-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathprojectors.py
628 lines (510 loc) · 21 KB
/
projectors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
import torch
import numpy as np
import torch.nn as nn
from copy import deepcopy
import random
from functools import partial
from .linear_operator_base import (
Lazy,
LazyKron,
ConcatLazy,
LazyPerm,
LinearOperator,
LazyDirectSum,
)
_DEFAULT_SEED = 137
def _getchainattr(obj, attr):
attributes = attr.split(".")
for a in attributes:
obj = getattr(obj, a)
return obj
def _delchainattr(obj, attr):
attributes = attr.split(".")
for a in attributes[:-1]:
obj = getattr(obj, a)
try:
delattr(obj, attributes[-1])
except AttributeError:
raise
def _setchainattr(obj, attr, value):
attributes = attr.split(".")
for a in attributes[:-1]:
obj = getattr(obj, a)
setattr(obj, attributes[-1], value)
def flatten(tensorList):
flatList = []
for t in tensorList:
flatList.append(t.contiguous().view(t.numel()))
return torch.cat(flatList)
def unflatten_like(vector, likeTensorList):
outList = []
i = 0
for tensor in likeTensorList:
n = tensor.numel()
outList.append(vector[i: i + n].view(tensor.shape))
i += n
return outList
class QuantizingWrapper(nn.Module):
def __init__(self, net, centroids, assignments):
super().__init__()
self.subspace_params = deepcopy(net.subspace_params)
_delchainattr(net, "subspace_params")
self._forward_net = [net]
self.centroids = [centroids]
self.assignments = assignments
def to(self, *args, **kwargs):
self._forward_net[0].to(*args, **kwargs)
return super().to(*args, **kwargs)
def forward(self, *args, **kwargs):
_setchainattr(self._forward_net[0], "subspace_params", self.subspace_params)
return self._forward_net[0](*args, **kwargs)
class FixedPytorchSeed(object):
def __init__(self, seed):
self.seed = seed
def __enter__(self):
self.pt_rng_state = torch.random.get_rng_state()
self.cuda_rng_state = torch.cuda.get_rng_state_all()
if self.seed is not None:
torch.manual_seed(self.seed)
torch.cuda.manual_seed_all(self.seed)
def __exit__(self, *_):
torch.random.set_rng_state(self.pt_rng_state)
torch.cuda.set_rng_state_all(self.cuda_rng_state)
class FixedNumpySeed(object):
def __init__(self, seed):
self.seed = seed
def __enter__(self):
self.np_rng_state = np.random.get_state()
np.random.seed(self.seed)
self.rand_rng_state = random.getstate()
random.seed(self.seed)
def __exit__(self, *args):
np.random.set_state(self.np_rng_state)
random.setstate(self.rand_rng_state)
class IDModule(nn.Module):
"""Intrinsic dimensionality wrapper module..
Takes in the network, a projector (a function(D,d)-> projection LinearOperator),
and the target intrinsic dimensionality.
Example usage:
id_net = IDModule(net, lambda D,d: LazyRandom(D,d), 1000)
"""
def __init__(self, net, projector, dimension=1000):
super().__init__()
self.d = dimension
self._forward_net = [net]
initnet = deepcopy(net)
for orig_name, orig_p in initnet.named_parameters():
if orig_p.requires_grad:
_delchainattr(net, orig_name)
aux = [(n, p) for n, p in initnet.named_parameters() if p.requires_grad]
self.names, self.trainable_initparams = zip(*aux)
self.trainable_initparams = [param for param in self.trainable_initparams]
self.names = list(self.names)
self.D = sum([param.numel() for param in self.trainable_initparams])
self.subspace_params = nn.Parameter(torch.zeros(self.d))
self.P = projector(self.D, self.d, self.trainable_initparams, self.names)
def to(self, *args, **kwargs):
self._forward_net[0].to(*args, **kwargs)
self.trainable_initparams = [
