Skip to content

Integrating 'omics data with biological networks by solving Steiner Tree problems

License

Notifications You must be signed in to change notification settings

adamsardar/stoneTrees

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

stoneTrees: an R package for solving Steiner tree problems

R-CMD-check Codecov test coverage License: MPL 2.0 Lifecycle: maturing

A package dedicated to finding solutions to Steiner tree problems in graphs using Integer Linear Programming (ILP). Motivation stems from a need for solutions to the Minimum Steiner Tree (MStT) and Maximum-Weight Connected Sub-graph (MWCS) problems in computational biology. For example:

  • Dittrich et al. (2008) demonstrate how MWCS is a means by which to combine per-gene expression data with mechanistic protein-protein interaction networks and extract functional modules in a data-driven way.
  • Liang et al. (2017) use MStT to infer phylogenies of mutated cancer cells from a dataset of copy-number variation (CNV).
  • Lam, Alexandersson and Pachter (2004) show that sequence alignment can be mapped to a Steiner tree problem.

This package serves as a faithful implementation of "Thinning out Steiner Trees" (with a few bells and whistles added on the sides) by Fischetti et al. (2017). This is the algorithm that more-or-less won the DIMACS11 competition on algorithms for solving Steiner Tree problems. A major advancement of Fischetti et al. is that ILP variables are only introduced for nodes, rather than edges as well, which dramatically decreases the run-time of the process.

Installation

> devtools::install_github("adamsardar/stoneTrees") 
> library(stoneTrees)

ILP Solvers

stoneTrees aims to be compatible with several ILP solvers; at current a user can chose from lpsymphony, Rglpk, lpSolve, rcbc and cplexAPI . The default solver is lpSolve. However, there is a strong recommendation for the open-source solver rcbc (perhaps Rglpk as a second choice) or, better yet, the proprietary cplexAPI solver. Installation of these packages, whilst relatively straightforward, is complex enough to affect the choice of default.

rcbc is not currently on CRAN and must be installed directly from the github page. The package README contains instructions for installation of dependencies. For Debian/Ubuntu run apt install coinor-libcbc-dev coinor-libclp-dev, after which devtools::install_github("dirkschumacher/rcbc") will install the package.

Rglpk can be easily installed. On Linux install the glpk-dev package (apt install libglpk-dev); on Mac OSX you can use brew (brew install glpk) and on Windows you can follow the community install guild. Following that install.packages("Rglpk") should work.

Usage

Problems are constructed using the $new method of the appropriate problem class and then a collector method is called. For the base MStT or MWCS problem, this involves calling nodeCentricSteinerTreeProblem$new() followed by $findSingleSteinerSolution().

By way of example, look at the lymphoma test dataset that comes with the package. It is a MWCS problem; a graph with node score attributes detailing prizes/costs of node inclusion:

library(igraph)
library(ggplot2)
qplot(V(lymphomaGraph)$nodeScore)

Most nodes have negative weights (costs) - the MWCS looks to group as many positive weights (prizes) together in a connected sub-graph.

>  lymphomaMWCS <- nodeCentricSteinerTreeProblem$new(lymphomaGraph)
>  lymphomaMWCS$findSingleSteinerSolution()
IGRAPH 6674598 UN-- 46 50 -- 
+ attr: nodeNameSep (g/c), SearchNetwork (g/c), name (v/c), nodeScore (v/n)
+ edges from 6674598 (vertex names):
 [1] 57 --58   58 --59   58 --96   96 --98   96 --106  90 --143  137--143  143--155  123--180  59 --380  28 --429 
[12] 143--473  180--491  490--501  96 --543  143--543  180--543  542--551  551--556  490--599  98 --608  62 --615 
[23] 143--650  551--650  28 --675  143--675  528--696  4  --808  490--808  528--808  543--808  696--808  4  --814 
[34] 63 --814  528--814  543--814  696--814  28 --927  143--931  98 --1059 615--1059 28 --1155 927--1155 556--896 
[45] 96 --1797 573--1797 96 --1720 543--962  501--1619 675--1879

If the user is interested in collecting sub-optimal solutions, then a different constructor is used that allows one to specify the solution tolerance parameter.

