forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathengine.cpp
988 lines (885 loc) · 35.9 KB
/
engine.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
#include <torch/csrc/autograd/engine.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/autograd/functions/basic_ops.h>
#include <torch/csrc/autograd/grad_mode.h>
#include <torch/csrc/autograd/anomaly_mode.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/utils/memory.h>
#include <ATen/DeviceGuard.h>
#include <ATen/ExpandUtils.h>
#include <ATen/Parallel.h>
#include <c10/util/Exception.h>
#include <c10/core/Stream.h>
#include <c10/core/Event.h>
#include <c10/core/DeviceGuard.h>
#include <c10/util/Optional.h>
#include <c10/core/StreamGuard.h>
#include <atomic>
#include <condition_variable>
#include <cstdint>
#include <functional>
#include <iostream>
#include <memory>
#include <mutex>
#include <set>
#include <string>
#include <thread>
#include <unordered_set>
#include <typeinfo>
#include <sstream>
#include <queue>
#include <TH/TH.h>
namespace torch { namespace autograd {
// Threads spawned by the engine are assigned a constant 'worker_device'
// specifying what device they process work for. This variable is initialized
// at thread creation time and is constant afterwards. This is used when
// handling reentrant backwards calls; see Note [Reentrant backwards]
static thread_local int worker_device = NO_DEVICE;
// This variable is true if ALL invocations in the stack of re-entrant engine
// invocations are imperative backwards. This special variable is needed for the
// gradient checkpointing feature only.
static thread_local bool checkpoint_valid = true;
// XXX: Changes to the way multithreading works in execute should be done with
// great care. Right now the implementation guarantees that a single function's
// apply will never be entered concurrently (even if multiple graphs are
// executed at the same time). Adding multiple threads per-device or removing
// engine thread affinity to the device can break this invariant, and we depend
// on it in a few places (e.g. AccumulateGrad function).
// Number of nested reentrant backwards calls currently on this thread
static thread_local int current_depth = 0;
// Total nested reentrant backwards calls over all threads for workder_device
static thread_local int total_depth = 0;
// Returns true when t2 should be (weakly) BEFORE t1 in the queue.
// Shutdown tasks are first and then empty NodeTask are next.
struct CompareNodeTaskTime {
bool operator()(NodeTask const & t1, NodeTask const & t2) {
if (t2.isShutdownTask_) {
return true;
} else if (!t1.fn_ || t1.isShutdownTask_) {
return false;
} else if (!t2.fn_) {
return true;
} else if (t1.getReentrantDepth() == t2.getReentrantDepth()) {
return t1.fn_->sequence_nr() < t2.fn_->sequence_nr();
} else {
return t1.getReentrantDepth() < t2.getReentrantDepth();
}
}
};
struct ReadyQueue {
std::priority_queue<NodeTask, std::vector<NodeTask>, CompareNodeTaskTime> heap_;
// To notify threads waiting on the ReadyQueue of available tasks on the heap_
std::condition_variable not_empty_;
// To protect read and writes to heap_
mutable std::mutex mutex_;
// incrementOutstandingTasks indicates whether or not we should increment
// 'outstanding_tasks_' for the associated GraphTask. This should mostly
// always be true, see the doc for 'enqueue_blocked_task_on_cpu' for when we
// might set this to false.
void push(NodeTask item, bool incrementOutstandingTasks = true);
void pushShutdownTask();
NodeTask pop();
size_t size() const;
};
// Note [Reentrant backwards]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
// To understand the reentrant backwards problem, we have to notice two
// aspects of how the autograd engine is implemented today:
//
// 1. When you call Engine::execute(), you want to block until
// differentiation finishes so that you can get the final result variables
// of the backwards pass.
//
// 2. The engine operates by having a single worker thread per work queue,
// and every work queue is pinned to a specific device where the
// operation is executed.
//
// The problem is, suppose that you call backward() inside of a worker
// thread. By property (1), we're supposed to block until the nested task
// finishes. However, by property (2), this worker thread is on the
// hook for processing the tasks assigned to it; we better not block,
// because then all of our backward executions (including the one we
// just started) will deadlock!
//
// We maintain a pool of threads waiting for work to do
// When a reentrant backwards call occurs, the current thread blocks
// and a thread from the pool is woken up to complete the blocking tasks and an
// any other tasks that would have been assigned to that worker. If there are no
// threads available, a new thread is spawned. The new thread will continue
// processing tasks from the same ReadyQueue as the parent worker
//
// When the GraphTask is finished, the parent worker thread that is waiting on
// the task is notified and the current thread returns to the pool.
