forked from lasamson/devpost-scraper
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsummarize.py
68 lines (53 loc) · 2.12 KB
/
summarize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# extractive summarization
# - extracts several parts, such as phrases and sentences
import spacy
from spacy.lang.en.stop_words import STOP_WORDS
from string import punctuation
from collections import Counter
from heapq import nlargest
class Summarize():
def __init__(self, comn=10, text=""):
# load nlp
nlp = spacy.load('en_core_web_sm')
# stored text rdy to summarize
self.text = nlp(text)
# freq_word, score based on top comn words
self.comn = comn
# update text that is being summarized/stored
def setText(self, text=""):
self.text = text
# filters to most occuring words, scores top comn
def filterTokens(self):
keyword = []
stopwords = list(STOP_WORDS)
pos_tag = ['PROPN', 'ADJ', 'NOUN', 'VERB']
for token in self.text:
if(token.text in stopwords or token.text in punctuation):
continue
if(token.pos_ in pos_tag):
keyword.append(token.text)
freq_word = Counter(keyword)
# freq_word.most_common(self.comn)
# normalization
max_freq = Counter(keyword).most_common(1)[0][1]
for word in freq_word.keys():
freq_word[word] = (freq_word[word]/max_freq)
freq_word.most_common(self.comn)
return freq_word
# weighing sentences (only keeping most important)
def sentenceWeigh(self, freq_word):
sent_strength = {}
for sent in self.text.sents:
for word in sent:
if word.text in freq_word.keys():
if sent in sent_strength.keys():
sent_strength[sent] += freq_word[word.text]
else:
sent_strength[sent] = freq_word[word.text]
return sent_strength
def summarize(self, n_sentences):
sent_strength = self.sentenceWeigh(self.filterTokens())
summarized_sentences = nlargest(n_sentences, sent_strength, key=sent_strength.get)
final_sentences = [ w.text for w in summarized_sentences ]
summary = ' '.join(final_sentences)
return summary