Skip to content

Latest commit

 

History

History
294 lines (240 loc) · 14 KB

README.md

File metadata and controls

294 lines (240 loc) · 14 KB

ezGeno

- News: 
In this version, the users can skip the step of modifying the Python codes before conducting a new task 
with different input combinations. ezGeno will create the search space of network architectures 
according to the input files automatically.

ezGeno is an implementation of the efficient neural architecture search algorithm specifically tailored for genomic sequence categorization, for example predicting transcription factor (TF) binding sites and histone modifications.

This repository contains a pytorch implementation of an eNAS algorithm, where parameters can be altered and adjusted by users. Here, we used two examples to demonstrate how ezGeno can be applied to employ deep learning on genomic data categorization:

  • predicting TF binding. The basic architecture of this idea was built based on DeepBind (https://github.com/kundajelab/deepbind).
  • predicting activity of enhancers. The basic architecture of this idea was built based on accuEnhancer.

workflow

Contents

  • network.py : Model file, implementation of the model. Flexible construction according to hyperparameters provided.
  • ezgeno.py : Users can pass parameters to the train model.
  • utils.py : file for helper functions.
  • controller.py : Controller(Agent) will use reinforcemnt learning to learn which architecture is better from the available search space.
  • dataset.py : define ezgeno input file data formats.
  • trainer : define training steps.
  • visualize.py : visualize sequence position importance and output sub-sequence data whose score surpasses threshold.

Requirements

Packages (refer from requirements.txt)

  • biopython==1.77

  • cycler==0.10.0

  • future==0.18.2

  • joblib==0.16.0

  • kiwisolver==1.2.0

  • matplotlib==3.3.0

  • numpy==1.19.0

  • opencv-python==4.3.0.36

  • pandas==1.0.5

  • Pillow==8.3.0

  • pyparsing==2.4.7

  • python-dateutil==2.8.1

  • pytz==2020.1

  • scikit-learn==0.23.1

  • scipy==1.5.1

  • seaborn==0.10.1

  • six==1.15.0

  • sklearn==0.0

  • threadpoolctl==2.1.0

  • torch==1.5.1

  • torchvision==0.6.1

  • tqdm==4.48.0

  • utils==1.0.1

  • Bedtools (Tested on 2.28.0)

Input data

  • Pre-processed peak files

Usage

usage: ezgeno.py  [-h help] 
                  [--task TASK]
                  
                  [--trainFileList TRAINING_DATA] 
                  [--trainLabel TRAINING_LABEL]
                  [--testFileList TESTING_DATA] 
                  [--testLabel TESTING_LABEL]

                  [--batch_size BATCH_SIZE] [--optimizer OPTIMIZER]
                  [--epochs EPOCHS] [--learning_rate LEARNING_RATE] 
                  [--supernet_learning_rate SUPERNET_LEARNING_RATE] [--supernet_epochs SUPERNET_EPOCHS] 
                  [--controller_learning_rate CONTROLLER_LEARNING_RATE] [--controller_optimizer CONTROLLER_OPTIMIZER] [--cstep CSTEP]
                  [--momentum MOMENTUM] [--weight_decay WEIGHT_DECAY] 
                             
                  [--layers LAYERS] [--feature_dim FEATURE_DIM]         
                  [--conv_filter_size_list CONV_FILTER_SIZE_LIST]

                  [--cuda CUDA]
                  [--eval EVAL]
                  [--load MODEL_NAME]
                  [--save MODEL_NAME ]
                  
Required arguments:
  --trainFileList   
                        training File path,can support multiple file input separated by comma(only including DNA sequence and 1D-array).
                        In addition,you have to name file extension as ".sequence" if your input is DNA sequence.
                        [Type: String]  
  --trainLabel
                        training label path. 
                        [Type: String]  
  --testFileList    
                        testing File path,can support multiple file input separated by comma.(only including DNA sequence and 1D-array).
                        In addition,you have to name file extension as ".sequence" if your input is DNA sequence.
                        [Type: String]  
  --testLabel
                        testing label path. 
                        [Type: String]
                        
Optional arguments:
  -h, --help            
                        Show this help message and exit
                        
  --epochs EPOCHS
                        Number of epochs for training searched model. 
                        [Type: Int, default: 100]
                      
  --supernet_epochs SUPERNET_EPOCHS
                        Number of epochs for training supernet. 
                        [Type: Int, default: 50]
  --cstep
                        Number of steps for training controller.