// Note [Streaming backwards]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
// On CUDA devices the autograd engine's device operations are run on the
// same stream that ran them in forward. This requires automatically
// syncing the streams so that function A finishes producing its
// output before function B consumes it.
//
// This synchronization occurs when outputs are placed into input buffers.
// The functions corresponding to input buffer positions have metadata
// recording their streams from forward, and during backward this
// data is used to sync the producer's stream with the consumer's.
//
// When a CUDA function is run either all its inputs were accumulated on the
// stream used to run the function OR the inputs are on different devices
// and the function is responsible for properly acquiring them.
//
// Historically, the autograd engine ran all CUDA operations on their
// device's DEFAULT stream. This meant that syncing (implicitly or
// explicitly) with the default streams was required before and after
// calling backward(). It also meant, however, that syncing with
// the default streams after backward() was sufficient to ensure
// that backward() had finished running. To preserve this historic
// behavior the engine records "leaf streams," the streams of the
// leaf variables, and syncs them with their device's default stream
// at the end of backward. All other streams are already synchronized
// to happen before at least one leaf stream (per the above), so syncing
// the leaf streams with the default streams is sufficient to implement
// the historic behavior.
int NodeTask::getReentrantDepth() const {
std::shared_ptr<GraphTask> graph_task = base_.lock();
TORCH_INTERNAL_ASSERT(graph_task, "GraphTask is no longer valid!")
return graph_task->reentrant_depth_;
}
bool graph_task_completed(const std::shared_ptr<GraphTask>& graph_task) {
return graph_task->outstanding_tasks_.load() == 0 ||
(graph_task->exit_on_error_ && graph_task->has_error_.load());
}
auto ReadyQueue::push(NodeTask item, bool incrementOutstandingTasks) -> void {
{
// Lock mutex for writing to heap_
std::lock_guard<std::mutex> lock(mutex_);
if (incrementOutstandingTasks) {
std::shared_ptr<GraphTask> graph_task = item.base_.lock();
TORCH_INTERNAL_ASSERT(graph_task, "GraphTask is no longer valid!");
++graph_task->outstanding_tasks_;
}
heap_.push(std::move(item));
}
not_empty_.notify_one();
}
auto ReadyQueue::pushShutdownTask() -> void {
{
std::lock_guard<std::mutex> lock(mutex_);
heap_.push(NodeTask({}, nullptr, InputBuffer(0), true));
}
not_empty_.notify_one();
}
size_t ReadyQueue::size() const {
// Lock mutex for accesses to heap_
std::unique_lock<std::mutex> lock(mutex_);
return heap_.size();
}
auto ReadyQueue::pop() -> NodeTask {
// Lock mutex for accesses to heap_
std::unique_lock<std::mutex> lock(mutex_);
not_empty_.wait(lock, [this]{ return !heap_.empty(); });
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
auto task = std::move(const_cast<NodeTask&>(heap_.top())); heap_.pop();
return task;
}
// This limit is based on the default python recursion limit which is 1000
Engine::Engine() : max_recursion_depth_(100) {}
// Send shutdown tasks to all ReadyQueues if no backward tasks are running
// Even though readyQueue should be empty, shutdown tasks have the highest
// priority
Engine::~Engine() {
bool noBackward = true;
for (auto& queue: ready_queues_) {
std::lock_guard<std::mutex> lock(queue->mutex_);
noBackward = noBackward && queue->heap_.empty();
}
if (noBackward) {
for (auto& queue : ready_queues_) {
queue->pushShutdownTask();
}
}
// Othewise threads are leaked
}
void Engine::set_device(int device) {
// NB: We MUST NOT construct the guard for device -1,
// as in some settings we compile with cuda, but
// have lazy stubs for CUDA functionality (so actually
// attempting to setup a guard(-1) will cause an
// error, because it will still query cudaGetDevice).
//
// Don't use DeviceGuard here because its destructor may be called before the
// device is reset. This is fine because the device is thread local.
if (device != -1) {
for (size_t i = 0; i < static_cast<size_t>(c10::DeviceType::COMPILE_TIME_MAX_DEVICE_TYPES); i++) {
auto* impl = c10::impl::device_guard_impl_registry[i].load();
if (impl && device < impl->deviceCount()) {
impl->setDevice(at::Device(static_cast<c10::DeviceType>(i), device));
}
}
}
worker_device = device;
}
auto Engine::thread_init(int device) -> void {
at::init_num_threads();
// Note [Allocating GPUs to autograd threads]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// What's our strategy here? Originally, the autograd engine was written
// with only CUDA in mind. We allocate one thread to handle all CPU
// operations, and a thread per CUDA device.
