2 regularization functions, one each for generator and discriminator
# will be passed to the optimizer along with the loss functions
d_reg = tf.contrib.layers.apply_regularization(tf.contrib.layers.l2_regularizer(1e-6), vars_d)
g_reg = tf.contrib.layers.apply_regularization(tf.contrib.layers.l2_regularizer(1e-6), vars_g)
# discriminator has two loss functions, one for each disrciminator object (d_real and d_fake)
# loss_d_real measures how often the discriminator correctly classifies real data as real
loss_d_real = binary_cross_entropy(tf.ones_like(d_real), d_real)
# loss_d_fake measures how often the discriminator correctly classifies fake data as fake
loss_d_fake = binary_cross_entropy(tf.zeros_like(d_fake), d_fake)
# loss_g measures how often the discriminator incorrectly classified fake data as real
loss_g = tf.reduce_mean(binary_cross_entropy(tf.ones_like(d_fake), d_fake))
# get average of loss_d_real and loss_d_fake for an overall loss function for discriminator
loss_d = tf.reduce_mean(0.5 * (loss_d_real + loss_d_fake))
# get update_ops and add as control dependency (required for moving average of means and std dev's in batch_norm)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
# minimize the discriminator loss plus the l-2 regularization of discriminator's weights
# use SGD for discriminator
optimizer_d = tf.train.GradientDescentOptimizer(.005).minimize(loss_d + d_reg, var_list=vars_d)
# minimize the generator loss plus the l-2 regularization of generator's weights
# use ADAM for generator
optimizer_g = tf.train.AdamOptimizer(.005).minimize(loss_g + g_reg, var_list=vars_g)
# initialize tf sessions and load the global variables
sess = tf.Session()
sess.run(tf.global_variables_initializer())
# training
txtprint("training")
num_iterations = 10000
for i in range(num_iterations):
# set both discriminator and generator to be trained simultaneously
train_d = True
train_g = True
keep_prob_train = 0.6 #0.5
# generate a batch of noise vectors, to be input into generator
n = np.random.uniform(0.0, 1.0, [batch_size, n_noise]).astype(np.float32)
# generate a random batch of real images, save as a list of numpy arrays
batch = [b for b in next_batch(num=batch_size)]
# run one pass through the networks, passing both real images and the noise vectors
d_real_ls, d_fake_ls, g_ls, d_ls = sess.run([loss_d_real, loss_d_fake, loss_g, loss_d], feed_dict={X_in: batch, noise: n, keep_prob: keep_prob_train, is_training:True})
# d_fake_ls_init = d_fake_ls #pretty sure this is unnecessary, is never referenced again
d_real_ls = np.mean(d_real_ls)
d_fake_ls = np.mean(d_fake_ls)
g_ls = g_ls
d_ls = d_ls
# if loss of the discriminator is greater than 1.35 times the loss of the generator, stop training the generator for now
if g_ls * 1.35 < d_ls:
train_g = False
pass
# if loss of the generator is greater than 1.35 times the loss of the discriminator, stop training the discriminator for now
if d_ls * 1.35 < g_ls:
train_d = False
pass
# run a second pass, allowing either the discriminator or generator to catch up
if train_d:
sess.run(optimizer_d, feed_dict={noise: n, X_in: batch, keep_prob: keep_prob_train, is_training:True})
if train_g:
sess.run(optimizer_g, feed_dict={noise: n, keep_prob: keep_prob_train, is_training:True})
losses_to_print = str(d_ls) + "," + str(g_ls)
txtprint(losses_to_print, outfile=losses_file)
# print progress output
if not i % 10:
txtprint('Iter: {}'.format(i))
txtprint('D loss: {:.4}'.format(d_ls))
txtprint('G_loss: {:.4}'.format(g_ls))
txtprint(' ')
if not train_g:
txtprint("not training generator")
if not train_d:
txtprint("not training discriminator")
# get generator to see output images
gen_imgs = sess.run(g, feed_dict = {noise: n, keep_prob: 1.0, is_training:False})
imgs = [img[:,:,:] for img in gen_imgs]
# create montage of 16 of the generated images
m = montage(imgs[0:16])
imsave(out_dir + "/" + str(i).zfill(5) + ".png", m)