diff --git a/.gitignore b/.gitignore index 3219bdb..f46854f 100644 --- a/.gitignore +++ b/.gitignore @@ -3,7 +3,6 @@ *.dll *.so *.dylib -*.idea # Test binary, build with `go test -c` *.test @@ -13,3 +12,5 @@ # Project-local glide cache, RE: https://github.com/Masterminds/glide/issues/736 .glide/ + +.idea/ diff --git a/README.md b/README.md index 491dc68..d41dac9 100644 --- a/README.md +++ b/README.md @@ -1,2 +1,36 @@ # gowallet -A bitcoin wallet application written in golang. + +A bitcoin wallet application written in golang. +Supports random wallet and brain wallet. + +The brain wallet uses a secret phrase and a salt phrase to generate the private key.
+ +Secret phrase at least 16 characters, containing uppercase letters, lowercase letters, numbers, and special characters.
+Salt phrase at least 6 characters.
+ +The secret phrase and the salt phrase support a hex notation similar to '\xFF' or '\xff' to represent a character.
+ +It is advisable to use more complex secret phrases and to write secret phrases on paper.
+It is also recommended that salt phrases be memorized in the brain.
+ + +Usage of address:
+ -b  Brain wallet mode.
+ -brain
+    Brain wallet mode.
+ -o string
+     Output file name.
+ -output string
+    Output file name.
+ + +# go钱包 +go钱包是用GO语言编写的比特币钱包软件。支持随机钱包和脑钱包。
+ +**脑钱包使用一个秘密短语和一个盐短语生成私钥。**
+秘密短语至少16个字符,包含大写字母,小写字母,数字和特殊字符。
+盐短语至少6个字符。
+秘密短语和盐短语允许使用类似于'\xFF'这样的十六进制表示法表示一个字符
+ +建议使用较为复杂的秘密短语并将秘密短语记在纸上。
+同时建议将盐短语记在脑中。 diff --git a/address.go b/address.go index fc46650..7c9c90c 100644 --- a/address.go +++ b/address.go @@ -2,137 +2,115 @@ package main import ( "bytes" + "crypto/rand" "crypto/sha1" "crypto/sha256" + "encoding/hex" "errors" "flag" "fmt" "io/ioutil" - "crypto/rand" "os" "regexp" - "syscall" - "./secp256k1/bitecdsa" - "./secp256k1/bitelliptic" "github.com/btcsuite/btcutil/base58" "github.com/fatih/color" + "github.com/njones/bitcoin-crypto/bitelliptic" "golang.org/x/crypto/pbkdf2" "golang.org/x/crypto/ripemd160" "golang.org/x/crypto/scrypt" "golang.org/x/crypto/ssh/terminal" ) -// WarpWallet encryption: -// 1. s1 ← scrypt(key=passphrase||0x1, salt=salt||0x1, N=218, r=8, p=1, dkLen=32) -// 2. s2 ← PBKDF2(key=passphrase||0x2, salt=salt||0x2, c=216, dkLen=32) -// 3. private_key ← s1 ⊕ s2 -// 4. Generate public_key from private_key using standard Bitcoin EC crypto -// 5. Output (private_key, public_key) - -//脑钱包使用一个秘密短语和一个盐短语生成私钥。 -//秘密短语至少16个字符,包含大写字母,小写字母,数字和特殊字符。 -//盐短语至少6个字符。 -//建议使用较为复杂的秘密短语并将秘密短语记在纸上。 -//同时建议将盐短语记在脑中。 - const brainWalletTip = ` The brain wallet uses a secret phrase and a salt phrase to generate the private key. Secret phrase at least 16 characters, containing uppercase letters, lowercase letters, numbers, and special characters. Salt phrase at least 6 characters. +Secret phrases and salt phrases allow the use of hexadecimal notation similar to ' \xff ' to represent a character. It is advisable to use more complex secret phrases and to write secret phrases on paper. It is also recommended that salt phrases be memorized in the brain.` -const debug = true +const debug = false //Parse command line parameters -func parseCommandParams() (private string, brain bool, output string) { - flag.StringVar(&private, "private", "", "Private key wif string for test.") +func parseCommandParams() (brain bool, output string) { flag.BoolVar(&brain, "brain", false, "Brain wallet mode.") - flag.BoolVar(&brain, "b", false, "...") + flag.BoolVar(&brain, "b", false, "Brain wallet mode.") - flag.StringVar(&output, "output", "", "Output file name. (optional)") - flag.StringVar(&output, "o", "", "...") + flag.StringVar(&output, "output", "", "Output file name.") + flag.StringVar(&output, "o", "", "Output file name.") flag.Parse() return } func main() { - private, brain, output := parseCommandParams() - - var private_key [32]byte - if private == "" { - if brain == true { - // Brain wallet - secret, salt, err := inputBrainWalletSecret(brainWalletTip) - if err != nil { - println(err.Error()) - return - } - //secret, salt = []byte("www.aiportal.net"), []byte("aiportal") - private_key, err = generateBrainWalletKey(secret, salt) - if err != nil { - println(err.Error()) - return - } - } else { - // Random private key. - private_key_bytes, err := generateRandomBytes(32) - if err == nil { - copy(private_key[:], private_key_bytes) - } else { - println(err) - return - } + brain, output := parseCommandParams() + + var seed []byte + if brain == true { + // Brain wallet + secret, salt, err := inputBrainWalletSecret(brainWalletTip) + if err != nil { + return + } + seed, err = generateBrainWalletSeed(secret, salt) + if err != nil { + println(err.Error()) + return } } else { - // Private key from WIF string. - private_key_bytes, _, _ := base58.CheckDecode(private) - copy(private_key[:], private_key_bytes) + // Random wallet. + var err error + seed, err = generateRandomBytes(32) + if err != nil { + println(err.Error()) + return + } } - private_wif := base58.CheckEncode(private_key[:], 0x80) + private_wif, address_wif, err := GenerateWalletWif(seed) + if err != nil { + println(err.Error()) + return + } + println("") println("private: " + private_wif) - - public_key := computePublicKey(private_key) - public_wif := base58.CheckEncode(public_key[:], 0x00) - println("address: " + public_wif) + println("address: " + address_wif) if output != "" { - err := ioutil.WriteFile(output, []byte(public_wif), os.ModeAppend) + ln := fmt.Sprintf("private: %s\naddress: %s", private_wif, address_wif) + err := ioutil.WriteFile(output, []byte(ln), os.ModeAppend) if err != nil { - fmt.Printf("Failed to write to file. %s", err) + println(err.Error()) } } } -// Compute the public key from private key. -func computePublicKey(privateKey [32]byte) []byte { - - reader := bytes.NewReader(privateKey[:]) - key, err := bitecdsa.GenerateKey(bitelliptic.S256(), reader) +// Generate wallet private key and address +func GenerateWalletWif(seed []byte) (privateWif string, addressWif string, err error) { + reader := bytes.NewReader(seed) + private_bytes, x, y, err := bitelliptic.S256().GenerateKey(reader) if err != nil { - println(err) - return []byte{} + return } + privateWif = base58.CheckEncode(private_bytes, 0x80) - var public_key = [65]byte{0x04} - x_bytes := key.X.Bytes() - y_bytes := key.Y.Bytes() - copy(public_key[33-len(x_bytes):], x_bytes) - copy(public_key[65-len(y_bytes):], y_bytes) + var public_bytes = [65]byte{0x04} + copy(public_bytes[33 - len(x.Bytes()):], x.Bytes()) + copy(public_bytes[65 - len(y.Bytes()):], y.Bytes()) - public_key_sha := sha256.Sum256(public_key[:]) + public_sha := sha256.Sum256(public_bytes[:]) ripeHash := ripemd160.New() - ripeHash.Write(public_key_sha[:]) - public_key_ripe := ripeHash.Sum(nil) + ripeHash.Write(public_sha[:]) + public_ripe := ripeHash.Sum(nil) - return public_key_ripe[:] + addressWif = base58.CheckEncode(public_ripe, 0x00) + return } //Generate secure random private key seed. @@ -154,6 +132,7 @@ func inputBrainWalletSecret(tip string) (secret []byte, salt []byte, err error) color.Yellow(tip) println("") + terminal.MakeRaw(int(os.Stdin.Fd())) t := terminal.NewTerminal(os.Stdin, "") // Secret @@ -196,7 +175,7 @@ func inputBrainWalletSecret(tip string) (secret []byte, salt []byte, err error) } if debug { print(salt1) } println("") - if len(salt1) < 6 { + if len(escapeHexString(salt1)) < 6 { color.HiRed(" Salt at least 6 characters.") err = errInput return @@ -217,6 +196,10 @@ func inputBrainWalletSecret(tip string) (secret []byte, salt []byte, err error) secret = escapeHexString(secret1) salt = escapeHexString(salt1) + if debug { + fmt.Printf("secret: %X\n", secret) + fmt.Printf("salt: %X\n", salt) + } return } @@ -238,20 +221,29 @@ func escapeHexString(str string) []byte { } //Check secret strength -func checkSecretStrength(secret string) (valid bool) { +func checkSecretStrength(secret string) bool { number, _ := regexp.MatchString("[0-9]+", secret) lower, _ := regexp.MatchString("[a-z]+", secret) upper, _ := regexp.MatchString("[A-Z]+", secret) special, _ := regexp.MatchString("[^0-9a-zA-Z ]", secret) - valid = number && lower && upper && special - return + return number && lower && upper && special } -// Generate private key from secret and salt -func generateBrainWalletKey(secret []byte, salt []byte) (key [32]byte, err error) { - - if len(secret) == 0 || len(salt) < 0 { - err = errors.New("empty secret or salt") +// Generate wallet seed from secret and salt +func generateBrainWalletSeed(secret []byte, salt []byte) (seed []byte, err error) { + // WarpWallet encryption: + // 1. s1 ← scrypt(key=passphrase||0x1, salt=salt||0x1, N=218, r=8, p=1, dkLen=32) + // 2. s2 ← PBKDF2(key=passphrase||0x2, salt=salt||0x2, c=216, dkLen=32) + // 3. private_key ← s1 ⊕ s2 + // 4. Generate public_key from private_key using standard Bitcoin EC crypto + // 5. Output (private_key, public_key) + + if len(secret) == 0 { + err = errors.New("Empty secret") + return + } + if len(salt) < 0 { + err = errors.New("Empty salt") return } @@ -261,32 +253,34 @@ func generateBrainWalletKey(secret []byte, salt []byte) (key [32]byte, err error secret1[i] = v | 0x1 secret2[i] = v | 0x2 } + salt1 := make([]byte, len(salt)) salt2 := make([]byte, len(salt)) for i, v := range salt { salt1[i] = v | 0x1 salt2[i] = v | 0x2 } - key1, err := scrypt.Key(secret1, salt1, 16384, 8, 1, 32) + + s1, err := scrypt.Key(secret1, salt1, 16384, 8, 1, 32) if err != nil { return } - key2 := pbkdf2.Key(secret2, salt2, 4096, 32, sha1.New) + s2 := pbkdf2.Key(secret2, salt2, 4096, 32, sha1.New) - pk1, err := bitecdsa.GenerateKey(bitelliptic.S256(), bytes.NewReader(key1)) + _, x1, y1, err := bitelliptic.S256().GenerateKey(bytes.NewReader(s1)) if err != nil { return } - pk2, err := bitecdsa.GenerateKey(bitelliptic.S256(), bytes.NewReader(key2)) + _, x2, y2, err := bitelliptic.S256().GenerateKey(bytes.NewReader(s2)) if err != nil { return } - x, y := bitelliptic.S256().Add(pk1.X, pk1.Y, pk2.X, pk2.Y) - key_bytes := []byte{0x04} - key_bytes = append(key_bytes, x.Bytes()...) - key_bytes = append(key_bytes, y.Bytes()...) - key = sha256.Sum256(key_bytes[:]) + x, y := bitelliptic.S256().Add(x1, y1, x2, y2) + + seed = []byte{0x04} + seed = append(seed, x.Bytes()...) + seed = append(seed, y.Bytes()...) return } diff --git a/secp256k1/bitecdsa/bitecdsa.go b/secp256k1/bitecdsa/bitecdsa.go deleted file mode 100644 index d3cc7b3..0000000 --- a/secp256k1/bitecdsa/bitecdsa.go +++ /dev/null @@ -1,149 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Copyright 2011 ThePiachu. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as -// defined in FIPS 186-3. -package bitecdsa - -// References: -// [NSA]: Suite B implementor's guide to FIPS 186-3, -// http://www.nsa.gov/ia/_files/ecdsa.pdf -// [SECG]: SECG, SEC1 -// http://www.secg.org/download/aid-780/sec1-v2.pdf - -import ( - "../bitelliptic" - "io" - "math/big" -) - -// PublicKey represents an ECDSA public key. -type PublicKey struct { - *bitelliptic.BitCurve - X, Y *big.Int -} - -// PrivateKey represents a ECDSA private key. -type PrivateKey struct { - PublicKey - D *big.Int -} - -var one = new(big.Int).SetInt64(1) - -// randFieldElement returns a random element of the field underlying the given -// curve using the procedure given in [NSA] A.2.1. -func randFieldElement(c *bitelliptic.BitCurve, rand io.Reader) (k *big.Int, err error) { - b := make([]byte, c.BitSize/8) - _, err = io.ReadFull(rand, b) - if err != nil { - return - } - - k = new(big.Int).SetBytes(b) - //n := new(big.Int).Sub(c.N, one) - //k.Mod(k, n) - //k.Add(k, one) - return -} - -// GenerateKey generates a public&private key pair. -func GenerateKey(c *bitelliptic.BitCurve, rand io.Reader) (priv *PrivateKey, err error) { - k, err := randFieldElement(c, rand) - if err != nil { - return - } - - priv = new(PrivateKey) - priv.PublicKey.BitCurve = c - priv.D = k - priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes()) - return -} - -// hashToInt converts a hash value to an integer. There is some disagreement -// about how this is done. [NSA] suggests that this is done in the obvious -// manner, but [SECG] truncates the hash to the bit-length of the curve order -// first. We follow [SECG] because that's what OpenSSL does. -func hashToInt(hash []byte, c *bitelliptic.BitCurve) *big.Int { - orderBits := c.N.BitLen() - orderBytes := (orderBits + 7) / 8 - if len(hash) > orderBytes { - hash = hash[:orderBytes] - } - - ret := new(big.Int).SetBytes(hash) - excess := orderBytes*8 - orderBits - if excess > 0 { - ret.Rsh(ret, uint(excess)) - } - return ret -} - -// Sign signs an arbitrary length hash (which should be the result of hashing a -// larger message) using the private key, priv. It returns the signature as a -// pair of integers. The security of the private key depends on the entropy of -// rand. -func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) { - // See [NSA] 3.4.1 - c := priv.PublicKey.BitCurve - - var k, kInv *big.Int - for { - for { - k, err = randFieldElement(c, rand) - if err != nil { - r = nil - return - } - - kInv = new(big.Int).ModInverse(k, c.N) - r, _ = priv.BitCurve.ScalarBaseMult(k.Bytes()) - r.Mod(r, priv.BitCurve.N) - if r.Sign() != 0 { - break - } - } - - e := hashToInt(hash, c) - s = new(big.Int).Mul(priv.D, r) - s.Add(s, e) - s.Mul(s, kInv) - s.Mod(s, priv.PublicKey.BitCurve.N) - if s.Sign() != 0 { - break - } - } - - return -} - -// Verify verifies the signature in r, s of hash using the public key, pub. It -// returns true iff the signature is valid. -func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool { - // See [NSA] 3.4.2 - c := pub.BitCurve - - if r.Sign() == 0 || s.Sign() == 0 { - return false - } - if r.Cmp(c.N) >= 0 || s.Cmp(c.N) >= 0 { - return false - } - e := hashToInt(hash, c) - w := new(big.Int).ModInverse(s, c.N) - - u1 := e.Mul(e, w) - u2 := w.Mul(r, w) - - x1, y1 := c.ScalarBaseMult(u1.Bytes()) - x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes()) - if x1.Cmp(x2) == 0 { - return false - } - x, _ := c.Add(x1, y1, x2, y2) - x.Mod(x, c.N) - return x.Cmp(r) == 0 -} diff --git a/secp256k1/bitecdsa/bitecdsa_test.go b/secp256k1/bitecdsa/bitecdsa_test.go deleted file mode 100644 index 53f992a..0000000 --- a/secp256k1/bitecdsa/bitecdsa_test.go +++ /dev/null @@ -1,228 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Copyright 2011 ThePiachu. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package bitecdsa - -import ( - "big" - "bitelliptic" - "crypto/rand" - "crypto/sha1" - "encoding/hex" - "testing" -) - -func testKeyGeneration(t *testing.T, c *bitelliptic.BitCurve, tag string) { - priv, err := GenerateKey(c, rand.Reader) - if err != nil { - t.Errorf("%s: error: %s", tag, err) - return - } - if !c.IsOnCurve(priv.PublicKey.X, priv.PublicKey.Y) { - t.Errorf("%s: public key invalid: %s", tag, err) - } -} - -func TestKeyGeneration(t *testing.T) { - testKeyGeneration(t, bitelliptic.S256(), "S256") - if testing.Short() { - return - } - testKeyGeneration(t, bitelliptic.S160(), "S160") - testKeyGeneration(t, bitelliptic.S192(), "S192") - testKeyGeneration(t, bitelliptic.S224(), "S224") -} - -func testSignAndVerify(t *testing.T, c *bitelliptic.BitCurve, tag string) { - priv, _ := GenerateKey(c, rand.Reader) - - hashed := []byte("testing") - r, s, err := Sign(rand.Reader, priv, hashed) - if err != nil { - t.Errorf("%s: error signing: %s", tag, err) - return - } - - if !Verify(&priv.PublicKey, hashed, r, s) { - t.Errorf("%s: Verify failed", tag) - } - - hashed[0] ^= 0xff - if Verify(&priv.PublicKey, hashed, r, s) { - t.Errorf("%s: Verify always works!", tag) - } -} - -func TestSignAndVerify(t *testing.T) { - testSignAndVerify(t, bitelliptic.S256(), "S256") - if testing.Short() { - return - } - testSignAndVerify(t, bitelliptic.S160(), "S160") - testSignAndVerify(t, bitelliptic.S192(), "S192") - testSignAndVerify(t, bitelliptic.S224(), "S224") -} - -func fromHex(s string) *big.Int { - r, ok := new(big.Int).SetString(s, 16) - if !ok { - panic("bad hex") - } - return r -} - -// These test vectors were taken from -// http://csrc.nist.gov/groups/STM/cavp/documents/dss/ecdsatestvectors.zip -var testVectors = []struct { - msg string - Qx, Qy string - r, s string - ok bool -}{ - { - "09626b45493672e48f3d1226a3aff3201960e577d33a7f72c7eb055302db8fe8ed61685dd036b554942a5737cd1512cdf811ee0c00e6dd2f08c69f08643be396e85dafda664801e772cdb7396868ac47b172245b41986aa2648cb77fbbfa562581be06651355a0c4b090f9d17d8f0ab6cced4e0c9d386cf465a516630f0231bd", - "9504b5b82d97a264d8b3735e0568decabc4b6ca275bc53cbadfc1c40", - "03426f80e477603b10dee670939623e3da91a94267fc4e51726009ed", - "81d3ac609f9575d742028dd496450a58a60eea2dcf8b9842994916e1", - "96a8c5f382c992e8f30ccce9af120b067ec1d74678fa8445232f75a5", - false, - }, - { - "96b2b6536f6df29be8567a72528aceeaccbaa66c66c534f3868ca9778b02faadb182e4ed34662e73b9d52ecbe9dc8e875fc05033c493108b380689ebf47e5b062e6a0cdb3dd34ce5fe347d92768d72f7b9b377c20aea927043b509c078ed2467d7113405d2ddd458811e6faf41c403a2a239240180f1430a6f4330df5d77de37", - "851e3100368a22478a0029353045ae40d1d8202ef4d6533cfdddafd8", - "205302ac69457dd345e86465afa72ee8c74ca97e2b0b999aec1f10c2", - "4450c2d38b697e990721aa2dbb56578d32b4f5aeb3b9072baa955ee0", - "e26d4b589166f7b4ba4b1c8fce823fa47aad22f8c9c396b8c6526e12", - false, - }, - { - "86778dbb4a068a01047a8d245d632f636c11d2ad350740b36fad90428b454ad0f120cb558d12ea5c8a23db595d87543d06d1ef489263d01ee529871eb68737efdb8ff85bc7787b61514bed85b7e01d6be209e0a4eb0db5c8df58a5c5bf706d76cb2bdf7800208639e05b89517155d11688236e6a47ed37d8e5a2b1e0adea338e", - "ad5bda09d319a717c1721acd6688d17020b31b47eef1edea57ceeffc", - "c8ce98e181770a7c9418c73c63d01494b8b80a41098c5ea50692c984", - "de5558c257ab4134e52c19d8db3b224a1899cbd08cc508ce8721d5e9", - "745db7af5a477e5046705c0a5eff1f52cb94a79d481f0c5a5e108ecd", - true, - }, - { - "4bc6ef1958556686dab1e39c3700054a304cbd8f5928603dcd97fafd1f29e69394679b638f71c9344ce6a535d104803d22119f57b5f9477e253817a52afa9bfbc9811d6cc8c8be6b6566c6ef48b439bbb532abe30627548c598867f3861ba0b154dc1c3deca06eb28df8efd28258554b5179883a36fbb1eecf4f93ee19d41e3d", - "cc5eea2edf964018bdc0504a3793e4d2145142caa09a72ac5fb8d3e8", - "a48d78ae5d08aa725342773975a00d4219cf7a8029bb8cf3c17c374a", - "67b861344b4e416d4094472faf4272f6d54a497177fbc5f9ef292836", - "1d54f3fcdad795bf3b23408ecbac3e1321d1d66f2e4e3d05f41f7020", - false, - }, - { - "bb658732acbf3147729959eb7318a2058308b2739ec58907dd5b11cfa3ecf69a1752b7b7d806fe00ec402d18f96039f0b78dbb90a59c4414fb33f1f4e02e4089de4122cd93df5263a95be4d7084e2126493892816e6a5b4ed123cb705bf930c8f67af0fb4514d5769232a9b008a803af225160ce63f675bd4872c4c97b146e5e", - "6234c936e27bf141fc7534bfc0a7eedc657f91308203f1dcbd642855", - "27983d87ca785ef4892c3591ef4a944b1deb125dd58bd351034a6f84", - "e94e05b42d01d0b965ffdd6c3a97a36a771e8ea71003de76c4ecb13f", - "1dc6464ffeefbd7872a081a5926e9fc3e66d123f1784340ba17737e9", - false, - }, - { - "7c00be9123bfa2c4290be1d8bc2942c7f897d9a5b7917e3aabd97ef1aab890f148400a89abd554d19bec9d8ed911ce57b22fbcf6d30ca2115f13ce0a3f569a23bad39ee645f624c49c60dcfc11e7d2be24de9c905596d8f23624d63dc46591d1f740e46f982bfae453f107e80db23545782be23ce43708245896fc54e1ee5c43", - "9f3f037282aaf14d4772edffff331bbdda845c3f65780498cde334f1", - "8308ee5a16e3bcb721b6bc30000a0419bc1aaedd761be7f658334066", - "6381d7804a8808e3c17901e4d283b89449096a8fba993388fa11dc54", - "8e858f6b5b253686a86b757bad23658cda53115ac565abca4e3d9f57", - false, - }, - { - "cffc122a44840dc705bb37130069921be313d8bde0b66201aebc48add028ca131914ef2e705d6bedd19dc6cf9459bbb0f27cdfe3c50483808ffcdaffbeaa5f062e097180f07a40ef4ab6ed03fe07ed6bcfb8afeb42c97eafa2e8a8df469de07317c5e1494c41547478eff4d8c7d9f0f484ad90fedf6e1c35ee68fa73f1691601", - "a03b88a10d930002c7b17ca6af2fd3e88fa000edf787dc594f8d4fd4", - "e0cf7acd6ddc758e64847fe4df9915ebda2f67cdd5ec979aa57421f5", - "387b84dcf37dc343c7d2c5beb82f0bf8bd894b395a7b894565d296c1", - "4adc12ce7d20a89ce3925e10491c731b15ddb3f339610857a21b53b4", - false, - }, - { - "26e0e0cafd85b43d16255908ccfd1f061c680df75aba3081246b337495783052ba06c60f4a486c1591a4048bae11b4d7fec4f161d80bdc9a7b79d23e44433ed625eab280521a37f23dd3e1bdc5c6a6cfaa026f3c45cf703e76dab57add93fe844dd4cda67dc3bddd01f9152579e49df60969b10f09ce9372fdd806b0c7301866", - "9a8983c42f2b5a87c37a00458b5970320d247f0c8a88536440173f7d", - "15e489ec6355351361900299088cfe8359f04fe0cab78dde952be80c", - "929a21baa173d438ec9f28d6a585a2f9abcfc0a4300898668e476dc0", - "59a853f046da8318de77ff43f26fe95a92ee296fa3f7e56ce086c872", - true, - }, - { - "1078eac124f48ae4f807e946971d0de3db3748dd349b14cca5c942560fb25401b2252744f18ad5e455d2d97ed5ae745f55ff509c6c8e64606afe17809affa855c4c4cdcaf6b69ab4846aa5624ed0687541aee6f2224d929685736c6a23906d974d3c257abce1a3fb8db5951b89ecb0cda92b5207d93f6618fd0f893c32cf6a6e", - "d6e55820bb62c2be97650302d59d667a411956138306bd566e5c3c2b", - "631ab0d64eaf28a71b9cbd27a7a88682a2167cee6251c44e3810894f", - "65af72bc7721eb71c2298a0eb4eed3cec96a737cc49125706308b129", - "bd5a987c78e2d51598dbd9c34a9035b0069c580edefdacee17ad892a", - false, - }, - { - "919deb1fdd831c23481dfdb2475dcbe325b04c34f82561ced3d2df0b3d749b36e255c4928973769d46de8b95f162b53cd666cad9ae145e7fcfba97919f703d864efc11eac5f260a5d920d780c52899e5d76f8fe66936ff82130761231f536e6a3d59792f784902c469aa897aabf9a0678f93446610d56d5e0981e4c8a563556b", - "269b455b1024eb92d860a420f143ac1286b8cce43031562ae7664574", - "baeb6ca274a77c44a0247e5eb12ca72bdd9a698b3f3ae69c9f1aaa57", - "cb4ec2160f04613eb0dfe4608486091a25eb12aa4dec1afe91cfb008", - "40b01d8cd06589481574f958b98ca08ade9d2a8fe31024375c01bb40", - false, - }, - { - "6e012361250dacf6166d2dd1aa7be544c3206a9d43464b3fcd90f3f8cf48d08ec099b59ba6fe7d9bdcfaf244120aed1695d8be32d1b1cd6f143982ab945d635fb48a7c76831c0460851a3d62b7209c30cd9c2abdbe3d2a5282a9fcde1a6f418dd23c409bc351896b9b34d7d3a1a63bbaf3d677e612d4a80fa14829386a64b33f", - "6d2d695efc6b43b13c14111f2109608f1020e3e03b5e21cfdbc82fcd", - "26a4859296b7e360b69cf40be7bd97ceaffa3d07743c8489fc47ca1b", - "9a8cb5f2fdc288b7183c5b32d8e546fc2ed1ca4285eeae00c8b572ad", - "8c623f357b5d0057b10cdb1a1593dab57cda7bdec9cf868157a79b97", - true, - }, - { - "bf6bd7356a52b234fe24d25557200971fc803836f6fec3cade9642b13a8e7af10ab48b749de76aada9d8927f9b12f75a2c383ca7358e2566c4bb4f156fce1fd4e87ef8c8d2b6b1bdd351460feb22cdca0437ac10ca5e0abbbce9834483af20e4835386f8b1c96daaa41554ceee56730aac04f23a5c765812efa746051f396566", - "14250131b2599939cf2d6bc491be80ddfe7ad9de644387ee67de2d40", - "b5dc473b5d014cd504022043c475d3f93c319a8bdcb7262d9e741803", - "4f21642f2201278a95339a80f75cc91f8321fcb3c9462562f6cbf145", - "452a5f816ea1f75dee4fd514fa91a0d6a43622981966c59a1b371ff8", - false, - }, - { - "0eb7f4032f90f0bd3cf9473d6d9525d264d14c031a10acd31a053443ed5fe919d5ac35e0be77813071b4062f0b5fdf58ad5f637b76b0b305aec18f82441b6e607b44cdf6e0e3c7c57f24e6fd565e39430af4a6b1d979821ed0175fa03e3125506847654d7e1ae904ce1190ae38dc5919e257bdac2db142a6e7cd4da6c2e83770", - "d1f342b7790a1667370a1840255ac5bbbdc66f0bc00ae977d99260ac", - "76416cabae2de9a1000b4646338b774baabfa3db4673790771220cdb", - "bc85e3fc143d19a7271b2f9e1c04b86146073f3fab4dda1c3b1f35ca", - "9a5c70ede3c48d5f43307a0c2a4871934424a3303b815df4bb0f128e", - false, - }, - { - "5cc25348a05d85e56d4b03cec450128727bc537c66ec3a9fb613c151033b5e86878632249cba83adcefc6c1e35dcd31702929c3b57871cda5c18d1cf8f9650a25b917efaed56032e43b6fc398509f0d2997306d8f26675f3a8683b79ce17128e006aa0903b39eeb2f1001be65de0520115e6f919de902b32c38d691a69c58c92", - "7e49a7abf16a792e4c7bbc4d251820a2abd22d9f2fc252a7bf59c9a6", - "44236a8fb4791c228c26637c28ae59503a2f450d4cfb0dc42aa843b9", - "084461b4050285a1a85b2113be76a17878d849e6bc489f4d84f15cd8", - "079b5bddcc4d45de8dbdfd39f69817c7e5afa454a894d03ee1eaaac3", - false, - }, - { - "1951533ce33afb58935e39e363d8497a8dd0442018fd96dff167b3b23d7206a3ee182a3194765df4768a3284e23b8696c199b4686e670d60c9d782f08794a4bccc05cffffbd1a12acd9eb1cfa01f7ebe124da66ecff4599ea7720c3be4bb7285daa1a86ebf53b042bd23208d468c1b3aa87381f8e1ad63e2b4c2ba5efcf05845", - "31945d12ebaf4d81f02be2b1768ed80784bf35cf5e2ff53438c11493", - "a62bebffac987e3b9d3ec451eb64c462cdf7b4aa0b1bbb131ceaa0a4", - "bc3c32b19e42b710bca5c6aaa128564da3ddb2726b25f33603d2af3c", - "ed1a719cc0c507edc5239d76fe50e2306c145ad252bd481da04180c0", - false, - }, -} - -func TestVectors(t *testing.T) { - sha := sha1.New() - - for i, test := range testVectors { - pub := PublicKey{ - BitCurve: bitelliptic.S256(), - X: fromHex(test.Qx), - Y: fromHex(test.Qy), - } - msg, _ := hex.DecodeString(test.msg) - sha.Reset() - sha.Write(msg) - hashed := sha.Sum() - r := fromHex(test.r) - s := fromHex(test.s) - if Verify(&pub, hashed, r, s) != test.ok { - t.Errorf("%d: bad result", i) - } - if testing.Short() { - break - } - } -} diff --git a/secp256k1/bitelliptic/bitelliptic.go b/secp256k1/bitelliptic/bitelliptic.go deleted file mode 100644 index 36884d6..0000000 --- a/secp256k1/bitelliptic/bitelliptic.go +++ /dev/null @@ -1,358 +0,0 @@ -package bitelliptic - -// Copyright 2010 The Go Authors. All rights reserved. -// Copyright 2011 ThePiachu. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// Package bitelliptic implements several Koblitz elliptic curves over prime -// fields. - -// This package operates, internally, on Jacobian coordinates. For a given -// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1) -// where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole -// calculation can be performed within the transform (as in ScalarMult and -// ScalarBaseMult). But even for Add and Double, it's faster to apply and -// reverse the transform than to operate in affine coordinates. - -import ( - "io" - "math/big" - "sync" -) - -// A BitCurve represents a Koblitz Curve with a=0. -// See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html -type BitCurve struct { - P *big.Int // the order of the underlying field - N *big.Int // the order of the base point - B *big.Int // the constant of the BitCurve equation - Gx, Gy *big.Int // (x,y) of the base point - BitSize int // the size of the underlying field -} - -// IsOnBitCurve returns true if the given (x,y) lies on the BitCurve. -func (BitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool { - // y² = x³ + b - y2 := new(big.Int).Mul(y, y) //y² - y2.Mod(y2, BitCurve.P) //y²%P - - x3 := new(big.Int).Mul(x, x) //x² - x3.Mul(x3, x) //x³ - - x3.Add(x3, BitCurve.B) //x³+B - x3.Mod(x3, BitCurve.P) //(x³+B)%P - - return x3.Cmp(y2) == 0 -} - -//TODO: double check if the function is okay -// affineFromJacobian reverses the Jacobian transform. See the comment at the -// top of the file. -func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) { - zinv := new(big.Int).ModInverse(z, BitCurve.P) - zinvsq := new(big.Int).Mul(zinv, zinv) - - xOut = new(big.Int).Mul(x, zinvsq) - xOut.Mod(xOut, BitCurve.P) - zinvsq.Mul(zinvsq, zinv) - yOut = new(big.Int).Mul(y, zinvsq) - yOut.Mod(yOut, BitCurve.P) - return -} - -// Add returns the sum of (x1,y1) and (x2,y2) -func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { - z := new(big.Int).SetInt64(1) - return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z)) -} - -// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and -// (x2, y2, z2) and returns their sum, also in Jacobian form. -func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) { - // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl - z1z1 := new(big.Int).Mul(z1, z1) - z1z1.Mod(z1z1, BitCurve.P) - z2z2 := new(big.Int).Mul(z2, z2) - z2z2.Mod(z2z2, BitCurve.P) - - u1 := new(big.Int).Mul(x1, z2z2) - u1.Mod(u1, BitCurve.P) - u2 := new(big.Int).Mul(x2, z1z1) - u2.Mod(u2, BitCurve.P) - h := new(big.Int).Sub(u2, u1) - if h.Sign() == -1 { - h.Add(h, BitCurve.P) - } - i := new(big.Int).Lsh(h, 1) - i.Mul(i, i) - j := new(big.Int).Mul(h, i) - - s1 := new(big.Int).Mul(y1, z2) - s1.Mul(s1, z2z2) - s1.Mod(s1, BitCurve.P) - s2 := new(big.Int).Mul(y2, z1) - s2.Mul(s2, z1z1) - s2.Mod(s2, BitCurve.P) - r := new(big.Int).Sub(s2, s1) - if r.Sign() == -1 { - r.Add(r, BitCurve.P) - } - r.Lsh(r, 1) - v := new(big.Int).Mul(u1, i) - - x3 := new(big.Int).Set(r) - x3.Mul(x3, x3) - x3.Sub(x3, j) - x3.Sub(x3, v) - x3.Sub(x3, v) - x3.Mod(x3, BitCurve.P) - - y3 := new(big.Int).Set(r) - v.Sub(v, x3) - y3.Mul(y3, v) - s1.Mul(s1, j) - s1.Lsh(s1, 1) - y3.Sub(y3, s1) - y3.Mod(y3, BitCurve.P) - - z3 := new(big.Int).Add(z1, z2) - z3.Mul(z3, z3) - z3.Sub(z3, z1z1) - if z3.Sign() == -1 { - z3.Add(z3, BitCurve.P) - } - z3.Sub(z3, z2z2) - if z3.Sign() == -1 { - z3.Add(z3, BitCurve.P) - } - z3.Mul(z3, h) - z3.Mod(z3, BitCurve.P) - - return x3, y3, z3 -} - -// Double returns 2*(x,y) -func (BitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { - z1 := new(big.Int).SetInt64(1) - return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z1)) -} - -// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and -// returns its double, also in Jacobian form. -func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) { - // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l - - a := new(big.Int).Mul(x, x) //X1² - b := new(big.Int).Mul(y, y) //Y1² - c := new(big.Int).Mul(b, b) //B² - - d := new(big.Int).Add(x, b) //X1+B - d.Mul(d, d) //(X1+B)² - d.Sub(d, a) //(X1+B)²-A - d.Sub(d, c) //(X1+B)²-A-C - d.Mul(d, big.NewInt(2)) //2*((X1+B)²-A-C) - - e := new(big.Int).Mul(big.NewInt(3), a) //3*A - f := new(big.Int).Mul(e, e) //E² - - x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D - x3.Sub(f, x3) //F-2*D - x3.Mod(x3, BitCurve.P) - - y3 := new(big.Int).Sub(d, x3) //D-X3 - y3.Mul(e, y3) //E*(D-X3) - y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C - y3.Mod(y3, BitCurve.P) - - z3 := new(big.Int).Mul(y, z) //Y1*Z1 - z3.Mul(big.NewInt(2), z3) //3*Y1*Z1 - z3.Mod(z3, BitCurve.P) - - return x3, y3, z3 -} - -//TODO: double check if it is okay -// ScalarMult returns k*(Bx,By) where k is a number in big-endian form. -func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) { - // We have a slight problem in that the identity of the group (the - // point at infinity) cannot be represented in (x, y) form on a finite - // machine. Thus the standard add/double algorithm has to be tweaked - // slightly: our initial state is not the identity, but x, and we - // ignore the first true bit in |k|. If we don't find any true bits in - // |k|, then we return nil, nil, because we cannot return the identity - // element. - - Bz := new(big.Int).SetInt64(1) - x := Bx - y := By - z := Bz - - seenFirstTrue := false - for _, byte := range k { - for bitNum := 0; bitNum < 8; bitNum++ { - if seenFirstTrue { - x, y, z = BitCurve.doubleJacobian(x, y, z) - } - if byte&0x80 == 0x80 { - if !seenFirstTrue { - seenFirstTrue = true - } else { - x, y, z = BitCurve.addJacobian(Bx, By, Bz, x, y, z) - } - } - byte <<= 1 - } - } - - if !seenFirstTrue { - return nil, nil - } - - return BitCurve.affineFromJacobian(x, y, z) -} - -// ScalarBaseMult returns k*G, where G is the base point of the group and k is -// an integer in big-endian form. -func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) { - return BitCurve.ScalarMult(BitCurve.Gx, BitCurve.Gy, k) -} - -var mask = []byte{0xff, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f} - -//TODO: double check if it is okay -// GenerateKey returns a public/private key pair. The private key is generated -// using the given reader, which must return random data. -func (BitCurve *BitCurve) GenerateKey(rand io.Reader) (priv []byte, x, y *big.Int, err error) { - byteLen := (BitCurve.BitSize + 7) >> 3 - priv = make([]byte, byteLen) - - for x == nil { - _, err = io.ReadFull(rand, priv) - if err != nil { - return - } - // We have to mask off any excess bits in the case that the size of the - // underlying field is not a whole number of bytes. - priv[0] &= mask[BitCurve.BitSize%8] - // This is because, in tests, rand will return all zeros and we don't - // want to get the point at infinity and loop forever. - priv[1] ^= 0x42 - x, y = BitCurve.ScalarBaseMult(priv) - } - return -} - -// Marshal converts a point into the form specified in section 4.3.6 of ANSI -// X9.62. -func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte { - byteLen := (BitCurve.BitSize + 7) >> 3 - - ret := make([]byte, 1+2*byteLen) - ret[0] = 4 // uncompressed point - - xBytes := x.Bytes() - copy(ret[1+byteLen-len(xBytes):], xBytes) - yBytes := y.Bytes() - copy(ret[1+2*byteLen-len(yBytes):], yBytes) - return ret -} - -// Unmarshal converts a point, serialised by Marshal, into an x, y pair. On -// error, x = nil. -func (BitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) { - byteLen := (BitCurve.BitSize + 7) >> 3 - if len(data) != 1+2*byteLen { - return - } - if data[0] != 4 { // uncompressed form - return - } - x = new(big.Int).SetBytes(data[1 : 1+byteLen]) - y = new(big.Int).SetBytes(data[1+byteLen:]) - return -} - -//curve parameters taken from: -//http://www.secg.org/collateral/sec2_final.pdf - -var initonce sync.Once -var secp160k1 *BitCurve -var secp192k1 *BitCurve -var secp224k1 *BitCurve -var secp256k1 *BitCurve - -func initAll() { - initS160() - initS192() - initS224() - initS256() -} - -func initS160() { - // See SEC 2 section 2.4.1 - secp160k1 = new(BitCurve) - secp160k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFAC73", 16) - secp160k1.N, _ = new(big.Int).SetString("0100000000000000000001B8FA16DFAB9ACA16B6B3", 16) - secp160k1.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000007", 16) - secp160k1.Gx, _ = new(big.Int).SetString("3B4C382CE37AA192A4019E763036F4F5DD4D7EBB", 16) - secp160k1.Gy, _ = new(big.Int).SetString("938CF935318FDCED6BC28286531733C3F03C4FEE", 16) - secp160k1.BitSize = 160 -} - -func initS192() { - // See SEC 2 section 2.5.1 - secp192k1 = new(BitCurve) - secp192k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFEE37", 16) - secp192k1.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8D", 16) - secp192k1.B, _ = new(big.Int).SetString("000000000000000000000000000000000000000000000003", 16) - secp192k1.Gx, _ = new(big.Int).SetString("DB4FF10EC057E9AE26B07D0280B7F4341DA5D1B1EAE06C7D", 16) - secp192k1.Gy, _ = new(big.Int).SetString("9B2F2F6D9C5628A7844163D015BE86344082AA88D95E2F9D", 16) - secp192k1.BitSize = 192 -} - -func initS224() { - // See SEC 2 section 2.6.1 - secp224k1 = new(BitCurve) - secp224k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFE56D", 16) - secp224k1.N, _ = new(big.Int).SetString("010000000000000000000000000001DCE8D2EC6184CAF0A971769FB1F7", 16) - secp224k1.B, _ = new(big.Int).SetString("00000000000000000000000000000000000000000000000000000005", 16) - secp224k1.Gx, _ = new(big.Int).SetString("A1455B334DF099DF30FC28A169A467E9E47075A90F7E650EB6B7A45C", 16) - secp224k1.Gy, _ = new(big.Int).SetString("7E089FED7FBA344282CAFBD6F7E319F7C0B0BD59E2CA4BDB556D61A5", 16) - secp224k1.BitSize = 224 -} - -func initS256() { - // See SEC 2 section 2.7.1 - secp256k1 = new(BitCurve) - secp256k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 16) - secp256k1.