  --batch_size BATCH_SIZE
                        Batch size for each training iterations. 
                        [Type: Int, default: 128]
  --learning_rate LEARNING_RATE         
                        Learning rate for training searched model. 
                        [Type: Float, default: 0.001]
  --supernet_learning_rate SUPERNET_LEARNING_RATE         
                        Learning rate for training supernet. 
                        [Type: Float, default: 0.01]
  --controller_learning_rate CONTROLLER_LEARNING_RATE         
                        Learning rate for training controller. 
                        [Type: Float, default: 0.1]
  --momentum MOMENTUM
                        Learning rate for training searched model. 
                        [Type: Float, default: 0.9]
  --weight_decay WEIGHT_DECAY
                        Weight decay. 
                        [Type: Float, default: 0.0005]  
  --optimizer OPTIMIZER
                        Optimizer used for training models. 
                        [Type: String, default: "sgd", options: "sgd, adam, adagrad"]
  --controller_optimizer CONTROLLER_OPTIMIZER
                        Optimizer used for training controller. 
                        [Type: String, default: "adam", options: "sgd, adam, adagrad"]
  
  --weight_init WEIGHT_INITILIZATION
                        Method used for weight initilization. 
                        [Type: String, default: "Normal"]
                        
  --layers 
                        can specify layers from multiple input files respectively seperated by space.
                        1. In TFBind task, we use this parameter to determine the layers of convolution units.
                        2. In AcEnhancer task, we can use this parameter to determine the layers of convolution units from two inputs.
                        [Type: int, default: 3]
  --feature_dim
                        can specify layers from multiple input files respectively seperated by space.
                        1. In TFBind task, we use this parameter to determine the number of convolution filters.
                        2. In AcEnhancer task, we can use this parameter to determine the number of convolution filters from two inputs.
                        [Type: int, default: 64]
  --conv_filter_size_list
                        can specify convolution filters from multiple input files respectively represented by like 2d-array.
                        1. In TFBind task, we use this parameter to determine the filter size list of convolution filters. Our purposed method will 
                        find the best filter size from this list by reinforcement learning.
                        2. In AcEnhancer task, we can use this parameter to determine the filter size list of convolution filters from two inputs.
                        Our purposed method will find the best filter size from user-defined parameter by reinforcement learning.
                        [Type: str]
                                      
  --cuda 
                        We use this parameter to determine to use cuda or not. If you want to use gpu, you can type in gpu index, e.g.: 0.
                        If you want to use cpu only, you can type -1.
                        [Type: Int, default: -1 ]

  --eval 
                        This flag is used to predict testing data directly. 
                        It is usually used with "load" parameter.
                        [Type: Bool, default: False]
                      
  --task 
                        "TFBind": predicting TF binding
                        "AcEnhancer": predicting activity of enhancers
                        [Type: String, default: "TFBind", options: "TFBind, AcEnhancer"]
                        
  --negative_data_method NEGATIVE_DATA_METHOD  
                        If not given the negative training data, ezGeno will generate 
                        negative data based on the selected methods.
                        "random": random sampling from the human genome.
                        "dinucl": generate negative sequence based on the same dinucleotide
                                  composition of the positive training data.
                        [Type: String, Default:"dinucl", options: "random, dinucl"]
                       
  --load 
                        This parameter is treated as loaded path. We will load modules from this path.
                        [Type: str, default: './model.t7']
  --save 
                        This parameter is treated as saved path. We will save trained modules to this path after training.
                        [Type: str, default: './model.t7']           

Installation

  1. Download/Clone ezGeno
git clone https://github.com/ailabstw/ezGeno.git

cd ezGeno
  1. Install required packages
apt-get install bedtools
apt-get install python3
apt-get install python3-distutils
apt-get install libglib2.0-0
apt-get install -y libsm6 libxext6 libxrender-dev
pip3 install -r requirements.txt

Dataset

1)TFBind: We downloaded data transcription factors ChIP-seq called peaks from the curated database of deepBind. Alipanahi et al. (2015) from the ENCODE database.