//
// But what if we have OTHER devices? There are two plausible
// strategies:
//
// - We can allocate threads equal to max(num_cuda_devices, num_xla_devices,
// ...) and colocate cuda device 0 with xla device 0
// - We can allocate threads equal to sum(num_cuda_devices, num_xla_devices,
// ...) keeping everyone separate.
//
// We don't have any good reason to prefer one or the other, so we've
// arbitrarily picked to colocate devices. Maybe the other approach is
// better.
set_device(device);
std::shared_ptr<GraphTask> graph_task = nullptr;
thread_main(graph_task, /* reentrant_thread */ false);
}
// NOTE: graph_tasks do not necessarily form a stack. Imagine this
// case:
//
// +----> Eval1
// Root
// +----> Eval2
//
// Once Root is executed, both Eval1 and Eval2 are added to the ready queue.
// Next, Eval1 is run and this causes the worker to enter thread_main again.
// Then, it pops the next task from the queue, but at this point it is Eval2.
// It enters thread_main once again, but now with graph_task of Eval2, which is
// completely unrelated to that of Eval1 (it's not a recursive call).
// It's all ok and is handled right now, but it should be accounted for
// in case this code is to be changed.
auto Engine::thread_main(
const std::shared_ptr<GraphTask>& graph_task,
bool reentrant_thread) -> void {
// Either reentrant_thread should be false or we should pass in a non-null
// graph_task.
TORCH_INTERNAL_ASSERT(reentrant_thread != (graph_task == nullptr));
auto queue = ready_queues_[worker_device + 1];
// Why the test on graph_task->outstanding_tasks_? See
// Note [Reentrant backwards]
while (!reentrant_thread || graph_task->outstanding_tasks_ > 0) {
NodeTask task = queue->pop();
// This will only work if the worker is running a non backward task
// TODO Needs to be fixed this to work in all cases
if (task.isShutdownTask_) {
C10_LOG_API_USAGE_ONCE("torch.autograd.thread_shutdown");
break;
}
// local_graph_task represents the graph_task we retrieve from the queue.
// The outer graph_task represents the overall graph_task we need to execute
// for reentrant execution.
std::shared_ptr<GraphTask> local_graph_task;
if (!(local_graph_task = task.base_.lock())) {
// Reentrant thread's graph task should not expire since we hold a
// reference to it in this method.
TORCH_INTERNAL_ASSERT(!reentrant_thread);
LOG(INFO) << "GraphTask for function " << task.fn_->name()
<< " is no longer valid, skipping execution";
continue;
}
if (task.fn_ && !local_graph_task->has_error_.load()) {
AutoGradMode grad_mode(local_graph_task->grad_mode_);
try {
evaluate_function(local_graph_task, task.fn_.get(), task.inputs_);
} catch (std::exception& e) {
thread_on_exception(local_graph_task, task.fn_, e);
}
}
// Decrement the outstanding tasks.
--local_graph_task->outstanding_tasks_;
// Check if we've completed execution.
bool gt_completed = graph_task_completed(local_graph_task);
if (gt_completed) {
// We don't need to explicitly notify the owner thread, since
// 'mark_graph_task_completed' would mark the Future as completed and this
// would notify the owner thread that the task has been completed.
mark_graph_task_completed(local_graph_task);
}
auto base_owner = local_graph_task->owner_;
// Send a dummy function task to the owning thread just to
// ensure that it's not sleeping. If it has work, it might see that
// graph_task->outstanding_tasks_ == 0 before it gets to the task, but
// it's a no-op anyway.
// This is not necessary if the owning thread is not a device thread or the
// current thread is the owning thread.
if (base_owner != NO_DEVICE && base_owner != worker_device &&
gt_completed) {
// Synchronize outstanding_tasks_ with queue mutex
std::atomic_thread_fence(std::memory_order_release);
ready_queue_by_index(base_owner)
.push(NodeTask(local_graph_task, nullptr, InputBuffer(0)));
}
}
}
void Engine::reentrant_thread_init() {
at::init_num_threads();
auto tp_shared= thread_pool_shared_;
while(true) {
std::unique_lock<std::mutex> lk(tp_shared->mutex_);
++thread_pool_shared_->num_workers_;
tp_shared->work_.wait(lk, [&tp_shared]{ return !tp_shared->graphtasks_queue_.empty();});
--thread_pool_shared_->num_workers_;
auto task = tp_shared->graphtasks_queue_.front();
tp_shared->graphtasks_queue_.pop();
lk.unlock();
std::shared_ptr<GraphTask> graph_task;
if (!(graph_task = task.lock())) {
LOG(INFO) << "GraphTask has expired, skipping reentrant execution";
continue;
}
set_device(graph_task->owner_);
total_depth = graph_task->reentrant_depth_;
thread_main(graph_task, /* reentrant thread*/ true);
}
}
void Engine::thread_on_exception(
std::shared_ptr<GraphTask>& graph_task,
const std::shared_ptr<Node>& fn,
std::exception& e) {
graph_task->set_exception(e, fn);
}
void GraphTask::set_exception(
std::exception& e,
const std::shared_ptr<Node>& fn) {
std::lock_guard<std::mutex> lock(mutex_);
if (!has_error_.load()) {
if (AnomalyMode::is_enabled() && fn) {
fn->metadata()->print_stack();
}
has_error_ = true;
if (!future_result_->completed()) {
future_result_->setError(e.what());
} else {
TORCH_INTERNAL_ASSERT(future_result_->hasError());
}
}
}
static variable_list call_pre_hooks(Node& fn, variable_list inputs) {
for (const auto& hook : fn.pre_hooks()) {
inputs = (*hook)(inputs);
}
return inputs;
}
static variable_list call_post_hooks(Node& fn, variable_list outputs, const variable_list& inputs) {
for (const auto& hook : fn.post_hooks()) {
outputs = (*hook)(outputs, inputs);
}
return outputs;
}
static bool is_compatible_type(const at::TensorOptions& expected, const at::TensorOptions& actual) {
// Types are compatible if they exactly match or if the gradient is a sparse
// version of the expected type.
return expected.type_equal(actual) || (actual.is_sparse() && expected.device().type() == actual.device().type());
}
void validate_outputs(
const edge_list& edges,
variable_list& grads,
const std::function<std::string(const std::string&)>& format_error) {
if (grads.size() != edges.size()) {
std::stringstream ss;
ss << "invalid number of gradients - expected ";
ss << edges.size() << ", but got " << grads.size();
AT_ERROR(format_error(ss.str()));
}
for (size_t i = 0; i < grads.size(); i++) {
const auto& edge = edges[i];
if (!edge.is_valid()) continue;
const auto& metadata = edge.function->input_metadata(edge.input_nr);
const auto& output = grads[i];
if (!output.defined()) {
// FIXME: TestJit.test_ge_optimized fails this assertion.
// std::stringstream ss;
// ss << "undefined gradient at index " << i;
// AT_ERROR(format_error(ss.str()));
continue;
}
if (!grads[i].sizes().equals(metadata.shape())) {
if (!at::is_expandable_to(metadata.shape(), grads[i].sizes())) {
std::stringstream ss;
ss << "invalid gradient at index " << i << " - got ";
ss << grads[i].sizes() << " but expected shape compatible with ";
ss << metadata.shape();
AT_ERROR(format_error(ss.str()));
}
grads[i] = at::sum_to(std::move(grads[i]), metadata.shape());
}
TORCH_CHECK(isFloatingType(grads[i].scalar_type()));
if (c10::typeMetaToScalarType(metadata.options().dtype()) != grads[i].scalar_type()) {
grads[i] = grads[i].to(c10::typeMetaToScalarType(metadata.options().dtype()));
}
if (!is_compatible_type(metadata.options(), grads[i].options())) {
std::stringstream ss;
ss << "invalid gradient at index " << i << " - expected type ";
ss << metadata.options() << " but got " << grads[i].options();
AT_ERROR(format_error(ss.str()));
}
auto output_device = output.device();
if (output_device != metadata.device()) {
std::stringstream ss;
ss << "invalid gradient at index " << i << " - expected device ";
ss << metadata.device() << " but got " << output_device;
AT_ERROR(format_error(ss.str()));
}
}
}
static variable_list call_function(
std::shared_ptr<GraphTask>& graph_task,
Node* func,
InputBuffer& inputBuffer) {
bool prev_checkpoint_valid_state = checkpoint_valid;
checkpoint_valid =
graph_task->can_checkpoint() && prev_checkpoint_valid_state;
auto& fn = *func;
auto inputs =
call_pre_hooks(fn, InputBuffer::variables(std::move(inputBuffer)));
if (!graph_task->keep_graph_) {
fn.will_release_variables();
}
const auto has_post_hooks = !fn.post_hooks().empty();
variable_list outputs;
{
at::DebugInfoGuard guard(graph_task->debug_info_);
if (has_post_hooks) {
// In functions/accumulate_grad.cpp, there is some logic to check the
// conditions under which the incoming gradient can be stolen directly
// (which elides a deep copy) instead of cloned. One of these conditions
// is that the incoming gradient's refcount must be 1 (nothing else is
// referencing the same data). Stashing inputs_copy here bumps the
// refcount, so if post hooks are employed, it's actually still ok for
// accumulate_grad.cpp to steal the gradient if the refcount is 2.
