Tools for Ensemble Kalman Inversion (EKI), Ensemble Kalman Sampler (EKS) and
Gaussian Process Emulation (using Gpflow
) for Uncertainty Quantification in
inverse problems.
To import the module into a python script or project, type
import sys
sys.path.append(<your path/ces/>)
# to load test cases
from ces.utils import *
# to load the calibration code (EKS)
from ces.calibrate import *
enka
contains the ensemble Kalman algorithms.utils
contains the additional tools for running the examples. Like test functions, and PDEs constrained functions. The goal is to solve inverse problems through an approximate Bayesian method.
The provided code can be used for the following:
- MCMC through Metropolis Hastings.
- Accelerated MCMC using GPs as surrogate models.
Dependencies:
- tqdm
- numpy
- gpflow
- scipy
- pandas
-
Garbuno-Inigo, A., Nüsken, N., & Reich, S. (2020). Affine invariant interacting Langevin dynamics for Bayesian inference. SIAM Journal on Applied Dynamical Systems, 19(3), 1633-1658.
-
Garbuno-Inigo, A., Hoffmann, F., Li, W., & Stuart, A. M. (2020). Interacting Langevin diffusions: Gradient structure and ensemble Kalman sampler. SIAM Journal on Applied Dynamical Systems, 19(1), 412-441.
-
Iglesias, M. A., Law, K. J., & Stuart, A. M. (2013). Ensemble Kalman methods for inverse problems. Inverse Problems, 29(4), 045001.