Skip to content

gix traversal outside working tree enables arbitrary code execution

High severity GitHub Reviewed Published May 22, 2024 in GitoxideLabs/gitoxide • Updated Aug 7, 2024

Package

cargo gitoxide (Rust)

Affected versions

< 0.36.0

Patched versions

0.36.0
cargo gitoxide-core (Rust)
< 0.38.0
0.38.0
cargo gix (Rust)
< 0.63.0
0.63.0
cargo gix-fs (Rust)
< 0.11.0
0.11.0
cargo gix-index (Rust)
< 0.33.0
0.33.0
cargo gix-worktree (Rust)
< 0.34.0
0.34.0
cargo gix-worktree-state (Rust)
< 0.11.0
0.11.0

Description

Summary

During checkout, gitoxide does not verify that paths point to locations in the working tree. A specially crafted repository can, when cloned, place new files anywhere writable by the application.

Details

Although gix-worktree-state checks for collisions with existing files, it does not itself check if a path is really in the working tree when performing a checkout, nor do the path checks in gix-fs and gix-worktree prevent this. Cloning an untrusted repository containing specially crafted tree or blob names will create new files outside the repository, or inside the repository or a submodule's .git directory. The simplest cases are:

  • A tree named .. to traverse upward. This facilitates arbitrary code execution because files can be placed in one or more locations where they are likely to be executed soon.
  • A tree named .git to enter a .git directory. This facilitates arbitrary code execution because hooks can be installed.

A number of alternatives that achieve the same effect are also possible, some of which correspond to specific vulnerabilities that have affected Git in the past:

  • A tree or blob whose name contains one or more /, to traverse upward or downward. For example, even without containing any tree named .. or .git, a repository can represent a file named ../outside or .git/hooks/pre-commit. This is distinct from the more intuitive case a repository containing trees that represent those paths.
  • In Windows, a tree or blob whose name contains one or more \, to traverse upward or downward. (Unlike /, these are valid on other systems.) See GHSA-xjx4-8694-q2fq.
  • On a case-insensitive filesystem (such as NTFS, APFS, or HFS+), a tree named as a case variant of .git.
  • On HFS+, a tree named like .git or a case variant, with characters added that HFS+ ignores in collation. See git/git@6162a1d.
  • On NTFS, a tree equivalent to .git (or a case variant) by the use of NTFS stream notation, such as .git::$INDEX_ALLOCATION. See GHSA-5wph-8frv-58vj.
  • On an NTFS volume with 8.3 aliasing enabled, a tree named as git~1 (or a case variant). See GHSA-589j-mmg9-733v.

When a checkout creates some files outside the repository directory but fails to complete, the repository directory is usually removed, but the outside files remain.

PoC

For simplicity, these examples stage a stand-in file with a valid name, modify the index, and commit. The instructions assume sed supports -i, which is the case on most systems. If using Windows, a Git Bash shell should be used.

Example: Downward traversal to install hooks

  1. Create a new repository with git init dangerous-repo-installs-hook and cd into the directory.
  2. Create the stand-in called .git@hooks@pre-commit, with the contents:
    #!/bin/sh
    printf 'Vulnerable!\n'
    date >vulnerable
  3. Stage the stand-in: git add --chmod=+x .git@hooks@pre-commit
  4. Edit the index: env LC_ALL=C sed -i.orig 's|\.git@hooks@pre-commit|.git/hooks/pre-commit|' .git/index
  5. Commit: git commit -m 'Initial commit'
  6. Optionally, push to a private remote.

Then, on another or the same machine:

  1. Clone the repository with a gix clone … command.
  2. Enter the newly created directory.
  3. Optionally run ls -l .git/hooks to observe that the pre-commit hook is already present.
  4. Make a new file and commit it with git. This causes the payload surreptitiously installed as a pre-commit hook to run, printing the message Vulnerable! and creating a file in the current directory containing the current date and time.

Note that the effect is not limited to modifying the current directory. The payload could be written to perform any action that the user who runs git commit is capable of.

Example: Upward traversal to create a file above the working tree

  1. Create a new repository with git init dangerous-repo-reaches-up, and cd into the directory.
  2. Create the stand-in: echo 'A file outside the working tree, somehow.' >..@outside
  3. Stage the stand-in: git add ..@outside
  4. Edit the index: env LC_ALL=C sed -i.orig 's|\.\.@outside|../outside|' .git/index
  5. Commit: git commit -m 'Initial commit'
  6. Optionally, push to a private remote.

Then, as above, on the same or another machine, clone the repository with a gix clone … command. Observe that a file named outside is present alongside (not inside) the cloned directory.

Impact

Any use of gix or another application that makes use of gix-worktree-state, or otherwise relies on gix-fs and gix-worktree for validation, is affected, if used to clone untrusted repositories. The above description focuses on code execution, as that leads to a complete loss of confidentiality, integrity, and availability, but creating files outside a working tree without attempting to execute code can directly impact integrity as well.

