Skip to content

aipengineer/awesome-ai-engineering-reads

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 

Repository files navigation

Awesome AI Engineer Reads

🏗️ Building and Deploying LLMs

⚖️ Evaluating LLM + Retrieval

🔍 LLM + Retrieval

💻 LLM Applications

🧠 LLM Architectures and Models

💼 LLM Business

📊 LLM Data

🚀 LLM Deployment

🧩 LLM Embeddings

🔧 LLM Engineering

🏆 LLM Engineering Best Practices

⚖️ LLM Ethics and Governance

🔬 LLM Evaluation

🎫 LLM Events

🤯 LLM Hype

🤔 LLM Inference

🏗️ LLM Infrastructure

📢 LLM Marketing

📰 LLM Newsletters

🔢 LLM Numbers

👀 LLM Observability

💬 LLM Opinions and Critiques

📝 LLM Prompting

📔 LLM Research and Publications

🎣 LLM Retriever Models

💰 LLM Startups and Funding

📗 LLM Tutorials and Courses

🔓 Open LLM Models

🔧 Open LLM Tools

🖥️ Self-Hosted LLMs

🛠️ Tools and Frameworks

🏋️ Training and Fine-tuning LLMs

❔ Uncategorized

Building and Deploying LLMs

Training and Fine-tuning LLMs

LLM Architectures and Models

Tools and Frameworks

LLM Applications

LLM Evaluation

LLM Prompting

LLM Research and Publications

LLM Embeddings

LLM Retriever Models

LLM plus Retrieval

Evaluating LLM plus Retrieval

LLM Inference

LLM Data

LLM Observability

LLM Opinions and Critiques

LLM Tutorials and Courses

LLM Engineering

LLM Engineering Best Practices

Open LLM Models

Open LLM Tools

Self-Hosted LLMs

LLM Deployment

LLM Infrastructure

LLM Events

LLM Numbers

LLM Hype

LLM Newsletters

LLM Ethics and Governance

LLM Startups and Funding

LLM Business

LLM Marketing

Uncategorized

https://github.com/yeagerai/yeagerai-agent
https://github.com/homanp/superagent
https://github.com/homanp/langchain-ui
https://github.com/0xpayne/gpt-migrate
https://github.com/shinework/photoshot
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2305.10601
https://news.ycombinator.com/item?id=36645575
https://github.com/prefecthq/marvin
https://github.com/eth-sri/lmql
https://arxiv.org/pdf/2212.06094.pdf
https://github.com/mlc-ai/web-llm
https://github.com/Atome-FE/llama-node
https://github.com/go-skynet/LocalAI
https://localai.io
https://www.cursor.so/blog/llama-inference
https://www.geoffreylitt.com/2023/03/25/llm-end-user-programming.html
https://every.to/chain-of-thought/what-comes-after-saas
https://github.com/axilla-io/axgen
https://www.axilla.io/
https://github.com/f/awesome-chatgpt-prompts/blob/main/README.md
https://magrawala.substack.com/p/unpredictable-black-boxes-are-terrible
https://dl.acm.org/doi/10.1145/267505.267514
https://www.youtube.com/@gklitt/videos
https://www.inkandswitch.com
https://idl.cs.washington.edu/files/2019-AgencyPlusAutomation-PNAS.pdf
https://simonwillison.net/2023/Mar/27/ai-enhanced-development/
https://www.robinsloan.com/notes/home-cooked-app/
https://dl.acm.org/doi/10.1145/2593882.2593896
https://wattenberger.com/thoughts/boo-chatbots
https://www.geoffreylitt.com/2023/07/25/building-personal-tools-on-the-fly-with-llms.html
https://web.mit.edu/6.031/www/sp22/
https://www.youtube.com/watch?v=bJ3i4K3hefI
https://github.com/tianlinxu312/Everything-about-LLMs
https://arxiv.org/abs/2311.04205
https://arxiv.org/abs/2309.04269
https://arxiv.org/abs/2310.11511
https://arxiv.org/pdf/2310.07064
https://arxiv.org/abs/2309.15217
	https://arxiv.org/abs/2304.08354
	https://arxiv.org/abs/2203.11171
 	https://arxiv.org/abs/2310.06692
 	https://arxiv.org/abs/2310.05029
 	https://arxiv.org/abs/2005.11401
  	https://arxiv.org/abs/2212.10071
   https://arxiv.org/abs/2301.12726
   https://arxiv.org/abs/2305.01879
   https://arxiv.org/abs/2305.02301
   https://arxiv.org/abs/2212.00193
   https://arxiv.org/abs/2305.13888
   https://arxiv.org/abs/2306.09299
   https://arxiv.org/abs/2207.00112
   https://arxiv.org/abs/2307.00526
   https://arxiv.org/abs/2106.09685
   https://arxiv.org/abs/2210.07558
   https://arxiv.org/abs/2311.12023
   https://arxiv.org/abs/2311.11696
   https://arxiv.org/abs/2311.09179
   https://arxiv.org/abs/2311.08598
   https://arxiv.org/abs/2311.05556
   https://cset.georgetown.edu/publication/techniques-to-make-large-language-models-smaller-an-explainer
   https://arxiv.org/abs/2304.01089
   https://arxiv.org/abs/2304.07493
   https://arxiv.org/abs/2304.09145
   https://arxiv.org/pdf/2306.02272
   https://arxiv.org/abs/2307.09782
   https://arxiv.org/abs/2303.08302
   https://arxiv.org/abs/2306.07629
   https://arxiv.org/abs/2307.13304
   https://arxiv.org/abs/2308.15987v1
   https://arxiv.org/abs/2309.01885
   https://arxiv.org/abs/2309.02784