//
// "new_grad.use_count() <= 1 + !post_hooks().empty()" in
// accumulate_grad.cpp accounts for this, but also creates a silent
// dependency between engine.cpp (ie, this particular engine
// implementation) and accumulate_grad.cpp.
//
// If you change the logic here, make sure it's compatible with
// accumulate_grad.cpp.
auto inputs_copy = inputs;
outputs = fn(std::move(inputs_copy));
} else {
outputs = fn(std::move(inputs));
}
}
validate_outputs(fn.next_edges(), outputs, [&](const std::string& msg) {
std::ostringstream ss;
ss << "Function " << fn.name() << " returned an " << msg;
return ss.str();
});
checkpoint_valid = prev_checkpoint_valid_state;
if(has_post_hooks){
// NOLINTNEXTLINE(bugprone-use-after-move)
return call_post_hooks(fn, std::move(outputs), inputs);
}
return outputs;
}
void Engine::evaluate_function(
std::shared_ptr<GraphTask>& graph_task,
Node* func,
InputBuffer& inputs) {
// If exec_info_ is not empty, we have to instrument the execution
auto& exec_info_ = graph_task->exec_info_;
if (!exec_info_.empty()) {
auto& fn_info = exec_info_.at(func);
if (auto* capture_vec = fn_info.captures_.get()) {
// Lock mutex for writing to graph_task->captured_vars_.
std::lock_guard<std::mutex> lock(graph_task->mutex_);
for (auto capture : *capture_vec) {
graph_task->captured_vars_[capture.output_idx_] =
inputs[capture.input_idx_];
}
}
if (!fn_info.needed_) {
// Skip execution if we don't need to execute the function.
return;
}
}
// Switches to a function's CUDA stream (if applicable) before calling it
const auto opt_parent_stream = (*func).stream(c10::DeviceType::CUDA);
c10::OptionalStreamGuard parent_stream_guard{opt_parent_stream};
auto outputs = call_function(graph_task, func, inputs);
auto& fn = *func;
if (!graph_task->keep_graph_) {
fn.release_variables();
}
int num_outputs = outputs.size();
if (num_outputs == 0) { // Note: doesn't acquire the mutex
// Records leaf stream (if applicable)
// See note "Streaming backwards"
if (opt_parent_stream) {
std::lock_guard<std::mutex> lock(graph_task->mutex_);
graph_task->leaf_streams.emplace(*opt_parent_stream);
}
return;
}
if (AnomalyMode::is_enabled()) {
AutoGradMode grad_mode(false);
for (int i = 0; i < num_outputs; ++i) {
auto& output = outputs[i];
at::OptionalDeviceGuard guard(device_of(output));
if (output.defined() && isnan(output).any().item<uint8_t>()) {
std::stringstream ss;
ss << "Function '" << fn.name() << "' returned nan values in its " << i << "th output.";
throw std::runtime_error(ss.str());
}
}
}
// Lock mutex for the accesses to GraphTask dependencies_ and not_ready_ below
std::lock_guard<std::mutex> lock(graph_task->mutex_);
for (int i = 0; i < num_outputs; ++i) {
auto& output = outputs[i];
const auto& next = fn.next_edge(i);
if (!next.is_valid()) continue;
// Check if the next function is ready to be computed
bool is_ready = false;
auto& dependencies = graph_task->dependencies_;
auto it = dependencies.find(next.function.get());
if (it == dependencies.end()) {
auto name = next.function->name();
throw std::runtime_error(std::string("dependency not found for ") + name);
} else if (--it->second == 0) {
dependencies.erase(it);
is_ready = true;
}
auto& not_ready = graph_task->not_ready_;
auto not_ready_it = not_ready.find(next.function.get());
if (not_ready_it == not_ready.end()) {
// Skip functions that aren't supposed to be executed
if (!exec_info_.empty()) {
auto it = exec_info_.find(next.function.get());
if (it == exec_info_.end() || !it->second.should_execute()) {
continue;
}
}
// No buffers have been allocated for the function