In use cases where no untrusted repository is ever cloned, this vulnerability has no impact. Furthermore, the impact of this vulnerability may be lower when gix is used to clone a repository for CI/CD purposes, even if untrusted, since in such uses the environment is usually isolated and arbitrary code is usually run deliberately from the repository with necessary safeguards in place.

References

@Byron Byron published to GitoxideLabs/gitoxide May 22, 2024
Published to the GitHub Advisory Database May 22, 2024
Reviewed May 22, 2024
Published by the National Vulnerability Database May 23, 2024
Last updated Aug 7, 2024

Severity

High

CVSS overall score

This score calculates overall vulnerability severity from 0 to 10 and is based on the Common Vulnerability Scoring System (CVSS).
/ 10

CVSS v4 base metrics

Exploitability Metrics
Attack Vector Network
Attack Complexity Low
Attack Requirements None
Privileges Required None
User interaction Active
Vulnerable System Impact Metrics
Confidentiality High
Integrity High
Availability High
Subsequent System Impact Metrics
Confidentiality None
Integrity None
Availability None

CVSS v4 base metrics

Exploitability Metrics
Attack Vector: This metric reflects the context by which vulnerability exploitation is possible. This metric value (and consequently the resulting severity) will be larger the more remote (logically, and physically) an attacker can be in order to exploit the vulnerable system. The assumption is that the number of potential attackers for a vulnerability that could be exploited from across a network is larger than the number of potential attackers that could exploit a vulnerability requiring physical access to a device, and therefore warrants a greater severity.
Attack Complexity: This metric captures measurable actions that must be taken by the attacker to actively evade or circumvent existing built-in security-enhancing conditions in order to obtain a working exploit. These are conditions whose primary purpose is to increase security and/or increase exploit engineering complexity. A vulnerability exploitable without a target-specific variable has a lower complexity than a vulnerability that would require non-trivial customization. This metric is meant to capture security mechanisms utilized by the vulnerable system.
Attack Requirements: This metric captures the prerequisite deployment and execution conditions or variables of the vulnerable system that enable the attack. These differ from security-enhancing techniques/technologies (ref Attack Complexity) as the primary purpose of these conditions is not to explicitly mitigate attacks, but rather, emerge naturally as a consequence of the deployment and execution of the vulnerable system.
Privileges Required: This metric describes the level of privileges an attacker must possess prior to successfully exploiting the vulnerability. The method by which the attacker obtains privileged credentials prior to the attack (e.g., free trial accounts), is outside the scope of this metric. Generally, self-service provisioned accounts do not constitute a privilege requirement if the attacker can grant themselves privileges as part of the attack.
User interaction: This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable system. This metric determines whether the vulnerability can be exploited solely at the will of the attacker, or whether a separate user (or user-initiated process) must participate in some manner.
Vulnerable System Impact Metrics
Confidentiality: This metric measures the impact to the confidentiality of the information managed by the VULNERABLE SYSTEM due to a successfully exploited vulnerability. Confidentiality refers to limiting information access and disclosure to only authorized users, as well as preventing access by, or disclosure to, unauthorized ones.
Integrity: This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. Integrity of the VULNERABLE SYSTEM is impacted when an attacker makes unauthorized modification of system data. Integrity is also impacted when a system user can repudiate critical actions taken in the context of the system (e.g. due to insufficient logging).
Availability: This metric measures the impact to the availability of the VULNERABLE SYSTEM resulting from a successfully exploited vulnerability. While the Confidentiality and Integrity impact metrics apply to the loss of confidentiality or integrity of data (e.g., information, files) used by the system, this metric refers to the loss of availability of the impacted system itself, such as a networked service (e.g., web, database, email). Since availability refers to the accessibility of information resources, attacks that consume network bandwidth, processor cycles, or disk space all impact the availability of a system.
Subsequent System Impact Metrics
Confidentiality: This metric measures the impact to the confidentiality of the information managed by the SUBSEQUENT SYSTEM due to a successfully exploited vulnerability. Confidentiality refers to limiting information access and disclosure to only authorized users, as well as preventing access by, or disclosure to, unauthorized ones.
Integrity: This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. Integrity of the SUBSEQUENT SYSTEM is impacted when an attacker makes unauthorized modification of system data. Integrity is also impacted when a system user can repudiate critical actions taken in the context of the system (e.g. due to insufficient logging).
Availability: This metric measures the impact to the availability of the SUBSEQUENT SYSTEM resulting from a successfully exploited vulnerability. While the Confidentiality and Integrity impact metrics apply to the loss of confidentiality or integrity of data (e.g., information, files) used by the system, this metric refers to the loss of availability of the impacted system itself, such as a networked service (e.g., web, database, email). Since availability refers to the accessibility of information resources, attacks that consume network bandwidth, processor cycles, or disk space all impact the availability of a system.
CVSS:4.0/AV:N/AC:L/AT:N/PR:N/UI:A/VC:H/VI:H/VA:H/SC:N/SI:N/SA:N

EPSS score

0.043%
(11th percentile)

CVE ID

CVE-2024-35186

GHSA ID

GHSA-7w47-3wg8-547c

Source code

Credits

Loading Checking history
See something to contribute? Suggest improvements for this vulnerability.