-
Notifications
You must be signed in to change notification settings - Fork 0
A hybrid optimization of an optical raytracing design and analysis of a reflective based LED array point focus system is developed. Using NeuroEvolution of Augmenting Topologies (NEAT), a form of genetic algorithm reinforcement learning, is utilized in combination with a modified version of the BEAMFOUR optical raytracing design and analysis pro…
afcarl/RR034-Hybrid-Optimization-BEAMFOUR-Optical-Raytracing-Design-Analysis-With-Python-NEAT
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
Hybrid Optimization BEAMFOUR Optical Raytracing Design & Analysis w/ Python-NEAT: A hybrid optimization of an optical raytracing design and analysis of a reflective based LED array point focus system is developed. Using NeuroEvolution of Augmenting Topologies (NEAT), a form of genetic algorithm reinforcement learning, is utilized in combination with a modified version of the BEAMFOUR optical raytracing design and analysis program's internal unconstrained optimizer. The AutoIt script language was used to automate the BEAMFOUR interactive mouse picks, all under Python control. Overview of Operation Video: https://youtu.be/D6gi2aUchEU Pre-Requisits/Reference: 1. "BEAMFOUR": http://www.stellarsoftware.com/, https://github.com/StellarSoftwareBerkeley/BeamFour/tree/master 2. "Python-NEAT": https://github.com/CodeReclaimers/neat-python 3. "NEAT" algorithm: https://en.wikipedia.org/wiki/Neuroevolution_of_augmenting_topologies, https://www.cs.ucf.edu/~kstanley/neat.html 4. "AutoIt": https://www.autoitscript.com/site/ 5. "Netbeans": https://netbeans.org/ Operation: ./0_test/evolve_BEAM4_e.py ***************************************************** START: Example of "INPUT.OPT" Input: ***************************************************** 3 surfaces INPUT.OPT (RMS=x.xxx) X Y Z Pitch : type? Diam OffOx Curv Asph f --------:---------:---------:---------:--------:---------:---------:---------:---------:----:-- 0 : 0.0 : 6.3 : 17.2022? Mirror : : : -0.1670: -70.1537: S : 0 : 0.0 : -5.0 :-201.2879: Mirror : : : -0.0440: -0.0007: : 0 : 0.0 : 50.0 : 0 : : 100 : : 0 : 0 : : ***************************************************** END: Example of "INPUT.OPT" Input: ***************************************************** ***************************************************** START: Example of "INPUT.RAY" Input: ***************************************************** 656 rays INPUT.RAY (RMS=x.xxx) X0 Z0 W0 U0 @wave1 Xgoal Xfinal notes ---------:-------:----------:-----------:----------:------------:------------:----------:-- -0.05 : 0.0 : 1.0000 : 0.0000 : r -35.0 : -43.843284:OK 3 : -0.05 : 0.0 : 0.9998 : -0.0175 : r -35.0 : -43.629640:OK 3 : -0.05 : 0.0 : 0.9994 : -0.0349 : r -35.0 : -43.301612:OK 3 : ... (content removed) ... -2.35 : 0.0 : 0.9613 : 0.2756 : y -35.0 : -46.958323:OK 3 : -2.35 : 0.0 : 0.9563 : 0.2924 : y -35.0 : -47.830311:OK 3 : -2.35 : 0.0 : 0.9511 : 0.3090 : y -35.0 : -48.692712:OK 3 : ***************************************************** END: Example of "INPUT.RAY" Input: ***************************************************** ***************************************************** START: Example of Output: ***************************************************** Done Iteration = 13 RMS Average = 7.16E00 Nrays = 652 Ngoals = 1 Nterms = 652 Nadj = 1 ***************************************************** END: Example of Output: *****************************************************
About
A hybrid optimization of an optical raytracing design and analysis of a reflective based LED array point focus system is developed. Using NeuroEvolution of Augmenting Topologies (NEAT), a form of genetic algorithm reinforcement learning, is utilized in combination with a modified version of the BEAMFOUR optical raytracing design and analysis pro…
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published