-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathabc_sampler.py
129 lines (111 loc) · 4.8 KB
/
abc_sampler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# -*- coding: utf-8 -*-
"""
Created on Sun Sep 6 18:03:13 2015
@author: Anastasis
"""
import numpy as np
from mh import MetropolisSampler
from utilities import gillespie,parameterise_rates
import utilities
#from model_utilities import load_observations,get_updates
class ABCSampler(MetropolisSampler):
"""A simulation-based sampler which avoids likelihood computations.
This class provides a likelihood-free alternative to the other samplers in
the framework. It is particularly suited to large systems, where computing
the likelihood is infeasiable or impractical. Instead, it follows an ABC
(Approximate Bayesian Computation) approach: for each parameter, the system
is simulated and a distance is calculated betwween the simulated output and
the obesrvation. If this distance is small enough (lower than the 'eps'
configuration parameter), the parameter sample is accepted with a certain
probability, otherwise it is rejected.
"""
required_conf = MetropolisSampler.required_conf + ['eps']
def __init__(self,model,conf=None):
if conf is not None:
self.apply_configuration(conf)
self.n_pars = len(self.priors)
self.samples = []
self.eps = conf['eps']
if 'dist' in conf:
self.dist = conf['dist']
else:
self.dist = utilities.euclid_trace_dist
self._set_model(model)
self.state = tuple(d.rvs() for d in self.priors)
self.current_prior = np.prod(
[p.pdf(v) for (p,v) in zip(self.priors,self.state)])
self.current_dist = self._calculate_distance(self.state)
@staticmethod
def prepare_conf(model):
conf = super(ABCSampler, ABCSampler).prepare_conf(model)
conf['eps'] = 1
return conf
def _set_model(self,model):
self.model = model
#self.obs = self.fix_obs(model.obs)
self.obs = model.obs
self.updates = model.updates
def take_sample(self,append=True):
proposed = self._propose_state()
acceptance_prob = self._calculate_accept_prob(proposed)
if np.random.rand() <= acceptance_prob:
self.current_prior = self.proposed_prior
self.current_dist = self.proposed_dist
self.state = proposed
if append:
self.samples.append(self.state)
def _calculate_accept_prob(self,proposed):
"""Overriden to use distance instead of likelihood (following ABC)."""
self.proposed_dist = self._calculate_distance(proposed)
if self.proposed_dist < self.eps:
self.proposed_prior = np.prod(
[p.pdf(v) for (p,v) in zip(self.priors,proposed)])
ratio = self.proposed_prior / self.current_prior
return ratio
else: # if the distance is higher than eps, always reject the proposal
return 0
def _calculate_distance(self,proposed):
"""Compute the distance metric for a proposed parameter value.
Given a proposed parameter set, this simulates the system to obtain a
trace. The trace is then compared to the observation using the chosen
distance metric, and this distance is returned.
"""
# simulate the system
rates = parameterise_rates(self.rate_funcs,proposed)
stop_time = self.obs[-1][0]
init_state = self.obs[0][1:]
sample_trace = gillespie(rates,stop_time,init_state,self.updates)
# get the distance according to the error metric specified
return self.dist(sample_trace,self.obs)
def fix_obs(self,obs):
"""Unused?"""
times = [t[0] for t in obs]
states = [t[1:] for t in obs]
return utilities.combine_times_states(times,states)
if __name__ == "__main__":
import scipy.stats as spst
from matplotlib.pyplot import figure, hist
import proppa
species_names = ('S','I','R')
def infect_rate(params):
return lambda s: params[0]*s[0]*s[1]
def cure_rate(params):
return lambda s: params[1]*s[1]
rate_functions = [infect_rate,cure_rate]
updates = [(-1,1,0),(0,-1,1)]
init_state = (10,5,0)
conf = {'obs': [], 'parameters': [], 'rate_funcs' : rate_functions,
'eps': 70}
parameter_conf = {}
parameter_conf['prior'] = spst.uniform(loc=0,scale=1)
parameter_conf['proposal'] = lambda x: spst.norm(loc=x,scale=0.01)
parameter_conf['limits'] = (0,np.inf)
conf['parameters'].extend([parameter_conf,parameter_conf])
with open('SIR_uncertain.proppa', 'r') as modelfile:
model = proppa.parse_biomodel(modelfile.read())
# run a M-H sampler
sampler = ABCSampler(model,conf)
n_samples = 50000
samples = sampler.gather_samples(n_samples)
figure(); hist([s[0] for s in samples])
figure(); hist([s[1] for s in samples])