forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharg_ops.cc
246 lines (199 loc) · 5.74 KB
/
arg_ops.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
#include "caffe2/operators/arg_ops.h"
#include <functional>
#include "caffe2/utils/math.h"
namespace caffe2 {
namespace {
template <typename T, class Compare, class Context>
void ComputeArgImpl(
const int prev_size,
const int next_size,
const int n,
const Compare& comp,
const T* X,
int64_t* Y,
Context* context) {
math::Set<int64_t, Context>(prev_size * next_size, int64_t(0), Y, context);
for (int i = 0; i < prev_size; ++i) {
const T* cur_X = X + i * n * next_size + next_size;
for (int k = 1; k < n; ++k) {
for (int j = 0; j < next_size; ++j) {
int64_t* cur_Y = Y + i * next_size + j;
if (comp(*cur_X, X[i * n * next_size + *cur_Y * next_size + j])) {
*cur_Y = k;
}
++cur_X;
}
}
}
}
} // namespace
template <>
template <typename T>
bool ArgMaxReducer<CPUContext>::operator()(
const int prev_size,
const int next_size,
const int n,
const T* X,
int64_t* Y,
CPUContext* context) const {
ComputeArgImpl(prev_size, next_size, n, std::greater<T>(), X, Y, context);
return true;
}
template <>
template <typename T>
bool ArgMinReducer<CPUContext>::operator()(
const int prev_size,
const int next_size,
const int n,
const T* X,
int64_t* Y,
CPUContext* context) const {
ComputeArgImpl(prev_size, next_size, n, std::less<T>(), X, Y, context);
return true;
}
REGISTER_CPU_OPERATOR(ArgMax, ArgOp<CPUContext, ArgMaxReducer<CPUContext>>);
REGISTER_CPU_OPERATOR(ArgMin, ArgOp<CPUContext, ArgMinReducer<CPUContext>>);
namespace {
std::vector<TensorShape> InferTensor(
const OperatorDef& def,
const std::vector<TensorShape>& in) {
std::vector<TensorShape> out(1);
ArgumentHelper helper(def);
int axis = helper.GetSingleArgument("axis", -1);
const bool keep_dims = helper.GetSingleArgument("keepdims", true);
const auto& in_dims = in[0].dims();
auto* out_dims = out[0].mutable_dims();
if (axis == -1) {
axis = in_dims.size() - 1;
}
for (int i = 0; i < axis; ++i) {
out_dims->Add(in_dims.Get(i));
}
if (keep_dims) {
out_dims->Add(1);
}
for (int i = axis + 1; i < in_dims.size(); ++i) {
out_dims->Add(in_dims.Get(i));
}
out[0].set_data_type(TensorProto::INT64);
return out;
}
} // namespace
OPERATOR_SCHEMA(ArgMax)
.NumInputs(1)
.NumOutputs(1)
.TensorInferenceFunction(InferTensor)
.SetDoc(R"DOC(
Retrieve the argmax of an axis dimension specified by the `axis`
argument. Given an input tensor and two arguments (`axis` and
`keepdims`), returns a tensor containing the indices of the largest
element along the given axis. If the `keepdims` arg is *True* (default),
the shape of the output tensor matches the input tensor except the
`axis` dimension equals 1. Else, the `axis` dimension of the output
tensor is removed.
Github Links:
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/arg_ops.cc
<details>
<summary> <b>Example</b> </summary>
**Code**
```
workspace.ResetWorkspace()
op = core.CreateOperator(
"ArgMax",
["X"],
["Indices"],
axis=2,
keepdims=False
)
workspace.FeedBlob("X", (np.random.randint(10, size=(3,3,3))).astype(np.float32))
print("X:", workspace.FetchBlob("X"))
workspace.RunOperatorOnce(op)
print("Indices:", workspace.FetchBlob("Indices"))
```
**Result**
```
X: [[[4. 9. 6.]
[6. 6. 1.]
[9. 5. 4.]]
[[6. 7. 4.]
[7. 9. 1.]
[3. 2. 8.]]
[[3. 4. 6.]
[5. 2. 7.]
[1. 5. 7.]]]
Indices: [[1 0 0]
[1 1 2]
[2 2 2]]
```
</details>
)DOC")
.Input(0, "X", "*(type: Tensor`<float>`)* Input tensor.")
.Output(
0,
"Indices",
"*(type: Tensor`<float>`)* Tensor of indices for the largest values.")
.Arg("axis", "*(type: int; default: -1)* The axis to get argmax.")
.Arg(
"keepdims",
"*(type: bool; default: True)* If True (default), the output tensor "
"shape will match the input tensor shape except the `axis` dimension "
"equals 1. Else, the `axis` dimension of the output tensor is removed.");
OPERATOR_SCHEMA(ArgMin)
.NumInputs(1)
.NumOutputs(1)
.TensorInferenceFunction(InferTensor)
.SetDoc(R"DOC(
Retrieve the argmin of an axis dimension specified by the `axis`
argument. Given an input tensor and two arguments (`axis` and
`keepdims`), returns a tensor containing the indices of the smallest
element along the given axis. If the `keepdims` arg is *True* (default),
the shape of the output tensor matches the input tensor except the
`axis` dimension equals 1. Else, the `axis` dimension of the output
tensor is removed.
Github Links:
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/arg_ops.cc
<details>
<summary> <b>Example</b> </summary>
**Code**
```
workspace.ResetWorkspace()
op = core.CreateOperator(
"ArgMin",
["X"],
["Indices"],
axis=1
)
workspace.FeedBlob("X", (np.random.randint(10, size=(5,5))).astype(np.float32))
print("X:", workspace.FetchBlob("X"))
workspace.RunOperatorOnce(op)
print("Indices:", workspace.FetchBlob("Indices"))
```
**Result**
```
X: [[9. 4. 6. 4. 1.]
[5. 9. 8. 3. 4.]
[6. 1. 0. 2. 9.]
[7. 8. 2. 4. 9.]
[3. 9. 4. 9. 4.]]
Indices: [[4]
[3]
[2]
[2]
[0]]
```
</details>
)DOC")
.Input(0, "X", "*(type: Tensor`<float>`)* Input tensor.")
.Output(
0,
"Indices",
"*(type: Tensor`<float>`)* Tensor of indices for the smallest values.")
.Arg("axis", "*(type: int; default: -1)* The axis to get argmin.")
.Arg(
"keepdims",
"*(type: bool; default: True)* If True (default), the output tensor "
"shape will match the input tensor shape except the `axis` dimension "
"equals 1. Else, the `axis` dimension of the output tensor is removed.");
SHOULD_NOT_DO_GRADIENT(ArgMax);
SHOULD_NOT_DO_GRADIENT(ArgMin);
} // namespace caffe2