InputBuffer input_buffer(next.function->num_inputs());
// Accumulates into buffer
const auto opt_next_stream = next.function->stream(c10::DeviceType::CUDA);
input_buffer.add(next.input_nr,
std::move(output),
opt_parent_stream,
opt_next_stream);
if (is_ready) {
auto& queue = ready_queue(input_buffer.device());
queue.push(
NodeTask(graph_task, next.function, std::move(input_buffer)));
} else {
not_ready.emplace(next.function.get(), std::move(input_buffer));
}
} else {
// The function already has a buffer
auto &input_buffer = not_ready_it->second;
// Accumulates into buffer
const auto opt_next_stream = next.function->stream(c10::DeviceType::CUDA);
input_buffer.add(next.input_nr,
std::move(output),
opt_parent_stream,
opt_next_stream);
if (is_ready) {
auto& queue = ready_queue(input_buffer.device());
queue.push(
NodeTask(graph_task, next.function, std::move(input_buffer)));
not_ready.erase(not_ready_it);
}
}
}
}
/* Computes the number of dependencies for each function which requires grad */
auto Engine::compute_dependencies(Node* root, GraphTask& task) -> void {
// Just to make sure that they will never be added to the queue again
std::unordered_set<Node*> seen;
std::vector<Node*> queue { root };
// Queue contains all nodes that will start propagating gradients.
// We no longer have to expand functions that don't require grad.
auto& dependencies = task.dependencies_;
while (!queue.empty()) {
auto fn = queue.back(); queue.pop_back();
for (const auto& edge : fn->next_edges()) {
if (auto next_ptr = edge.function.get()) {
dependencies[next_ptr] += 1;
const bool was_inserted = seen.insert(next_ptr).second;
if (was_inserted) queue.push_back(next_ptr);
}
}
}
}
struct ClearCallbacks {
ClearCallbacks(std::vector<std::function<void()>>& callbacks,
std::mutex &callbacks_lock)
: callbacks_(callbacks)
, callbacks_lock_(callbacks_lock) { clear(); }
~ClearCallbacks() { clear(); }
void clear() {
std::lock_guard<std::mutex> lock(callbacks_lock_);
callbacks_.clear();
}
std::vector<std::function<void()>>& callbacks_;
std::mutex& callbacks_lock_;
};
auto Engine::execute(const edge_list& roots,
const variable_list& inputs,
bool keep_graph,
bool create_graph,
const edge_list& outputs) -> variable_list {
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
validate_outputs(roots, const_cast<variable_list&>(inputs), [](const std::string& msg) {
return msg;
});
// Callbacks are only valid for the duration of this run and should always be cleared
// Lock post_callbacks_lock_ before clearing final_callbacks_
ClearCallbacks _cb_guard(final_callbacks_, post_callbacks_lock_);
auto graph_task = std::make_shared<GraphTask>(
keep_graph,
create_graph,
worker_device == NO_DEVICE ? 0 : total_depth + 1);
// Now compute the dependencies for all executable functions and queue the root
auto graph_root = std::make_shared<GraphRoot>(roots, inputs);
compute_dependencies(graph_root.get(), *graph_task);
if (!outputs.empty()) {
graph_task->init_to_execute(*graph_root, outputs);
}
return execute_with_graph_task(graph_task, graph_root)->wait();
}
void Engine::enqueue_blocked_task_on_cpu(NodeTask task) {
std::call_once(start_threads_flag_, &Engine::start_threads, this);
ready_queue(at::kCPU).push(
std::move(task), /* incrementOutstandingTasks */ false);
}
std::shared_ptr<FutureVariableList> Engine::execute_with_graph_task(
const std::shared_ptr<GraphTask>& graph_task,
std::shared_ptr<Node> graph_root) {
std::call_once(start_threads_flag_, &Engine::start_threads, this);
// Lock mutex for GraphTask.
