Skip to content

Thesis for the MSc in Artificial Intelligence, Department of Informatics, Aristotle University of Thessaloniki

License

Notifications You must be signed in to change notification settings

agaitanis/msc_thesis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Route Planning for Emergency Evacuation using Graph Traversal Algorithms

Automatic identification of various design elements in a floor plan image has gained increased attention in recent research. Current work aims to extract information from a floor plan image and transform it into a graph that is used for pathfinding in an emergency evacuation. First, the basic elements of the floor plan image, i.e., walls, rooms and doors, are identified. This is achieved using Panoptic-Deeplab, which is a state-of-the-art deep neural network for panoptic segmentation of images, and it is available in DeepLab2, an image segmentation library. The neural network was trained using CubiCasa5K, a large-scale floor plan image dataset containing 5000 samples, annotated into over 80 floor plan object categories. Then, using the prediction of each pixel, a graph is created which shows how the rooms and the doors are connected. An application was developed which presents this information in a user-friendly manner and provides graph editing capabilities. Finally, the exits are set, and the optimal path for evacuation is calculated from each node using Dijkstra's algorithm.

Installation

The current project was implemented using cuda 11.7 and cudnn 8.5.0.
Install cuda and cudnn using the instructions found here and here.

Clone the current repository:

git clone https://github.com/agaitanis/msc_thesis.git ${PROJECT_DIR}

Create a new conda environment:

conda create --name ${ENV_NAME} python=3.8.13
conda activate ${ENV_NAME}

Install the following libraries:

pip install tensorflow==2.7.0 keras==2.7.0 cython==0.29.32 protobuf==3.20.1 opencv-python==4.6.0.66 tqdm==4.64.1 scikit-image==0.19.3 numpy==1.23.1 matplotlib==3.5.3 PyQt6==6.4.0 distinctipy==1.2.2

Compile pycocotools:

cd ${PROJECT_DIR}/cocoapi/PythonAPI
make

Add libaries to PYTHONPATH:

export PYTHONPATH=$PYTHONPATH:${PROJECT_DIR}
export PYTHONPATH=$PYTHONPATH:${PROJECT_DIR}/models
export PYTHONPATH=$PYTHONPATH:${PROJECT_DIR}/cocoapi/PythonAPI

Compile protobuf:

cd ${PROJECT_DIR}
protoc deeplab2/*.proto --python_out=.

Compile custom ops:

TF_CFLAGS=( $(python -c 'import tensorflow as tf; print(" ".join(tf.sysconfig.get_compile_flags()))') )
TF_LFLAGS=( $(python -c 'import tensorflow as tf; print(" ".join(tf.sysconfig.get_link_flags()))') )
OP_NAME='deeplab2/tensorflow_ops/kernels/merge_semantic_and_instance_maps_op'

# GPU support (https://www.tensorflow.org/guide/create_op#compiling_the_kernel_for_the_gpu_device)
nvcc -std=c++14 -c -o ${OP_NAME}_kernel.cu.o ${OP_NAME}_kernel.cu.cc \
  ${TF_CFLAGS[@]} -D GOOGLE_CUDA=1 -x cu -Xcompiler -fPIC --expt-relaxed-constexpr

g++ -std=c++14 -shared -o ${OP_NAME}.so ${OP_NAME}.cc ${OP_NAME}_kernel.cc \
  ${OP_NAME}_kernel.cu.o ${TF_CFLAGS[@]} -fPIC -lcuda ${TF_LFLAGS[@]}

If you get an error like this:

fatal error: third_party/gpus/cuda/include/cuda_fp16.h: No such file or directory

then do the following:

# Find the directory where tensorflow is installed
pip show tensorflow

# Go to the following directory or create one if it does not exit
cd ${TENSORFLOW_DIR}/include/third_party/gpus/

# Symlink your CUDA include directory here:
ln -s ${CUDA_DIR} ./cuda

To test if the compilation is done successfully, you can run:

python deeplab2/tensorflow_ops/python/kernel_tests/merge_semantic_and_instance_maps_op_test.py

To test if DeepLab2 is successfully installed and configured, you can run:

# Model training test (test for custom ops, protobuf)
python deeplab2/model/deeplab_test.py

# Model evaluator test (test for other packages such as orbit, cocoapi, etc)
python deeplab2/trainer/evaluator_test.py

Dataset preparation

Download CubiCasa5K from here and place it in the folder datasets/cubicasa5k or execute the following commands:

wget https://zenodo.org/record/2613548/files/cubicasa5k.zip?download=1 -O cubicasa5k.zip
y | unzip cubicasa5k.zip -d datasets
rm -f cubicasa5k.zip

Convert the dataset to the format that is required by DeepLab2:

python cubicasa5k/create_deeplab2_dataset.py --cubicasa5k_root=datasets/cubicasa5k/ --output_dir=datasets/deeplab2/cubicasa5k/

Create the TFRecords:

python deeplab2/data/build_cubicasa5k_data.py --cubicasa5k_root=datasets/deeplab2/cubicasa5k/ --output_dir=datasets/deeplab2/cubicasa5k/tf_records