param.to(*args, **kwargs) for param in self.trainable_initparams
]
return super().to(*args, **kwargs)
def forward(self, *args, **kwargs):
flat_projected_params = self.P @ self.subspace_params
unflattened_params = unflatten_like(
flat_projected_params, self.trainable_initparams
)
iterables = zip(self.names, self.trainable_initparams, unflattened_params)
for p_name, init, proj_param in iterables:
p = init + proj_param.view(*init.shape)
_setchainattr(self._forward_net[0], p_name, p)
return self._forward_net[0](*args, **kwargs)
class RandomMultiply(torch.autograd.Function):
CHUNK_MAX = 2e8
@staticmethod
def forward(ctx, v, D, d, seed):
ctx.info = (D, d, seed)
with FixedPytorchSeed(seed):
D_chunks = int(np.ceil((D * d) / RandomMultiply.CHUNK_MAX))
D_chunksize = D // D_chunks
D_tot = 0
Pv_chunks = []
while D_tot < D:
D_chunk = min(D_chunksize, D - D_tot)
D_tot += D_chunk
Pv_chunks.append(
torch.randn(D_chunk, d, device=v.device) @ v / np.sqrt(D)
)
Pv = torch.cat(Pv_chunks, dim=0)
return Pv
@staticmethod
def backward(ctx, grad_output):
D, d, seed = ctx.info
grad_in = 0.0
with FixedPytorchSeed(seed):
D_chunks = int(np.ceil((D * d) / RandomMultiply.CHUNK_MAX))
D_chunksize = D // D_chunks
split_grad_outs = torch.split(grad_output, D_chunksize, dim=0)
for grad_out in split_grad_outs:
grad_in += (
torch.randn(grad_out.shape[0], d, device=grad_output.device).T
@ grad_out
/ np.sqrt(D)
)
return grad_in, None, None, None
class LazyRandom(LinearOperator):
def __init__(self, D, d, params, names, seed=_DEFAULT_SEED):
super().__init__(None, (D, d))
self.info = (D, d, seed)
def _matvec(self, v):
D, d, seed = self.info
return RandomMultiply.apply(v, *self.info)
def _matmat(self, v):
D, d, seed = self.info
return RandomMultiply.apply(v, *self.info)
def __repr__(self):
return f"LazyRandom({self.D}, {self.d}, seed={self.seed})"
class LazyRandomQR(LinearOperator):
def __init__(self, D, d, params, names, seed=_DEFAULT_SEED):
super().__init__(None, (D, d))
self.info = (D, d, seed)
self.P = torch.randn(D, d)
self.P, _ = torch.linalg.qr(self.P, mode="reduced")
def _matvec(self, v):
return self.P.to(v.device) @ v
def _matmat(self, v):
return self.P.to(v.device) @ v
def __repr__(self):
return f"LazyRandomQR({self.D}, {self.d}, seed={self.seed})"
class LazyOneSidedKron(LinearOperator):
def __init__(self, D, d, params, names, order=2, seed=_DEFAULT_SEED):
super().__init__(None, (D, d))
self.seed = seed
assert np.floor(D ** (1 / order)) == D ** (1 / order)
self.order = order
def _matvec(self, v):
seed = self.seed
k = int(self.shape[0] ** (1 / self.order))
out_tensor = torch.zeros(*(self.order * [k]), device=v.device)
for i in range(self.order):
Pvi = RandomMultiply.apply(v, k, self.shape[-1], seed) / (
np.sqrt(self.order) * np.sqrt(k) ** (self.order - 1)
)
# unsqueeze all axes except i
for j in range(self.order):
if j != i:
Pvi = Pvi.unsqueeze(j)
out_tensor += Pvi
# re randomize/ advance the seed
with FixedPytorchSeed(seed):
seed = int(torch.randint(high=2**31, size=(1,))[0])
return out_tensor
def RoundedKron(D, d, params, names, order=2, seed=_DEFAULT_SEED):
rounded_D = int(np.floor(D ** (1 / order))) ** order
with FixedPytorchSeed(seed):
fitting_kron = LazyOneSidedKron(rounded_D, d, params, names, order, seed)
perm = torch.randperm(D)
if rounded_D == D:
return LazyPerm(perm) @ fitting_kron
else:
newseed = int(torch.randint(high=2**31, size=(1,))[0])
leftover_random = LazyRandom(D - rounded_D, d, params, names, newseed) * (
1 / np.sqrt(D / (D - rounded_D))
)
return LazyPerm(perm) @ ConcatLazy([fitting_kron, leftover_random])