   https://arxiv.org/abs/2309.05516
   https://arxiv.org/abs/2308.13137
   https://arxiv.org/abs/2306.08543
   https://arxiv.org/abs/2306.13649
   https://arxiv.org/abs/2305.14864
   https://arxiv.org/abs/2301.00234
   https://arxiv.org/abs/2301.11916
   https://arxiv.org/abs/2212.10670
   https://arxiv.org/abs/2210.06726
   https://arxiv.org/abs/2212.08410
   https://arxiv.org/abs/2305.14152
   https://arxiv.org/abs/2305.14314
   https://arxiv.org/abs/2210.17323
   https://arxiv.org/abs/2306.00978
   https://www.ben-evans.com/benedictevans/2023/10/5/unbundling-ai
   https://www.coatue.com/blog/perspective/ai-the-coming-revolution-2023
   https://arxiv.org/pdf/2308.07633
   https://arxiv.org/abs/2301.00774
   https://arxiv.org/abs/2305.18403
   https://arxiv.org/abs/2306.11695
   https://arxiv.org/abs/2305.11627
   https://arxiv.org/abs/2305.17888
   https://arxiv.org/abs/2305.14152
   https://arxiv.org/abs/2206.09557
   https://arxiv.org/abs/2208.07339
   https://arxiv.org/abs/2206.09557
   https://arxiv.org/abs/2208.07339
   https://arxiv.org/abs/2206.01861
   https://arxiv.org/abs/2211.10438
   https://arxiv.org/abs/2305.14152
   https://arxiv.org/abs/2305.17888
   https://arxiv.org/abs/2306.03078
   https://arxiv.org/pdf/2311.10122
   https://arxiv.org/pdf/2311.10093
   https://arxiv.org/pdf/2311.08263
   https://arxiv.org/pdf/2311.07575
   https://arxiv.org/pdf/2311.06783
   https://arxiv.org/pdf/2311.09210v1
   https://arxiv.org/pdf/2311.10709
   https://arxiv.org/pdf/2311.07361
   https://arxiv.org/pdf/2311.07989
   https://arxiv.org/pdf/2311.02462
   https://arxiv.org/abs/2311.05232
   https://arxiv.org/pdf/2311.03285v1
   https://arxiv.org/pdf/2311.05556
   https://arxiv.org/pdf/2311.05437
   https://arxiv.org/pdf/2311.05348
   https://arxiv.org/pdf/2311.04257
   https://arxiv.org/pdf/2311.04219
   https://arxiv.org/pdf/2311.03356
   https://arxiv.org/pdf/2311.05657
   https://arxiv.org/pdf/2311.05997
   https://arxiv.org/pdf/2311.04254
   https://arxiv.org/pdf/2311.03301
   https://arxiv.org/pdf/2311.04400
   https://arxiv.org/pdf/2311.04145
   [Universal Language Model Fine-tuning for Text Classification](https://arxiv.org/pdf/1801.06146.pdf)
   https://idratherbewriting.com/blog/writing-full-length-articles-with-claude-ai
   https://www.oliverwyman.com/our-expertise/insights/2023/nov/impact-of-artificial-intelligence-in-financial-services.html
   https://www.youtube.com/watch?v=zjkBMFhNj_g
   https://towardsdatascience.com/recreating-andrej-karpathys-weekend-project-a-movie-search-engine-9b270d7a92e4
   https://streamlit.io/generative-ai
   https://www.youtube.com/watch?app=desktop&v=1RxOYLa69Vw
   https://www.bentoml.com/blog/announcing-open-llm-an-open-source-platform-for-running-large-language-models-in-production
   https://www.pinecone.io/learn/chunking-strategies/
   https://blog.llamaindex.ai/evaluating-the-ideal-chunk-size-for-a-rag-system-using-llamaindex-6207e5d3fec5
   https://amatriain.net/blog/hallucinations
   https://amatriain.net/blog/PromptEngineering
   https://realpython.com/chromadb-vector-database/
   https://github.com/zilliztech/VectorDBBench
   https://qdrant.tech/benchmarks/
   https://docs.ragas.io/en/latest/index.html
   https://towardsdatascience.com/10-ways-to-improve-the-performance-of-retrieval-augmented-generation-systems-5fa2cee7cd5c
   https://medium.com/@kelvin.lu.au/disadvantages-of-rag-5024692f2c53
   https://towardsdatascience.com/the-untold-side-of-rag-addressing-its-challenges-in-domain-specific-searches-808956e3ecc8
   https://www.anyscale.com/blog/a-comprehensive-guide-for-building-rag-based-llm-applications-part-1
   https://github.com/BuilderIO/gpt-crawler
   https://www.secondstate.io/articles/mistral-7b-instruct-v0.1/
   https://github.com/stas00/ml-engineering/tree/master
   https://arxiv.org/abs/2303.12712
   https://arxiv.org/abs/2203.15556
   https://arxiv.org/abs/2309.00267
   https://github.com/karpathy/llama2.c/blob/master/run.c
   https://github.com/ggerganov/llama.cpp
   https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/
   https://arxiv.org/abs/2203.02155
   https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
   https://arxiv.org/abs/1706.03762
   https://old.reddit.com/r/LocalLLaMA/comments/1atquor/im_open_sourcing_our_rag_backend_our_cqh_gql_chs/
   https://ravinkumar.com/GenAiGuidebook/
   https://towardsdatascience.com/advanced-retrieval-augmented-generation-from-theory-to-llamaindex-implementation-4de1464a9930
   https://srush.github.io/annotated-mamba/hard.html