Model training

Download the pretrained checkpoints from here and place them in deeplab2/initial_checkpoints/. In order to download the pretrained checkpoints used by this project just execute the following:

mkdir deeplab2/initial_checkpoints

wget https://storage.googleapis.com/gresearch/tf-deeplab/checkpoint/resnet50_imagenet1k_strong_training_strategy.tar.gz
tar -xf resnet50_imagenet1k_strong_training_strategy.tar.gz -C deeplab2/initial_checkpoints
rm -f resnet50_imagenet1k_strong_training_strategy.tar.gz

wget https://storage.googleapis.com/gresearch/tf-deeplab/checkpoint/resnet50_beta_imagenet1k_strong_training_strategy.tar.gz
tar -xf resnet50_beta_imagenet1k_strong_training_strategy.tar.gz -C deeplab2/initial_checkpoints
rm -f resnet50_beta_imagenet1k_strong_training_strategy.tar.gz

wget https://storage.googleapis.com/gresearch/tf-deeplab/checkpoint/wide_resnet41_imagenet1k_strong_training_strategy.tar.gz
tar -xf wide_resnet41_imagenet1k_strong_training_strategy.tar.gz -C deeplab2/initial_checkpoints
rm -f wide_resnet41_imagenet1k_strong_training_strategy.tar.gz

wget https://storage.googleapis.com/gresearch/tf-deeplab/checkpoint/swidernet_sac_1_1_1_imagenet1k_strong_training_strategy.tar.gz
tar -xf swidernet_sac_1_1_1_imagenet1k_strong_training_strategy.tar.gz -C deeplab2/initial_checkpoints
rm -f swidernet_sac_1_1_1_imagenet1k_strong_training_strategy.tar.gz

Train your model using the following command (the best model configuration is used in this example):

python deeplab2/trainer/train.py --config_file=deeplab2/configs/cubicasa5k/panoptic_deeplab/59_wide_resnet41.textproto --mode=train_and_eval --model_dir=results --num_gpus=1 >& results/59.txt

Export the model in order to be used by the tool:

python deeplab2/export_model.py --experiment_option_path=deeplab2/configs/cubicasa5k/panoptic_deeplab/59_wide_resnet41.textproto --checkpoint_path=results/59/ckpt-40000 --output_path=tool/model

Tool usage

Open the tool using the following command:

python tool/tool.py

Screenshot of the tool: alt text

  • Image manipulation
    • Open an image with File > Open.
    • Zoom by pressing the zoom buttons or by scrolling.
    • Move the picture by pressing Shift + Left Click.
  • Delect elements
    • Press the "Detect elements" button to detect the floorplan elements using the exported model.
    • Select the items on the list to draw the predicted floorplan elements on the picture.
  • Create graph
    • Press the "Create graph" button to automatically create the graph of the rooms/doors layout.
  • Edit graph
    • Select a node/edge by clicking on it in the picture.
    • Select multiple nodes/edges by pressing Ctrl.
    • Move a node by pressing Shift + Left Click on the node.
    • Create a new node by pressing the "New node" button or by pressing Right Click > New node here.
    • Create a new edge by selecting two nodes and then pressing the "New edge" button.
    • Delete a node/edge by pressing the "Delete" button or by pressing the Del key.
  • Calculate paths
    • Set one or more exits by pressing the "Mark as exit" button
    • Press the "Calculate paths" button in order to calculate the paths using the Dijkstra algorithm.
    • Select one node to show the shortest path to the nearest exit.
  • Save graph
    • Save the graph to xml with File > Save graph.

Example: alt text

See video here.

Notes

The following folders contain our code:

The following files were added to deeplab2:

The following files of deeplab2 were modified:

Citing

If you find this work useful for your project, please consider citing it:

@article{2023,
  title={Route Planning for Emergency Evacuation Using Graph Traversal Algorithms},
  volume={6},
  ISSN={2624-6511},
  url={http://dx.doi.org/10.3390/smartcities6040084},
  DOI={10.3390/smartcities6040084},
  number={4},
  journal={Smart Cities},
  publisher={MDPI AG},
  author={Gaitanis, Alexandros and Lentzas, Athanasios and Tsoumakas, Grigorios and Vrakas, Dimitris},
  year={2023},
  month={Jul},
  pages={1814–1831}
}

References

  1. Bowen Cheng, Maxwell D. Collins, Yukun Zhu, Ting Liu, Thomas S. Huang, Hartwig Adam, and Liang-Chieh Chen. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. CoRR, abs/1911.10194, 2019.

  2. Mark Weber, Huiyu Wang, Siyuan Qiao, Jun Xie, Maxwell D. Collins, Yukun Zhu, Liangzhe Yuan, Dahun Kim, Qihang Yu, Daniel Cremers, Laura Leal-Taixé, Alan L. Yuille, Florian Schroff, Hartwig Adam, and Liang-Chieh Chen. Deeplab2: A tensorflow library for deep labeling. CoRR, abs/2106.09748, 2021.

  3. Ahti Kalervo, Juha Ylioinas, Markus Häikiö, Antti Karhu, and Juho Kannala. Cubicasa5k: A dataset and an improved multi-task model for floorplan image analysis. CoRR, abs/1904.01920, 2019.