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 16) - secp256k1.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000000000000000000000000000007", 16) - secp256k1.Gx, _ = new(big.Int).SetString("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 16) - secp256k1.Gy, _ = new(big.Int).SetString("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 16) - secp256k1.BitSize = 256 -} - -// S160 returns a BitCurve which implements secp160k1 (see SEC 2 section 2.4.1) -func S160() *BitCurve { - initonce.Do(initAll) - return secp160k1 -} - -// S192 returns a BitCurve which implements secp192k1 (see SEC 2 section 2.5.1) -func S192() *BitCurve { - initonce.Do(initAll) - return secp192k1 -} - -// S224 returns a BitCurve which implements secp224k1 (see SEC 2 section 2.6.1) -func S224() *BitCurve { - initonce.Do(initAll) - return secp224k1 -} - -// S256 returns a BitCurve which implements secp256k1 (see SEC 2 section 2.7.1) -func S256() *BitCurve { - initonce.Do(initAll) - return secp256k1 -} diff --git a/secp256k1/bitelliptic/bitelliptic_test.go b/secp256k1/bitelliptic/bitelliptic_test.go deleted file mode 100644 index deb5dbc..0000000 --- a/secp256k1/bitelliptic/bitelliptic_test.go +++ /dev/null @@ -1,116 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Copyright 2011 ThePiachu. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package bitelliptic - -import ( - "big" - "crypto/rand" - "fmt" - "testing" -) - -func TestOnCurve(t *testing.T) { - s160 := S160() - if !s160.IsOnCurve(s160.Gx, s160.Gy) { - t.Errorf("FAIL S160") - } - s192 := S192() - if !s192.IsOnCurve(s192.Gx, s192.Gy) { - t.Errorf("FAIL S192") - } - s224 := S224() - if !s224.IsOnCurve(s224.Gx, s224.Gy) { - t.Errorf("FAIL S224") - } - s256 := S256() - if !s256.IsOnCurve(s256.Gx, s256.Gy) { - t.Errorf("FAIL S256") - } -} - -type baseMultTest struct { - k string - x, y string -} - -//TODO: add more test vectors -var s256BaseMultTests = []baseMultTest{ - { - "AA5E28D6A97A2479A65527F7290311A3624D4CC0FA1578598EE3C2613BF99522", - "34F9460F0E4F08393D192B3C5133A6BA099AA0AD9FD54EBCCFACDFA239FF49C6", - "B71EA9BD730FD8923F6D25A7A91E7DD7728A960686CB5A901BB419E0F2CA232", - }, - { - "7E2B897B8CEBC6361663AD410835639826D590F393D90A9538881735256DFAE3", - "D74BF844B0862475103D96A611CF2D898447E288D34B360BC885CB8CE7C00575", - "131C670D414C4546B88AC3FF664611B1C38CEB1C21D76369D7A7A0969D61D97D", - }, - { - "6461E6DF0FE7DFD05329F41BF771B86578143D4DD1F7866FB4CA7E97C5FA945D", - "E8AECC370AEDD953483719A116711963CE201AC3EB21D3F3257BB48668C6A72F", - "C25CAF2F0EBA1DDB2F0F3F47866299EF907867B7D27E95B3873BF98397B24EE1", - }, - { - "376A3A2CDCD12581EFFF13EE4AD44C4044B8A0524C42422A7E1E181E4DEECCEC", - "14890E61FCD4B0BD92E5B36C81372CA6FED471EF3AA60A3E415EE4FE987DABA1", - "297B858D9F752AB42D3BCA67EE0EB6DCD1C2B7B0DBE23397E66ADC272263F982", - }, - { - "1B22644A7BE026548810C378D0B2994EEFA6D2B9881803CB02CEFF865287D1B9", - "F73C65EAD01C5126F28F442D087689BFA08E12763E0CEC1D35B01751FD735ED3", - "F449A8376906482A84ED01479BD18882B919C140D638307F0C0934BA12590BDE", - }, -} - -//TODO: test different curves as well? -func TestBaseMult(t *testing.T) { - s256 := S256() - for i, e := range s256BaseMultTests { - k, ok := new(big.Int).SetString(e.k, 16) - if !ok { - t.Errorf("%d: bad value for k: %s", i, e.k) - } - x, y := s256.ScalarBaseMult(k.Bytes()) - if fmt.Sprintf("%X", x) != e.x || fmt.Sprintf("%X", y) != e.y { - t.Errorf("%d: bad output for k=%s: got (%X, %X), want (%s, %s)", i, e.k, x, y, e.x, e.y) - } - if testing.Short() && i > 5 { - break - } - } -} - -//TODO: test more curves? -func BenchmarkBaseMult(b *testing.B) { - b.ResetTimer() - s256 := S224() - e := s256BaseMultTests[0] //TODO: check, used to be 25 instead of 0, but it's probably ok - k, _ := new(big.Int).SetString(e.k, 16) - b.StartTimer() - for i := 0; i < b.N; i++ { - s256.ScalarBaseMult(k.Bytes()) - } -} - -//TODO: test more curves? -func TestMarshal(t *testing.T) { - s256 := S256() - _, x, y, err := s256.GenerateKey(rand.Reader) - if err != nil { - t.Error(err) - return - } - serialised := s256.Marshal(x, y) - xx, yy := s256.Unmarshal(serialised) - if xx == nil { - t.Error("failed to unmarshal") - return - } - if xx.Cmp(x) != 0 || yy.Cmp(y) != 0 { - t.Error("unmarshal returned different values") - return - } -} diff --git a/vendor/github.com/njones/bitcoin-crypto b/vendor/github.com/njones/bitcoin-crypto new file mode 160000 index 0000000..ea1e694 --- /dev/null +++ b/vendor/github.com/njones/bitcoin-crypto @@ -0,0 +1 @@ +Subproject commit ea1e694702736efbe373f7b98d7cb36f95f8dae6