> lymphoma_multiMWCS <- subOptimalSteinerProblem$new(lymphomaGraph, solutionTolerance = 1)
> lymphoma_multiMWCS$identifyMultipleSteinerSolutions()
> lymphoma_multiMWCS$getSolutionPoolGraphs()
IGRAPH f0365e4 UN-- 57 84 -- 
+ attr: nodeNameSep (g/c), SearchNetwork (g/c), name (v/c), nodeScore (v/n)
+ edges from f0365e4 (vertex names):
 [1] 57 --58   58 --59   58 --96   96 --98   96 --106  90 --143  137--143  143--155  123--180  63 --373  90 --373 
[12] 320--373  59 --380  28 --429  143--473  180--491  373--491  314--494  314--501  490--501  62 --512  380--512 
[23] 429--512  473--512  314--528  96 --543  143--543  180--543  314--543  512--551  542--551  512--556  551--556 
[34] 320--599  490--599  98 --608  62 --615  143--650  551--650  28 --675  143--675  320--696  373--696  528--696 
[45] 528--697  696--697  494--757  491--759  494--759  528--759  543--759  697--759  512--766  4  --808  373--808 
[56] 490--808  494--808  528--808  543--808  696--808  4  --814  63 --814  314--814  373--814  528--814  543--814 
[67] 696--814  759--814  28 --927  143--931  98 --1059 615--1059 28 --1155 927--1155 556--896  96 --1797 573--1797
[78] 96 --1720 543--962  494--1619 501--1619 512--1769 675--1879 757--1987

Notice here that there are three stages: build the object (subOptimalSteinerProblem$new()), identify solutions and add them to the pool of distinct solutions (lymphoma_multiMWCS$identifyMultipleSteinerSolutions()) and finally extract solutions from the pool as graphs (lymphoma_multiMWCS$getSolutionPoolGraphs()).

If the user is interested in the bootstrapped Steiner Tree problem (aka the Steiner Forest problem), whereby initial seeds are repeatedly sub-sampled and the resultant Steiner problem solved, then a third class is used. This is a seed/terminal-based routine, so a graph with terminals must be used: one included in the package is the karateGraph problem. The methods used are: nodeCentricSteinerForestProblem$new(), $sampleMultipleBootstrapSteinerSolutions() which populates a solution pool with random draws from the Steiner forest problem and $getBootstrapSolutionPoolGraphs() which returns the aggregated result.

> nodeCentricSteinerForestProblem$new(karateGraph)$sampleMultipleBootstrapSteinerSolutions()$getBootstrapSolutionPoolGraphs()
IGRAPH 53c01e2 UN-- 5 7 -- Zachary
+ attr: name (g/c), SearchNetwork (g/c), name (v/c), isTerminal (v/l), .nodeID (v/n)
+ edges from 53c01e2 (vertex names):
[1] o--G w--G E--G o--H w--H E--H G--H

Notice the chaining of methods together.

References:

D. Beisser, G. W. Klau, T. Dandekar, T. Mueller and M. Dittrich (2010) BioNet: an R-package for the Functional Analysis of Biological Networks. Bioinformatics.

Fischetti M, Leitner M, Ljubić I, Luipersbeck M, Monaci M, Resch M, et al. Thinning out Steiner trees: a node-based model for uniform edge costs. Math Program Comput. dimacs11.cs.princeton.edu; 2017

Dittrich MT, Klau GW, Rosenwald A, Dandekar T, Müller T. Identifying functional modules in protein-protein interaction networks: An integrated exact approach. Bioinformatics. 2008

About

Integrating 'omics data with biological networks by solving Steiner Tree problems

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages