forked from eriklindernoren/ML-From-Scratch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
decision_tree.py
281 lines (231 loc) · 10.9 KB
/
decision_tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
from __future__ import division, print_function
import numpy as np
from mlfromscratch.utils import divide_on_feature, train_test_split, standardize, mean_squared_error
from mlfromscratch.utils import calculate_entropy, accuracy_score, calculate_variance
class DecisionNode():
"""Class that represents a decision node or leaf in the decision tree
Parameters:
-----------
feature_i: int
Feature index which we want to use as the threshold measure.
threshold: float
The value that we will compare feature values at feature_i against to
determine the prediction.
value: float
The class prediction if classification tree, or float value if regression tree.
true_branch: DecisionNode
Next decision node for samples where features value met the threshold.
false_branch: DecisionNode
Next decision node for samples where features value did not meet the threshold.
"""
def __init__(self, feature_i=None, threshold=None,
value=None, true_branch=None, false_branch=None):
self.feature_i = feature_i # Index for the feature that is tested
self.threshold = threshold # Threshold value for feature
self.value = value # Value if the node is a leaf in the tree
self.true_branch = true_branch # 'Left' subtree
self.false_branch = false_branch # 'Right' subtree
# Super class of RegressionTree and ClassificationTree
class DecisionTree(object):
"""Super class of RegressionTree and ClassificationTree.
Parameters:
-----------
min_samples_split: int
The minimum number of samples needed to make a split when building a tree.
min_impurity: float
The minimum impurity required to split the tree further.
max_depth: int
The maximum depth of a tree.
loss: function
Loss function that is used for Gradient Boosting models to calculate impurity.
"""
def __init__(self, min_samples_split=2, min_impurity=1e-7,
max_depth=float("inf"), loss=None):
self.root = None # Root node in dec. tree
# Minimum n of samples to justify split
self.min_samples_split = min_samples_split
# The minimum impurity to justify split
self.min_impurity = min_impurity
# The maximum depth to grow the tree to
self.max_depth = max_depth
# Function to calculate impurity (classif.=>info gain, regr=>variance reduct.)
self._impurity_calculation = None
# Function to determine prediction of y at leaf
self._leaf_value_calculation = None
# If y is one-hot encoded (multi-dim) or not (one-dim)
self.one_dim = None
# If Gradient Boost
self.loss = loss
def fit(self, X, y, loss=None):
""" Build decision tree """
self.one_dim = len(np.shape(y)) == 1
self.root = self._build_tree(X, y)
self.loss=None
def _build_tree(self, X, y, current_depth=0):
""" Recursive method which builds out the decision tree and splits X and respective y
on the feature of X which (based on impurity) best separates the data"""
largest_impurity = 0
best_criteria = None # Feature index and threshold
best_sets = None # Subsets of the data
# Check if expansion of y is needed
if len(np.shape(y)) == 1:
y = np.expand_dims(y, axis=1)
# Add y as last column of X
Xy = np.concatenate((X, y), axis=1)
n_samples, n_features = np.shape(X)
if n_samples >= self.min_samples_split and current_depth <= self.max_depth:
# Calculate the impurity for each feature
for feature_i in range(n_features):
# All values of feature_i
feature_values = np.expand_dims(X[:, feature_i], axis=1)
unique_values = np.unique(feature_values)
# Iterate through all unique values of feature column i and
# calculate the impurity
for threshold in unique_values:
# Divide X and y depending on if the feature value of X at index feature_i
# meets the threshold
Xy1, Xy2 = divide_on_feature(Xy, feature_i, threshold)
if len(Xy1) > 0 and len(Xy2) > 0:
# Select the y-values of the two sets
y1 = Xy1[:, n_features:]
y2 = Xy2[:, n_features:]
# Calculate impurity
impurity = self._impurity_calculation(y, y1, y2)
# If this threshold resulted in a higher information gain than previously
# recorded save the threshold value and the feature
# index
if impurity > largest_impurity:
largest_impurity = impurity
best_criteria = {"feature_i": feature_i, "threshold": threshold}
best_sets = {
"leftX": Xy1[:, :n_features], # X of left subtree
"lefty": Xy1[:, n_features:], # y of left subtree
"rightX": Xy2[:, :n_features], # X of right subtree
"righty": Xy2[:, n_features:] # y of right subtree
}
if largest_impurity > self.min_impurity:
# Build subtrees for the right and left branches
true_branch = self._build_tree(best_sets["leftX"], best_sets["lefty"], current_depth + 1)
false_branch = self._build_tree(best_sets["rightX"], best_sets["righty"], current_depth + 1)
return DecisionNode(feature_i=best_criteria["feature_i"], threshold=best_criteria[
"threshold"], true_branch=true_branch, false_branch=false_branch)
# We're at leaf => determine value
leaf_value = self._leaf_value_calculation(y)
return DecisionNode(value=leaf_value)
def predict_value(self, x, tree=None):
""" Do a recursive search down the tree and make a prediction of the data sample by the
value of the leaf that we end up at """
if tree is None:
tree = self.root
# If we have a value (i.e we're at a leaf) => return value as the prediction
if tree.value is not None:
return tree.value
# Choose the feature that we will test
feature_value = x[tree.feature_i]
# Determine if we will follow left or right branch
branch = tree.false_branch
if isinstance(feature_value, int) or isinstance(feature_value, float):
if feature_value >= tree.threshold:
branch = tree.true_branch
elif feature_value == tree.threshold:
branch = tree.true_branch
# Test subtree
return self.predict_value(x, branch)
def predict(self, X):
""" Classify samples one by one and return the set of labels """
y_pred = [self.predict_value(sample) for sample in X]
return y_pred
def print_tree(self, tree=None, indent=" "):
""" Recursively print the decision tree """
if not tree:
tree = self.root
# If we're at leaf => print the label
if tree.value is not None:
print (tree.value)
# Go deeper down the tree
else:
# Print test
print ("%s:%s? " % (tree.feature_i, tree.threshold))
# Print the true scenario
print ("%sT->" % (indent), end="")
self.print_tree(tree.true_branch, indent + indent)
# Print the false scenario
print ("%sF->" % (indent), end="")
self.print_tree(tree.false_branch, indent + indent)
class XGBoostRegressionTree(DecisionTree):
"""
Regression tree for XGBoost
- Reference -
http://xgboost.readthedocs.io/en/latest/model.html
"""
def _split(self, y):
""" y contains y_true in left half of the middle column and
y_pred in the right half. Split and return the two matrices """
col = int(np.shape(y)[1]/2)
y, y_pred = y[:, :col], y[:, col:]
return y, y_pred
def _gain(self, y, y_pred):
nominator = np.power((y * self.loss.gradient(y, y_pred)).sum(), 2)
denominator = self.loss.hess(y, y_pred).sum()
return 0.5 * (nominator / denominator)
def _gain_by_taylor(self, y, y1, y2):
# Split
y, y_pred = self._split(y)
y1, y1_pred = self._split(y1)
y2, y2_pred = self._split(y2)
true_gain = self._gain(y1, y1_pred)
false_gain = self._gain(y2, y2_pred)
gain = self._gain(y, y_pred)
return true_gain + false_gain - gain
def _approximate_update(self, y):
# y split into y, y_pred
y, y_pred = self._split(y)
# Newton's Method
gradient = np.sum(y * self.loss.gradient(y, y_pred), axis=0)
hessian = np.sum(self.loss.hess(y, y_pred), axis=0)
update_approximation = gradient / hessian
return update_approximation
def fit(self, X, y):
self._impurity_calculation = self._gain_by_taylor
self._leaf_value_calculation = self._approximate_update
super(XGBoostRegressionTree, self).fit(X, y)
class RegressionTree(DecisionTree):
def _calculate_variance_reduction(self, y, y1, y2):
var_tot = calculate_variance(y)
var_1 = calculate_variance(y1)
var_2 = calculate_variance(y2)
frac_1 = len(y1) / len(y)
frac_2 = len(y2) / len(y)
# Calculate the variance reduction
variance_reduction = var_tot - (frac_1 * var_1 + frac_2 * var_2)
return sum(variance_reduction)
def _mean_of_y(self, y):
value = np.mean(y, axis=0)
return value if len(value) > 1 else value[0]
def fit(self, X, y):
self._impurity_calculation = self._calculate_variance_reduction
self._leaf_value_calculation = self._mean_of_y
super(RegressionTree, self).fit(X, y)
class ClassificationTree(DecisionTree):
def _calculate_information_gain(self, y, y1, y2):
# Calculate information gain
p = len(y1) / len(y)
entropy = calculate_entropy(y)
info_gain = entropy - p * \
calculate_entropy(y1) - (1 - p) * \
calculate_entropy(y2)
return info_gain
def _majority_vote(self, y):
most_common = None
max_count = 0
for label in np.unique(y):
# Count number of occurences of samples with label
count = len(y[y == label])
if count > max_count:
most_common = label
max_count = count
return most_common
def fit(self, X, y):
self._impurity_calculation = self._calculate_information_gain
self._leaf_value_calculation = self._majority_vote
super(ClassificationTree, self).fit(X, y)