-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdata.py
313 lines (253 loc) · 10.5 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import os
import logging
from pathlib import Path
import numpy as np
import torch
from torch.utils.data import Dataset, Subset
from torch.distributions import Categorical
import torchvision.transforms as transforms
from timm.data import create_dataset, ImageDataset
__all__ = [
'get_dataset','get_data_dir',
]
_DATASET_CFG = {
'mnist': {
'num_classes': 10,
},
'fmnist': {
'num_classes': 10,
},
'svhn': {
'num_classes': 10,
},
'svhn28': {
'num_classes': 10,
},
'cifar10': {
'num_classes': 10,
},
'cifar100': {
'num_classes': 100,
},
'tiny-imagenet': {
'num_classes': 200,
},
'imagenet': {
'num_classes': 1000
},
}
translation_flip = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
])
class WrapperDataset(Dataset):
def __init__(self, dataset):
super().__init__()
self.dataset = dataset
@property
def targets(self):
return self.dataset.targets
@targets.setter
def targets(self, __value):
return setattr(self.dataset, 'targets', __value)
@property
def transform(self):
return self.dataset.transform
@transform.setter
def transform(self, __value):
return setattr(self.dataset, 'transform', __value)
def __getitem__(self, i):
return self.dataset[i]
def __len__(self):
return len(self.dataset)
class LabelNoiseDataset(WrapperDataset):
def __init__(self, dataset, n_labels=10, label_noise=0):
super().__init__(dataset)
self.C = n_labels
if label_noise > 0:
orig_targets = self.targets
self.noisy_targets = torch.where(
torch.rand(len(orig_targets)) < label_noise,
Categorical(probs=torch.ones(self.C) / self.C).sample(torch.Size([len(orig_targets)])),
torch.Tensor(orig_targets).long())
def __getitem__(self, i):
X, y = super().__getitem__(i)
y = self.noisy_targets[i]
return X, y
def get_data_dir(data_dir=None):
if data_dir is None:
if os.environ.get('DATADIR') is not None:
data_dir = os.environ.get('DATADIR')
logging.debug(f'Using default data directory from environment "{data_dir}".')
else:
home_data_dir = Path().home() / 'datasets'
data_dir = str(home_data_dir.resolve())
logging.debug(f'Using default HOME data directory "{data_dir}".')
Path(data_dir).mkdir(parents=True, exist_ok=True)
return data_dir
def get_dataset(dataset, root=None, train_subset=1, label_noise=0,
indices_path=None, **kwargs):
root = get_data_dir(data_dir=root)
if dataset == 'mnist':
train_data, test_data = get_mnist(root=root,**kwargs)
elif dataset == 'fmnist':
train_data, test_data = get_fmnist(root=root,**kwargs)
elif dataset == 'svhn':
train_data, test_data = get_svhn(root=root,**kwargs)
elif dataset == 'svhn28':
train_data, test_data = get_svhn28(root=root,**kwargs)
elif dataset == 'cifar10':
train_data, test_data = get_cifar10(root=root,**kwargs)
elif dataset == 'cifar100':
train_data, test_data = get_cifar100(root=root,**kwargs)
elif dataset == 'tiny-imagenet':
train_data, test_data = get_tiny_imagenet(root=root,**kwargs)
elif dataset == 'imagenet':
train_data, test_data = get_imagenet(root=root,**kwargs)
else:
raise NotImplementedError
num_classes = _DATASET_CFG[dataset]['num_classes']
if label_noise > 0:
train_data = LabelNoiseDataset(train_data, n_labels=num_classes, label_noise=label_noise)
if np.abs(train_subset) < 1:
n = len(train_data)
ns = int(n * np.abs(train_subset))
randperm = np.load(indices_path) if indices_path is not None else torch.randperm(n)
assert len(randperm) == n, f'Permutation length {len(randperm)} does not match dataset length {n}'
## NOTE: -ve train_subset fraction to get latter segment.
randperm = randperm[ns:] if train_subset < 0 else randperm[:ns]
train_data = Subset(train_data, randperm)
logging.info(f'Train Dataset Size: {len(train_data)}; Test Dataset Size: {len(test_data)}')
setattr(train_data, 'num_classes', num_classes)
return train_data, test_data
def get_mnist(root=None, extra_transform=None, **_):
datasets = []
for split in ['train', 'test']:
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,)),
])
if extra_transform is not None:
transform = transforms.Compose([ extra_transform, transform ])
datasets.append(create_dataset('torch/mnist', root=root, split=split,
transform=transform, download=True))
datasets[-1].num_inputs = 1
return datasets
def get_fmnist(root=None, extra_transform=None, **_):
datasets = []
for split in ['train', 'test']:
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((.5,), (.5,)),
])
if extra_transform is not None:
transform = transforms.Compose([ extra_transform, transform ])
datasets.append(create_dataset('torch/fashion_mnist', root=root, split=split,
transform=transform, download=True))
datasets[-1].num_inputs = 1
return datasets
def get_svhn(root=None, extra_transform=None, aug=True):
'''Dataset SVHN
root (str): Root directory where 'svhn' folder exists or will be downloaded to.
'''
from torchvision.datasets import SVHN
(Path(root) / 'svhn').mkdir(parents=True, exist_ok=True)
datasets = []
for split in ['train', 'test']:
transform = transforms.Compose([
translation_flip if split=='train' and aug else transforms.Compose([]),
transforms.ToTensor(),
transforms.Normalize((0.4376821, 0.4437697, 0.47280442), (0.19803012, 0.20101562, 0.19703614)),
])
if extra_transform is not None:
transform = transforms.Compose([ extra_transform, transform ])
datasets.append(SVHN(root=Path(root) / 'svhn', split=split,
transform=transform, download=True))
datasets[-1].num_inputs = 3
return datasets
def get_svhn28(root=None, extra_transform=None, aug=True):
'''Dataset SVHN
root (str): Root directory where 'svhn' folder exists or will be downloaded to.
'''
from torchvision.datasets import SVHN
(Path(root) / 'svhn').mkdir(parents=True, exist_ok=True)
datasets = []
for split in ['train', 'test']:
transform = transforms.Compose([
translation_flip if split=='train' and aug else transforms.Compose([]),
transforms.Resize(28),
transforms.ToTensor(),
transforms.Normalize((0.4376821, 0.4437697, 0.47280442), (0.19803012, 0.20101562, 0.19703614)),
])
if extra_transform is not None:
transform = transforms.Compose([ extra_transform, transform ])
datasets.append(SVHN(root=Path(root) / 'svhn', split=split,
transform=transform, download=True))
datasets[-1].num_inputs = 3
return datasets
def get_cifar10(root=None, extra_transform=None, aug=True):
datasets = []
for split in ['train', 'test']:
transform = transforms.Compose([
translation_flip if split=='train' and aug else transforms.Compose([]),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (.247,.243,.261)),
])
if extra_transform is not None:
transform = transforms.Compose([ extra_transform, transform ])
datasets.append(create_dataset('torch/cifar10', root=root, split=split,
transform=transform, download=True))
datasets[-1].num_inputs = 3
return datasets
def get_cifar100(root=None, extra_transform=None, aug=True):
datasets = []
for split in ['train', 'test']:
transform = transforms.Compose([
translation_flip if split=='train' and aug else transforms.Compose([]),
transforms.ToTensor(),
transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)),
])
if extra_transform is not None:
transform = transforms.Compose([ extra_transform, transform ])
datasets.append(create_dataset('torch/cifar100', root=root, split=split,
transform=transform, download=True))
datasets[-1].num_inputs = 3
return datasets
def get_tiny_imagenet(root=None):
_TINY_IMAGENET_TRAIN_TRANSFORM = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.4802, 0.4481, 0.3975], [0.2302, 0.2265, 0.2262]),
])
_TINY_IMAGENET_TEST_TRANSFORM = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.4802, 0.4481, 0.3975], [0.2302, 0.2265, 0.2262]),
])
train_data = ImageDataset(root=Path(root) / 'tiny-imagenet-200' / 'train',
transform=_TINY_IMAGENET_TRAIN_TRANSFORM)
val_data = ImageDataset(root=Path(root) / 'tiny-imagenet-200' / 'val',
transform=_TINY_IMAGENET_TEST_TRANSFORM)
## NOTE: Folder not in the right format.
# test_data = ImageFolder(root=Path(root) / 'tiny-imagenet-200' / 'test', transform=_TINY_IMAGENET_TEST_TRANSFORM)
return train_data, val_data
def get_imagenet(root=None):
_IMAGENET_TRAIN_TRANSFORM = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
_IMAGENET_TEST_TRANSFORM = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
train_data = ImageDataset(root=Path(root) / 'imagenet' / 'train',
transform=_IMAGENET_TRAIN_TRANSFORM)
val_data = ImageDataset(root=Path(root) / 'imagenet' / 'val',
transform=_IMAGENET_TEST_TRANSFORM)
return train_data, val_data