std::unique_lock<std::mutex> lock(graph_task->mutex_);
ready_queue(at::kCPU).push(
NodeTask(graph_task, std::move(graph_root), InputBuffer(0)));
// Not a worker
if (worker_device == NO_DEVICE) {
// graph_task_exec_post_processing is done when the Future is marked as
// completed in mark_graph_task_completed.
return graph_task->future_result_;
} else {
graph_task->owner_ = worker_device;
if (current_depth >= max_recursion_depth_) {
// See Note [Reentrant backwards]
// If reached the max depth, switch to a different thread
add_thread_pool_task(graph_task);
// graph_task_exec_post_processing is done when the Future is marked as
// completed in mark_graph_task_completed.
return graph_task->future_result_;
} else {
// Total depth needs to be updated only in this codepath, since it is
// not used in the block above (when we call add_thread_pool_task).
// In the codepath above, GraphTask.reentrant_depth_ is used to
// bootstrap total_depth in the other thread.
++total_depth;
// Get back to work while we wait for our new graph_task to
// complete!
++current_depth;
lock.unlock();
thread_main(graph_task, /* reentrant_thread */ true);
--current_depth;
--total_depth;
// The graph task should have completed and the associated future should
// be marked completed as well.
TORCH_INTERNAL_ASSERT(graph_task->future_result_->completed());
// We return a completed future here since 'thread_main' above is a call
// blocking an autograd engine thread and not the thread the user called
// 'execute_with_graph_task' from.
return graph_task->future_result_;
}
}
}
void Engine::mark_graph_task_completed(std::shared_ptr<GraphTask>& graph_task) {
std::unique_lock<std::mutex> lock(graph_task->mutex_);
if (graph_task->future_result_->completed()) {
// Future is already marked as completed.
return;
}
try {
auto val = graph_task_exec_post_processing(graph_task);
graph_task->future_result_->markCompleted(val);
} catch (std::exception& e) {
graph_task->future_result_->setError(e.what());
}
}
variable_list Engine::graph_task_exec_post_processing(
const std::shared_ptr<GraphTask>& graph_task) {
if (!graph_task->not_ready_.empty()) {
throw std::runtime_error("could not compute gradients for some functions");
}
// Lock mutex during each iteration for accessing final_callbacks.size()
// Unlocking is necessary, because the callback can register
// more callbacks (or they can be registered from other threads
// while it's waiting.
std::unique_lock<std::mutex> cb_lock(post_callbacks_lock_);
// WARNING: Don't use a range-for loop here because more callbacks may be
// added in between callback calls, so iterators may become invalidated.
// NOLINTNEXTLINE(modernize-loop-convert)
for (size_t i = 0; i < final_callbacks_.size(); ++i) {
cb_lock.unlock();
final_callbacks_[i]();
cb_lock.lock();
}
// Syncs leaf streams with default streams (if necessary)
// See note "Streaming backwards"
for (const auto& leaf_stream : graph_task->leaf_streams) {
const auto guard = c10::impl::VirtualGuardImpl{c10::DeviceType::CUDA};
const auto default_stream = guard.getDefaultStream(leaf_stream.device());
if (leaf_stream != default_stream) {
auto event = c10::Event{c10::DeviceType::CUDA};
event.record(leaf_stream);
default_stream.wait(event);
}
}
return graph_task->captured_vars_;
}
// note that when python is present, this base engine will be overriden
// with a PythonEngine. Because this typically happens before get_default_engine
// is called, this base engine will never be created.
static Engine& get_base_engine() {
static Engine engine;
return engine;
}
std::atomic<EngineStub> engine_stub(get_base_engine);
void set_default_engine_stub(EngineStub stub) {
engine_stub.store(stub);
}
Engine& Engine::get_default_engine() {
return engine_stub.load()();
}
void Engine::queue_callback(std::function<void()> callback) {
std::lock_guard<std::mutex> lock(post_callbacks_lock_);
final_callbacks_.emplace_back(std::move(callback));
}
bool Engine::is_checkpoint_valid() {
return checkpoint_valid;
}
size_t Engine::ready_queue_size(at::Device device) {
if (ready_queues_.empty()) {
// The vector ready_queues_ is initialized in start_threads, but this method
// can be called before start_threads. Adding this check to avoid index
// out of bound error.
