🏗️ Building and Deploying LLMs
🧠 LLM Architectures and Models
🏆 LLM Engineering Best Practices
📔 LLM Research and Publications
🏋️ Training and Fine-tuning LLMs
- Scaling Kubernetes to 7,500 nodes
- All the Hard Stuff Nobody Talks About when Building Products with LLMs
- All the Hard Stuff Nobody Talks About when Building Products with LLMs
- Building LLM applications for production
- Efficiently Scaling and Deploying LLMs
- LLMs in Production - Part III
- How to train your own Large Language Models
- Training Compute-Optimal Large Language Models
- Opt-175B Logbook
- Fine-Tuning LLMs: Best Practices and When to Go Small
- Finetuning Large Language Models
- GPT-3.5 Turbo fine-tuning and API updates
- Fine-tuning in Your Voice Webinar
- A Survey of Large Language Models
- LLaMA: Open and Efficient Foundation Language Models
- Introducing Code Llama, a state-of-the-art large language model for coding
- Spread Your Wings: Falcon 180B is here
- BLOOM: A 176B-Parameter Open-Access Multilingual Language Model
- LangChain: Enabling LLMs to Use Tools
- Langchain Tutorials
- LangChain cookbook
- fairseq2
- seamless_communication
- Automatic Generation of Visualizations and Infographics with LLMs
- Introducing AudioCraft: A Generative AI Tool For Audio and Music
- An example of LLM prompting for programming
- Human-centric & Coherent Whole Program Synthesis aka your own personal junior developer
- GPT Engineer
- Holistic Evaluation of Language Models
- chatgpt-evaluation-01-2023
- Evaluating chatGPT
- PromptBench: Towards Evaluating the Robustness of Large Language Models on Adversarial Prompts
- Prompt Engineering
- "Prompt injection explained, with video, slides, and a transcript"
- Delimiters won’t save you from prompt injection
- You probably don't know how to do Prompt Engineering
- ChatGPT Prompt Engineering for Developers
- Learn Prompting
- A Survey of Large Language Models
- Challenges and Applications of Large Language Models
- Large Language Models as Optimizers
- Multimodal Foundation Models: From Specialists to General-Purpose Assistants
- Scaling Laws for Neural Language Models
- Language Models are Unsupervised Multitask Learners
- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
- Training language models to follow instructions with human feedback
- FlagEmbedding
- One Embedder, Any Task: Instruction-Finetuned Text Embeddings
- OpenAI GPT-3 Text Embeddings - Really a new state-of-the-art in dense text embeddings?
- Getting creative with embeddings
- What are embeddings?
- Vector Databases and Large Language Models
- Large Language Models with Semantic Search
- MultiVector Retriever
- Fine-Tuning LLaMA for Multi-Stage Text Retrieval
- Making Retrieval Augmented Generation Better with @jamesbriggs
- Harnessing Retrieval Augmented Generation With Langchain
- Knowledge Retrieval Architecture for LLM’s (2023)
- How do domain-specific chatbots work? An Overview of Retrieval Augmented Generation (RAG)
- LangChain "Advanced Retrieval" Webinar
- TWIML-RAG - a TWIML generative_ai community project.
- Evaluation & Hallucination Detection for Abstractive Summaries
- Building And Troubleshooting An Advanced LLM Query Engine
- Advanced RAG 02 - Parent Document Retriever
- Easy-to-use headless React Hooks to run LLMs in the browser with WebGPU. As simple as useLLM().
- Inference Experiments with LLaMA v2 7b
- OpenAI's Code Interpreter in your terminal, running locally
- Discover, download, and run local LLMs
- Want High Performing LLMs? Hint: It is All About Your Data
- How LlamaIndex Can Bring the Power of LLM's to Your Data
- How to Create Custom Datasets To Train Llama-2
- Data Copilot
- Finetuning Large Language Models
- Large Language Models with Semantic Search
- How Business Thinkers Can Start Building AI Plugins With Semantic Kernel
- LLM Bootcamp - Spring 2023
- LLM Bootcamp - Spring 2023
- Generative AI for Beginners - A Course
- Artificial Intelligence for Beginners - A Curriculum
- Introduction to Deep Learning
- Reflections on AI Engineer Summit 2023
- AI Engineer Summit - Building Blocks for LLM Systems & Products
- All the Hard Stuff Nobody Talks About when Building Products with LLMs
- Building Defensible Products with LLMs
- What Is ChatGPT Doing ... and Why Does It Work?
- Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
- LLaMA: Open and Efficient Foundation Language Models
- BLOOM: A 176B-Parameter Open-Access Multilingual Language Model
- LangChain: Enabling LLMs to Use Tools
- Langchain Tutorials
- LangChain cookbook
- fairseq2
- seamless_communication
- Deploying AI-driven apps on Vercel
- Solving the Last Mile Problem of Foundation Models with Data-Centric AI
- Taking LangChain Apps to Production with LangChain-serve
- Age of Industrialized AI
- DevTools for Large Language Models: Unlocking the Future of AI-Driven Applications
- Large Language Model at Scale
- Constitutional AI: Harmlessness from AI Feedback
- A guidance language for controlling large language models.
- 2023: The State of Generative AI in the Enterprise
- Takeaways & lessons from 250k+ LLM calls on 100k corporate docs
https://github.com/yeagerai/yeagerai-agent
https://github.com/homanp/superagent
https://github.com/homanp/langchain-ui
https://github.com/0xpayne/gpt-migrate
https://github.com/shinework/photoshot
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2305.10601
https://news.ycombinator.com/item?id=36645575
https://github.com/prefecthq/marvin
https://github.com/eth-sri/lmql
https://arxiv.org/pdf/2212.06094.pdf
https://github.com/mlc-ai/web-llm
https://github.com/Atome-FE/llama-node
https://github.com/go-skynet/LocalAI
https://localai.io
https://www.cursor.so/blog/llama-inference
https://www.geoffreylitt.com/2023/03/25/llm-end-user-programming.html
https://every.to/chain-of-thought/what-comes-after-saas
https://github.com/axilla-io/axgen
https://www.axilla.io/
https://github.com/f/awesome-chatgpt-prompts/blob/main/README.md
https://magrawala.substack.com/p/unpredictable-black-boxes-are-terrible
https://dl.acm.org/doi/10.1145/267505.267514
https://www.youtube.com/@gklitt/videos
https://www.inkandswitch.com
https://idl.cs.washington.edu/files/2019-AgencyPlusAutomation-PNAS.pdf
https://simonwillison.net/2023/Mar/27/ai-enhanced-development/
https://www.robinsloan.com/notes/home-cooked-app/
https://dl.acm.org/doi/10.1145/2593882.2593896
https://wattenberger.com/thoughts/boo-chatbots
https://www.geoffreylitt.com/2023/07/25/building-personal-tools-on-the-fly-with-llms.html
https://web.mit.edu/6.031/www/sp22/
https://www.youtube.com/watch?v=bJ3i4K3hefI
https://github.com/tianlinxu312/Everything-about-LLMs
https://arxiv.org/abs/2311.04205
https://arxiv.org/abs/2309.04269
https://arxiv.org/abs/2310.11511
https://arxiv.org/pdf/2310.07064
https://arxiv.org/abs/2309.15217
https://arxiv.org/abs/2304.08354
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2310.06692
https://arxiv.org/abs/2310.05029
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2212.10071
https://arxiv.org/abs/2301.12726
https://arxiv.org/abs/2305.01879
https://arxiv.org/abs/2305.02301
https://arxiv.org/abs/2212.00193
https://arxiv.org/abs/2305.13888
https://arxiv.org/abs/2306.09299
https://arxiv.org/abs/2207.00112
https://arxiv.org/abs/2307.00526
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2210.07558
https://arxiv.org/abs/2311.12023
https://arxiv.org/abs/2311.11696
https://arxiv.org/abs/2311.09179
https://arxiv.org/abs/2311.08598
https://arxiv.org/abs/2311.05556
https://cset.georgetown.edu/publication/techniques-to-make-large-language-models-smaller-an-explainer
https://arxiv.org/abs/2304.01089
https://arxiv.org/abs/2304.07493
https://arxiv.org/abs/2304.09145
https://arxiv.org/pdf/2306.02272
https://arxiv.org/abs/2307.09782
https://arxiv.org/abs/2303.08302
https://arxiv.org/abs/2306.07629
https://arxiv.org/abs/2307.13304
https://arxiv.org/abs/2308.15987v1
https://arxiv.org/abs/2309.01885
https://arxiv.org/abs/2309.02784
https://arxiv.org/abs/2309.05516
https://arxiv.org/abs/2308.13137
https://arxiv.org/abs/2306.08543
https://arxiv.org/abs/2306.13649
https://arxiv.org/abs/2305.14864
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2301.11916
https://arxiv.org/abs/2212.10670