2)AcEnhancer:The portal now makes available over 13000 datasets and their accompanying metadata and can be accessed at: https://www.encodeproject.org/ .

Models

./models contains links of previous trained models.

Model Archietcture

Example1 - TFBind:

users can run a sample dataset with the following: "./example/tfbind/run.sh".

1. preprocesing

Please refer to the ReadMe file in the preprocessing folder

2. eNAS

 python3 ezgeno.py --cuda 0 --trainFileList NFE2_training.sequence --trainLabel NFE2_training.label --testFileList NFE2_testing.sequence --testLabel NFE2_testing.label --save example.model

(optional) modify layers parameters

 python3 ezgeno.py --layers 6 --cuda 0 --trainFileList NFE2_training.sequence --trainLabel NFE2_training.label --testFileList NFE2_testing.sequence --testLabel NFE2_testing.label

(optional) modify search space (convolution filter size) parameters

 python3 ezgeno.py --conv_filter_size_list [[3,7,11,15,19]]  --cuda 0 --trainFileList NFE2_training.sequence --trainLabel NFE2_training.label --testFileList NFE2_testing.sequence --testLabel NFE2_testing.label  

(optional) modify the number of output channels parameters

 python3 ezgeno.py --feature_dim 128 --cuda 0 --trainFileList NFE2_training.sequence --trainLabel NFE2_training.label --testFileList NFE2_testing.sequence --testLabel NFE2_testing.label 

(optional) load model and predict

 python3 ezgeno.py --load example.model --cuda 0 --eval True --testFileList NFE2_testing.sequence --testLabel NFE2_testing.label 

Performance evaluaion:

model comparison

3. visualize and get sub sequence based on prediction model

 python3 visualize.py --load example.model --data_path ./NFE2_positive_test.fa --dataName NFE2 --target_layer_names "[2]"

(optional) you can choose sequence range which you want to show based on "show_seq" parameter. e.g.all,top-100,50-200

 python3 visualize.py --show_seq top-200 --load example.model --data_path ./NFE2_positive_test.fa --dataName NFE2 --target_layer_names "[2]" --use_cuda True

We highlight the important region in each sequence based on the predictive model. As shown in the image below, our model is able to identify regions that are important to determining possible binding sites.

seq-heatmap

We also collect the sub-sequences whose scores surpass the threshold and save them in fasta format. This file can be treated as the input to a motif discovery tool (e.g. meme) to generate motif in sub sequences. As shown in the image below, the left sequence logo is based on motif discovery from these sub sequences, and the right sequence logo is from hocomoco database. We can find a reliable and consistent result using our tool.

seq-heatmap

Example2 - Enhancer Activity:

users can run a sample dataset with the following: "./example/enhancer/run.sh".

preprocesing

Please refer to the ReadMe file in the preprocessing folder

train

python3 ezgeno.py --trainFileList ./h1hesc_dnase.training.score,./h1hesc_dnase.training_input.sequence  --trainLabel ./h1hesc_dnase.training_label --testFileList ./h1hesc_dnase.validation.score,./h1hesc_dnase.validation_input.sequence --testLabel ./h1hesc_dnase.validation_label --cuda 0  --save example.model

(optional) modify layers,feature_dim and conv_filter_size_list

python3 ezgeno.py --trainFileList ./h1hesc_dnase.training.score,./h1hesc_dnase.training_input.sequence  --trainLabel ./h1hesc_dnase.training_label --testFileList ./h1hesc_dnase.validation.score,./h1hesc_dnase.validation_input.sequence --testLabel ./h1hesc_dnase.validation_label --cuda 0  --save example.model --layers 6 6 --feature_dim 64 64 --conv_filter_size_list [[3,7,11,15,19],[3,7,11]]

(optional) load model and predict

 python3 ezgeno.py --cuda 0 --eval True --testFileList ./h1hesc_dnase.validation.score,./h1hesc_dnase.validation_input.sequence --testLabel ./h1hesc_dnase.validation_label

Performance Evaluation

model comparison