-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathevaluate.py
123 lines (95 loc) · 4.2 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
"""
Standalone script for a couple of simple evaluations/tests of trained models.
"""
import argparse
import os
import warnings
import torch
import torch.utils.data
from boilr.eval import BaseOfflineEvaluator
from boilr.utils.viz import img_grid_pad_value
from torchvision.utils import save_image
from experiment.experiment_manager import LVAEExperiment
class Evaluator(BaseOfflineEvaluator):
def run(self):
torch.set_grad_enabled(False)
n = 12
e = self._experiment
e.model.eval()
# Run evaluation and print results
results = e.test_procedure(iw_samples=self.args.ll_samples)
print("Eval results:\n{}".format(results))
# Save samples
for i in range(self.args.prior_samples):
fname = os.path.join(self._img_folder, "samples_{}.png".format(i))
e.generate_and_save_samples(fname, nrows=n)
# Save input and reconstructions
x, y = next(iter(e.dataloaders.test))
fname = os.path.join(self._img_folder, "reconstructions.png")
e.generate_and_save_reconstructions(x, fname, nrows=n)
# Inspect representations learned by each layer
if self.args.inspect_layer_repr:
inspect_layer_repr(e.model, self._img_folder, n=n)
# @classmethod
# def _define_args_defaults(cls) -> dict:
# defaults = super(Evaluator, cls)._define_args_defaults()
# return defaults
def _add_args(self, parser: argparse.ArgumentParser) -> None:
super(Evaluator, self)._add_args(parser)
parser.add_argument('--ll',
action='store_true',
help="estimate log likelihood with importance-"
"weighted bound")
parser.add_argument('--ll-samples',
type=int,
default=100,
dest='ll_samples',
metavar='N',
help="number of importance-weighted samples for "
"log likelihood estimation")
parser.add_argument('--ps',
type=int,
default=1,
dest='prior_samples',
metavar='N',
help="number of batches of samples from prior")
parser.add_argument('--layer-repr',
action='store_true',
dest='inspect_layer_repr',
help='inspect layer representations. Generate '
'samples by sampling top layers once, then taking '
'many samples from a middle layer, and finally '
'sample the downstream layers from the conditional '
'mode. Do this for every layer.')
@classmethod
def _check_args(cls, args: argparse.Namespace) -> argparse.Namespace:
args = super(Evaluator, cls)._check_args(args)
if not args.ll:
args.ll_samples = 1
if args.load_step is not None:
warnings.warn(
"Loading weights from specific training step is not supported "
"for now. The model will be loaded from the last checkpoint.")
return args
def inspect_layer_repr(model, img_folder, n=8):
for i in range(model.n_layers):
# print('layer', i)
mode_layers = range(i)
constant_layers = range(i + 1, model.n_layers)
# Sample top layers once, then take many samples of a middle layer,
# then sample from the mode in all downstream layers.
sample = []
for r in range(n):
sample.append(
model.sample_prior(n,
mode_layers=mode_layers,
constant_layers=constant_layers))
sample = torch.cat(sample)
pad_value = img_grid_pad_value(sample)
fname = os.path.join(img_folder, 'sample_mode_layer' + str(i) + '.png')
save_image(sample, fname, nrow=n, pad_value=pad_value)
def main():
evaluator = Evaluator(experiment_class=LVAEExperiment)
evaluator()
if __name__ == "__main__":
main()