def RoundedDoubleKron(D, d, params, names, order=2, seed=_DEFAULT_SEED):
rounded_D = int(np.floor(D ** (1 / order)))
rounded_d = int(np.floor(d ** (1 / order)))
with FixedPytorchSeed(seed):
seed = int(torch.randint(high=2**31, size=(1,))[0])
Rs = []
for i in range(order):
Rs.append(LazyRandom(rounded_D, rounded_d, params, names, seed))
seed = int(torch.randint(high=2**31, size=(1,))[0])
RkR = LazyKron(Rs)
if rounded_D**order == D or rounded_d**order == d:
extra = Lazy(
torch.randn(D - rounded_D**order, d - rounded_d**order) / np.sqrt(D)
)
else:
extra = LazyRandom(
D - rounded_D**order, d - rounded_d**order, params, names, seed
)
M = LazyDirectSum([RkR, extra])
perm = torch.randperm(D)
return LazyPerm(perm) @ M
def RoundedDoubleKronQR(D, d, params, names, order=2, seed=_DEFAULT_SEED):
rounded_D = int(np.floor(D ** (1 / order)))
rounded_d = int(np.floor(d ** (1 / order)))
# TODO: double check that there is no normalization as the QR does not need it
with FixedPytorchSeed(seed):
seed = int(torch.randint(high=2**31, size=(1,))[0])
Rs = []
for i in range(order):
Rs.append(LazyRandomQR(rounded_D, rounded_d, params, names, seed))
seed = int(torch.randint(high=2**31, size=(1,))[0])
RkR = LazyKron(Rs)
if rounded_D**order == D or rounded_d**order == d:
extra = Lazy(
torch.randn(D - rounded_D**order, d - rounded_d**order) / np.sqrt(D)
)
else:
extra = LazyRandom(
D - rounded_D**order, d - rounded_d**order, params, names, seed
)
M = LazyDirectSum([RkR, extra])
perm = torch.randperm(D)
return LazyPerm(perm) @ M
def FiLMLazyRandom(D, d, params, names, seed=_DEFAULT_SEED):
def bn_or_fc(name):
return (
("bn" in name)
or ("fc" in name)
or ("norm" in name)
or ("classifier" in name)
)
return FilterLazyRandom(D, d, params, names, bn_or_fc, seed)
class FilterLazyRandom(LinearOperator):
def __init__(self, D, d, params, names, condition, seed=_DEFAULT_SEED):
super().__init__(None, (D, d))
i = 0
ids = []
for name, param in zip(names, params):
if condition(name):
ids.append(np.arange(i, i + param.numel()))
i += param.numel()
self.ids = np.concatenate(ids)
assert len(ids) > 0
assert i == D
self.dense_random = LazyRandom(len(self.ids), d, params, names, seed)
print(D, len(self.ids), d)
def _matvec(self, v):
filtered_v_params = self.dense_random @ v
out = torch.zeros(self.shape[0], device=v.device, dtype=v.dtype)
out[self.ids] = filtered_v_params
return out
class LazySTFiLMRDKronQR(LinearOperator):
def __init__(self, D, d, params, names, seed=_DEFAULT_SEED):
super().__init__(None, (D, d))
def condition_fn1(x): return x.find('bn') >= 0
def condition_fn2(x): return not condition_fn1(x)
ids1 = find_locations_from_condition(names, params, condition_fn1)
ids2 = find_locations_from_condition(names, params, condition_fn2)
self.bn_d = len(ids1)
self.ids = np.argsort(np.concatenate([ids1, ids2]))
self.P = RoundedDoubleKronQR(D - self.bn_d, d - self.bn_d, params, names)
def _matvec(self, v):
return self._matmat(v)
def _matmat(self, v):
v1, v2 = v[:self.bn_d], v[self.bn_d:]
output = torch.concat([v1, self.P @ v2])
return output[self.ids]
def find_locations_from_condition(names, params, condition_fn):
i, ids = 0, []
for name, param in zip(names, params):
if condition_fn(name):
ids.append(np.arange(i, i + param.numel()))
i += param.numel()
ids = np.concatenate(ids)
return ids
def find_all_batch_norm(net):
leaf_criteria = (nn.BatchNorm1d, nn.BatchNorm2d)
class Counter:
count = 0
def count_params_in_module(self, x):
print(x)
for y in list(x.parameters()):
self.count += y.numel()
counter = Counter()
# TODO: check if this is the correct way to pass modules
selective_apply(list(net.modules())[0], counter, leaf_criteria)
return counter.count
def is_leaf(module, leaf_criteria):
no_children_att = not hasattr(module, 'children')
no_children = not list(module.children())
is_leaf_criteria = isinstance(module, leaf_criteria)
return no_children_att or no_children or is_leaf_criteria
def selective_apply(module, counter, leaf_criteria):
if is_leaf(module, leaf_criteria):
if isinstance(module, leaf_criteria):
counter.count_params_in_module(module)
else:
for c in module.children():
selective_apply(c, counter, leaf_criteria)
def CombinedRDKronFiLM(D, d, params, names, seed=_DEFAULT_SEED):
rdkron = RoundedDoubleKron(D, d, params, names, seed=seed)
FiLM = FiLMLazyRandom(D, d, params, names, seed=seed)
return (rdkron + FiLM) * (1 / np.sqrt(2))
def CombinedRDKronQRFiLM(D, d, params, names, seed=_DEFAULT_SEED):
rdkronqr = RoundedDoubleKronQR(D, d, params, names, seed=seed)
FiLM = FiLMLazyRandom(D, d, params, names, seed=seed)
return (rdkronqr + FiLM) * (1 / np.sqrt(2))
class SparseOperator(LinearOperator):
def __init__(self, D, d, params, names, seed=_DEFAULT_SEED):
super().__init__(None, (D, d))
s = np.sqrt(D)
with FixedNumpySeed(seed):
number_nonzero = np.random.binomial(D * d, 1.0 / s)
# print(number_nonzero)
nonzero_indices = np.random.choice(D * d, number_nonzero)
nonzero_indices2d = np.stack(
np.unravel_index(nonzero_indices, (D, d)), axis=0
)
# sample values from +-1
nonzero_values = np.random.choice([-1, 1], number_nonzero) / np.sqrt(s)
self.V = torch.sparse_coo_tensor(
nonzero_indices2d, nonzero_values, size=(D, d)
).float()
def _matvec(self, x):
assert x.shape[0] == self.shape[-1], f"{x.shape[0]} != {self.shape[-1]}"
return self.V.to(x.device) @ x
class FastfoodOperator(LinearOperator):
# Source: https://discuss.pytorch.org/t/fast-walsh-hadamard-transform/19341
class FWHT(torch.autograd.Function):
@staticmethod
def transform(x):
bit = dd = x.size(-1)
result = x.detach().cpu().numpy()
for _ in range(int(np.log2(dd))):
bit >>= 1
for i in range(dd):
if i & bit == 0:
j = i | bit
temp = np.copy(result[..., i])
result[..., i] += result[..., j]
result[..., j] = temp - result[..., j]
result /= np.sqrt(dd)
return torch.from_numpy(result).to(x.device)
@staticmethod
def forward(_, inputs):
return FastfoodOperator.FWHT.transform(inputs)
@staticmethod
def backward(_, grad_outputs):
return FastfoodOperator.FWHT.transform(grad_outputs)
def __init__(self, D, d, params, names, scale=1, seed=_DEFAULT_SEED):
super().__init__(None, (D, d))
self.D = D
self.real_d = d
self.d = 2 ** np.ceil(np.log2(d)).astype(int)
self.sigma = scale
blocks = np.ceil(self.D / self.d).astype(int)
with FixedPytorchSeed(seed):
self.S = torch.rand(blocks, self.d)
self.G = torch.randn(blocks, self.d)
self.B = 2 * (torch.rand(blocks, self.d) > 0.5).float() - 1
self.Pi = torch.randperm(self.d)
def _matvec(self, x):
"""Implicit P @ x
Assumed x is 1-D tensor.
"""
device = x.device
pad = self.d - self.real_d
if pad > 0:
x = torch.cat([x, torch.zeros(pad, device=device)], dim=-1)
GPiHBx = (
self.G.to(device)
* FastfoodOperator.FWHT.apply(self.B.to(device) * x)[..., self.Pi]
)
SHGPiHBx = self.S.to(device) * FastfoodOperator.FWHT.apply(GPiHBx)
result = SHGPiHBx.flatten()[: self.D] / (self.sigma * np.sqrt(self.d))
return result
def create_intrinsic_model(
base_net,
ckpt_path=None,
intrinsic_mode="dense",
intrinsic_dim=1000,
seed=None,
device=None,
):
if seed is None:
raise ValueError(
"Missing seed. Randomized projections will not be reproducible!"
)
net = None
if intrinsic_mode == "dense":
class DenseIDNet(IDModule):
def __init__(self, net, dimension=1000, seed=None, **_):
super().__init__(
net, partial(LazyRandom, seed=seed), dimension=dimension
)
net = DenseIDNet(base_net, dimension=intrinsic_dim, seed=seed)
elif intrinsic_mode == "sparse":
class SparseIDNet(IDModule):
def __init__(self, net, dimension=1000, seed=None, **_):
super().__init__(
net, partial(SparseOperator, seed=seed), dimension=dimension
)
net = SparseIDNet(base_net, dimension=intrinsic_dim, seed=seed)
elif intrinsic_mode == "fastfood":
class FastfoodIDNet(IDModule):
def __init__(self, net, dimension=1000, seed=None, **_):
super().__init__(
net, partial(FastfoodOperator, seed=seed), dimension=dimension
)
net = FastfoodIDNet(base_net, dimension=intrinsic_dim, seed=seed)
elif intrinsic_mode == "rkron":
class RoundedKronIDNet(IDModule):
def __init__(self, net, dimension=1000, order=2, seed=None, **_):
super().__init__(
net,
partial(RoundedKron, order=order, seed=seed),
dimension=dimension,
)
net = RoundedKronIDNet(base_net, dimension=intrinsic_dim, seed=seed)
elif intrinsic_mode == "rdkron":
class RoundedDoubleKronIDNet(IDModule):
def __init__(self, net, dimension=1000, order=2, seed=None, **_):
super().__init__(
net,
partial(RoundedDoubleKron, order=order, seed=seed),
dimension=dimension,
)
net = RoundedDoubleKronIDNet(base_net, dimension=intrinsic_dim, seed=seed)
elif intrinsic_mode == "rdkronqr":
class RoundedDoubleKronQRIDNet(IDModule):
def __init__(self, net, dimension=1000, order=2, seed=None, **_):
super().__init__(
net,
partial(RoundedDoubleKronQR, order=order, seed=seed),
dimension=dimension,
)
net = RoundedDoubleKronQRIDNet(base_net, dimension=intrinsic_dim, seed=seed)
elif intrinsic_mode == "film":
class FiLMIDNet(IDModule):
def __init__(self, net, dimension=1000, seed=None, **_):
super().__init__(
net, partial(FiLMLazyRandom, seed=seed), dimension=dimension
)
net = FiLMIDNet(base_net, dimension=intrinsic_dim, seed=seed)
elif intrinsic_mode == "filmrdkron":
class FiLMRDKronIDNet(IDModule):
def __init__(self, net, dimension=1000, seed=None, **_):
super().__init__(
net, partial(CombinedRDKronFiLM, seed=seed), dimension=dimension
)
net = FiLMRDKronIDNet(base_net, dimension=intrinsic_dim, seed=seed)
elif intrinsic_mode == "filmrdkronqr":
class FiLMRDKronQRIDNet(IDModule):
def __init__(self, net, dimension=1000, seed=None, **_):
super().__init__(
net, partial(CombinedRDKronQRFiLM, seed=seed), dimension=dimension
)
net = FiLMRDKronQRIDNet(base_net, dimension=intrinsic_dim, seed=seed)
elif intrinsic_mode == "stfilmkronqr":
class STFiLMRDKronQRIDNet(IDModule):
def __init__(self, net, dimension=1000, seed=None, **_):
super().__init__(
net, partial(LazySTFiLMRDKronQR, seed=seed), dimension=dimension
)
net = STFiLMRDKronQRIDNet(base_net, dimension=intrinsic_dim, seed=seed)
else:
raise NotImplementedError
if ckpt_path is not None:
weights = torch.load(ckpt_path)
if "subspace_params" in weights:
net.load_state_dict(weights)
else:
tmp = {}
tmp["subspace_params"] = weights["module.subspace_params"]
net.load_state_dict(tmp)
return net