return 0;
}
return ready_queue(device).size();
}
auto Engine::ready_queue(at::Device device) -> ReadyQueue& {
// See Note [Allocating GPUs to autograd threads]
if (device.type() == at::kCPU) {
return *ready_queues_.at(0);
} else {
return *ready_queues_.at(device.index() + 1);
}
}
// See Note [Allocating GPUs to autograd threads]
// NB: This would become obsolete if we truly allocated a CPU thread
// per device, rather than colocate.
auto Engine::ready_queue_by_index(int device_index) -> ReadyQueue& {
return *ready_queues_.at(device_index + 1);
}
auto Engine::start_threads() -> void {
// See Note [Allocating GPUs to autograd threads]
c10::DeviceIndex num_devices = 0;
for (const auto& impl_atomic : c10::impl::device_guard_impl_registry) {
auto* impl = impl_atomic.load();
if (impl) {
num_devices = std::max(num_devices, impl->deviceCount());
}
}
// One for CPU, plus one for every GPU device (but colocate GPUs of different
// types)
int num_threads = num_devices + 1;
ready_queues_ = std::vector<std::shared_ptr<ReadyQueue>>(num_threads);
for (auto& queue : ready_queues_)
queue.reset(new ReadyQueue());
thread_pool_shared_ = std::make_shared<ThreadPoolShared>();
for (int i = 0; i < num_threads; ++i) {
std::thread t(&Engine::thread_init, this, i - 1);
t.detach();
}
}
void Engine::add_thread_pool_task(const std::weak_ptr<GraphTask>& graph_task) {
std::unique_lock<std::mutex> lck(thread_pool_shared_->mutex_);
// There may already be some items on the graphtasks_queue_ added by other
// threads but not enough workers to get to the the new task that will be
// added
bool create_thread = (thread_pool_shared_->num_workers_ <= thread_pool_shared_->graphtasks_queue_.size());
thread_pool_shared_->graphtasks_queue_.push(graph_task);
// Don't need to be holding the lock while actually creating the thread
lck.unlock();
if (create_thread) {
std::thread t(&Engine::reentrant_thread_init, this);
t.detach();
}
// This works even if new thread is created because wait() will test the
// predicate before waiting
thread_pool_shared_->work_.notify_one();
}
void GraphTask::init_to_execute(Node& graph_root, const edge_list& outputs) {
exec_info_[&graph_root].needed_ = true;
int output_idx = 0;
for (auto & output_edge : outputs) {
Node *output = output_edge.function.get();
auto & info = exec_info_[output];
if (!info.captures_)
info.captures_ = make_unique<std::vector<ExecInfo::Capture>>();
info.captures_->emplace_back(output_edge.input_nr, output_idx++);
}
captured_vars_.resize(output_idx);
// NB: this is an uglier version (recursion replaced with iteration) of the following code:
// is_needed = {}
// def compute_is_needed(fn):
// if fn not in is_needed:
// is_needed[fn] = any(compute_is_needed(next_edge)
// for next_edge in fn.next_edges)
// return is_needed[fn]
struct Frame {
Frame (Node *fn) : fn_(fn), next_next_fn_(0) {}
Node *fn_;
size_t next_next_fn_;
Node* get_next_fn() {
const auto & next = fn_->next_edges();
auto num_next = next.size();
while (next_next_fn_ < num_next) {
auto fn = next[next_next_fn_++].function.get();
if (fn) return fn;
}
return nullptr;
}
};
std::vector<Frame> stack;
std::unordered_set<Node*> seen;
for (const auto & input : graph_root.next_edges()) {
if (seen.count(input.function.get()) > 0) continue;
stack.emplace_back(input.function.get());
while (!stack.empty()) {
auto &frame = stack.back();
if (Node *next_fn = frame.get_next_fn()) {
if (/* bool unseen = */ seen.emplace(next_fn).second) {
stack.emplace_back(next_fn);
continue; // recurse
}
} else {
// NB: if we were using real recursion we could have saved some lookups
// using a return value from recursive call. It would make this manually unrolled
// version a lot more complicated, so I skipped that.
const auto & next_edges = frame.fn_->next_edges();
const bool needed = std::any_of(
next_edges.begin(), next_edges.end(), [&](const Edge& edge) {
auto it = exec_info_.find(edge.function.get());
return it != exec_info_.end() && it->second.should_execute();
});
exec_info_[frame.fn_].needed_ = needed;
stack.pop_back();
}
}
}
}
}} // namespace torch::autograd