-
Notifications
You must be signed in to change notification settings - Fork 3.3k
/
Copy pathenvironment.yml
45 lines (45 loc) · 2.57 KB
/
environment.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
name: homl3
channels:
- conda-forge
- defaults
dependencies:
- box2d-py=2.3 # used only in chapter 18, exercise 8
- ffmpeg=6.1 # used only in the matplotlib tutorial to generate animations
- graphviz # used only in chapter 6 for dot files
- python-graphviz # used only in chapter 6 for dot files
- ipython=8.17 # a powerful Python shell
- ipywidgets=8.1 # optionally used only in chapter 12 for tqdm in Jupyter
- joblib=1.3 # used only in chapter 2 to save/load Scikit-Learn models
- jupyterlab=4.0 # to edit and run Jupyter notebooks
- matplotlib=3.8 # beautiful plots. See tutorial tools_matplotlib.ipynb
- nbdime=3.2 # optional tool to diff Jupyter notebooks
- nltk=3.8 # optionally used in chapter 3, exercise 4
- numexpr=2.8 # used only in the Pandas tutorial for numerical expressions
- numpy=1.26 # Powerful n-dimensional arrays and numerical computing tools
- pandas=2.1 # data analysis and manipulation tool
- pillow=10.1 # image manipulation library, (used by matplotlib.image.imread)
- pip # Python's package-management system
- py-xgboost=1.7 # used only in chapter 6 for optimized Gradient Boosting
- pydot=1.4 # used only for in chapter 10 for tf.keras.utils.plot_model()
- python=3.10 # your beloved programming language! :)
- requests=2.31 # used only in chapter 19 for REST API queries
- scikit-learn=1.3 # machine learning library
- scipy=1.11 # scientific/technical computing library
- statsmodels=0.14 # used only in chapter 15 for time series analysis
- tqdm=4.66 # used only in chapter 12 to display nice progress bars
- wheel # built-package format for pip
- widgetsnbextension=4.0 # interactive HTML widgets for Jupyter notebooks
- pip:
- keras-core # used in chapter 10
- keras-tuner~=1.4.6 # used in chapters 10 and 19 for hyperparameter tuning
- tensorboard-plugin-profile~=2.14.0 # profiling plugin for TensorBoard
- tensorboard~=2.14.1 # TensorFlow's visualization toolkit
- tensorflow-datasets~=4.9.3 # datasets repository, ready to use
- tensorflow-hub~=0.15.0 # trained ML models repository, ready to use
- tensorflow-serving-api~=2.14.0 # or tensorflow-serving-api-gpu if gpu
- tensorflow~=2.14.0 # Deep Learning library
- transformers~=4.35.0 # Natural Language Processing lib for TF or PyTorch
- urlextract~=1.8.0 # optionally used in chapter 3, exercise 4
- gymnasium[classic_control,atari,accept-rom-license] # used only in ch18
- google-cloud-aiplatform~=1.36.2 # used only in chapter 19
- google-cloud-storage~=2.13.0 # used only in chapter 19