https://arxiv.org/abs/2210.06726
https://arxiv.org/abs/2212.08410
https://arxiv.org/abs/2305.14152
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2306.00978
https://www.ben-evans.com/benedictevans/2023/10/5/unbundling-ai
https://www.coatue.com/blog/perspective/ai-the-coming-revolution-2023
https://arxiv.org/pdf/2308.07633
https://arxiv.org/abs/2301.00774
https://arxiv.org/abs/2305.18403
https://arxiv.org/abs/2306.11695
https://arxiv.org/abs/2305.11627
https://arxiv.org/abs/2305.17888
https://arxiv.org/abs/2305.14152
https://arxiv.org/abs/2206.09557
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2206.09557
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2206.01861
https://arxiv.org/abs/2211.10438
https://arxiv.org/abs/2305.14152
https://arxiv.org/abs/2305.17888
https://arxiv.org/abs/2306.03078
https://arxiv.org/pdf/2311.10122
https://arxiv.org/pdf/2311.10093
https://arxiv.org/pdf/2311.08263
https://arxiv.org/pdf/2311.07575
https://arxiv.org/pdf/2311.06783
https://arxiv.org/pdf/2311.09210v1
https://arxiv.org/pdf/2311.10709
https://arxiv.org/pdf/2311.07361
https://arxiv.org/pdf/2311.07989
https://arxiv.org/pdf/2311.02462
https://arxiv.org/abs/2311.05232
https://arxiv.org/pdf/2311.03285v1
https://arxiv.org/pdf/2311.05556
https://arxiv.org/pdf/2311.05437
https://arxiv.org/pdf/2311.05348
https://arxiv.org/pdf/2311.04257
https://arxiv.org/pdf/2311.04219
https://arxiv.org/pdf/2311.03356
https://arxiv.org/pdf/2311.05657
https://arxiv.org/pdf/2311.05997
https://arxiv.org/pdf/2311.04254
https://arxiv.org/pdf/2311.03301
https://arxiv.org/pdf/2311.04400
https://arxiv.org/pdf/2311.04145
[Universal Language Model Fine-tuning for Text Classification](https://arxiv.org/pdf/1801.06146.pdf)
https://idratherbewriting.com/blog/writing-full-length-articles-with-claude-ai
https://www.oliverwyman.com/our-expertise/insights/2023/nov/impact-of-artificial-intelligence-in-financial-services.html
https://www.youtube.com/watch?v=zjkBMFhNj_g
https://towardsdatascience.com/recreating-andrej-karpathys-weekend-project-a-movie-search-engine-9b270d7a92e4
https://streamlit.io/generative-ai
https://www.youtube.com/watch?app=desktop&v=1RxOYLa69Vw
https://www.bentoml.com/blog/announcing-open-llm-an-open-source-platform-for-running-large-language-models-in-production
https://www.pinecone.io/learn/chunking-strategies/
https://blog.llamaindex.ai/evaluating-the-ideal-chunk-size-for-a-rag-system-using-llamaindex-6207e5d3fec5
https://amatriain.net/blog/hallucinations
https://amatriain.net/blog/PromptEngineering
https://realpython.com/chromadb-vector-database/
https://github.com/zilliztech/VectorDBBench
https://qdrant.tech/benchmarks/
https://docs.ragas.io/en/latest/index.html
https://towardsdatascience.com/10-ways-to-improve-the-performance-of-retrieval-augmented-generation-systems-5fa2cee7cd5c
https://medium.com/@kelvin.lu.au/disadvantages-of-rag-5024692f2c53
https://towardsdatascience.com/the-untold-side-of-rag-addressing-its-challenges-in-domain-specific-searches-808956e3ecc8
https://www.anyscale.com/blog/a-comprehensive-guide-for-building-rag-based-llm-applications-part-1
https://github.com/BuilderIO/gpt-crawler
https://www.secondstate.io/articles/mistral-7b-instruct-v0.1/
https://github.com/stas00/ml-engineering/tree/master
https://arxiv.org/abs/2303.12712
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2309.00267
https://github.com/karpathy/llama2.c/blob/master/run.c
https://github.com/ggerganov/llama.cpp
https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/
https://arxiv.org/abs/2203.02155
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/1706.03762
https://old.reddit.com/r/LocalLLaMA/comments/1atquor/im_open_sourcing_our_rag_backend_our_cqh_gql_chs/
https://ravinkumar.com/GenAiGuidebook/
https://towardsdatascience.com/advanced-retrieval-augmented-generation-from-theory-to-llamaindex-implementation-4de1464a9930
https://srush.github.io/annotated-mamba/hard.html