forked from wang-xinyu/tensorrtx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
efficientnet.cpp
280 lines (246 loc) · 9.8 KB
/
efficientnet.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
#include "NvInfer.h"
#include "cuda_runtime_api.h"
#include "logging.h"
#include <fstream>
#include <iostream>
#include <map>
#include <sstream>
#include <vector>
#include <chrono>
#include "utils.hpp"
#define USE_FP32 //USE_FP16
#define INPUT_NAME "data"
#define OUTPUT_NAME "prob"
#define MAX_BATCH_SIZE 8
using namespace nvinfer1;
static Logger gLogger;
static std::vector<BlockArgs>
block_args_list = {
BlockArgs{1, 3, 1, 1, 32, 16, 0.25, true},
BlockArgs{2, 3, 2, 6, 16, 24, 0.25, true},
BlockArgs{2, 5, 2, 6, 24, 40, 0.25, true},
BlockArgs{3, 3, 2, 6, 40, 80, 0.25, true},
BlockArgs{3, 5, 1, 6, 80, 112, 0.25, true},
BlockArgs{4, 5, 2, 6, 112, 192, 0.25, true},
BlockArgs{1, 3, 1, 6, 192, 320, 0.25, true}};
static std::map<std::string, GlobalParams>
global_params_map = {
// input_h,input_w,num_classes,batch_norm_epsilon,
// width_coefficient,depth_coefficient,depth_divisor, min_depth
{"b0", GlobalParams{224, 224, 1000, 0.001, 1.0, 1.0, 8, -1}},
{"b1", GlobalParams{240, 240, 1000, 0.001, 1.0, 1.1, 8, -1}},
{"b2", GlobalParams{260, 260, 1000, 0.001, 1.1, 1.2, 8, -1}},
{"b3", GlobalParams{300, 300, 1000, 0.001, 1.2, 1.4, 8, -1}},
{"b4", GlobalParams{380, 380, 1000, 0.001, 1.4, 1.8, 8, -1}},
{"b5", GlobalParams{456, 456, 1000, 0.001, 1.6, 2.2, 8, -1}},
{"b6", GlobalParams{528, 528, 1000, 0.001, 1.8, 2.6, 8, -1}},
{"b7", GlobalParams{600, 600, 1000, 0.001, 2.0, 3.1, 8, -1}},
{"b8", GlobalParams{672, 672, 1000, 0.001, 2.2, 3.6, 8, -1}},
{"l2", GlobalParams{800, 800, 1000, 0.001, 4.3, 5.3, 8, -1}},
};
ICudaEngine *createEngine(unsigned int maxBatchSize, IBuilder *builder, IBuilderConfig *config, DataType dt, std::string path_wts, std::vector<BlockArgs> block_args_list, GlobalParams global_params)
{
float bn_eps = global_params.batch_norm_epsilon;
DimsHW image_size = DimsHW{global_params.input_h, global_params.input_w};
std::map<std::string, Weights> weightMap = loadWeights(path_wts);
Weights emptywts{DataType::kFLOAT, nullptr, 0};
INetworkDefinition *network = builder->createNetworkV2(0U);
ITensor *data = network->addInput(INPUT_NAME, dt, Dims3{3, global_params.input_h, global_params.input_w});
assert(data);
int out_channels = roundFilters(32, global_params);
auto conv_stem = addSamePaddingConv2d(network, weightMap, *data, out_channels, 3, 2, 1, 1, image_size, "_conv_stem");
auto bn0 = addBatchNorm2d(network, weightMap, *conv_stem->getOutput(0), "_bn0", bn_eps);
auto swish0 = addSwish(network, *bn0->getOutput(0));
ITensor *x = swish0->getOutput(0);
image_size = calculateOutputImageSize(image_size, 2);
int block_id = 0;
for (int i = 0; i < block_args_list.size(); i++)
{
BlockArgs block_args = block_args_list[i];
block_args.input_filters = roundFilters(block_args.input_filters, global_params);
block_args.output_filters = roundFilters(block_args.output_filters, global_params);
block_args.num_repeat = roundRepeats(block_args.num_repeat, global_params);
x = MBConvBlock(network, weightMap, *x, "_blocks." + std::to_string(block_id), block_args, global_params, image_size);
assert(x);
block_id++;
image_size = calculateOutputImageSize(image_size, block_args.stride);
if (block_args.num_repeat > 1)
{
block_args.input_filters = block_args.output_filters;
block_args.stride = 1;
}
for (int r = 0; r < block_args.num_repeat - 1; r++)
{
x = MBConvBlock(network, weightMap, *x, "_blocks." + std::to_string(block_id), block_args, global_params, image_size);
block_id++;
}
}
out_channels = roundFilters(1280, global_params);
auto conv_head = addSamePaddingConv2d(network, weightMap, *x, out_channels, 1, 1, 1, 1, image_size, "_conv_head", false);
auto bn1 = addBatchNorm2d(network, weightMap, *conv_head->getOutput(0), "_bn1", bn_eps);
auto swish1 = addSwish(network, *bn1->getOutput(0));
auto avg_pool = network->addPoolingNd(*swish1->getOutput(0), PoolingType::kAVERAGE, image_size);
IFullyConnectedLayer *final = network->addFullyConnected(*avg_pool->getOutput(0), global_params.num_classes, weightMap["_fc.weight"], weightMap["_fc.bias"]);
assert(final);
final->getOutput(0)->setName(OUTPUT_NAME);
network->markOutput(*final->getOutput(0));
// Build engine
builder->setMaxBatchSize(maxBatchSize);
config->setMaxWorkspaceSize(1 << 20);
#ifdef USE_FP16
config->setFlag(BuilderFlag::kFP16);
#endif
std::cout << "build engine ..." << std::endl;
ICudaEngine *engine = builder->buildEngineWithConfig(*network, *config);
assert(engine != nullptr);
std::cout << "build finished" << std::endl;
// Don't need the network any more
network->destroy();
// Release host memory
for (auto &mem : weightMap)
{
free((void *)(mem.second.values));
}
return engine;
}
void APIToModel(unsigned int maxBatchSize, IHostMemory **modelStream, std::string wtsPath, std::vector<BlockArgs> block_args_list, GlobalParams global_params)
{
// Create builder
IBuilder *builder = createInferBuilder(gLogger);
IBuilderConfig *config = builder->createBuilderConfig();
// Create model to populate the network, then set the outputs and create an engine
ICudaEngine *engine = createEngine(maxBatchSize, builder, config, DataType::kFLOAT, wtsPath, block_args_list, global_params);
assert(engine != nullptr);
// Serialize the engine
(*modelStream) = engine->serialize();
// Close everything down
engine->destroy();
builder->destroy();
config->destroy();
}
void doInference(IExecutionContext &context, float *input, float *output, int batchSize, GlobalParams global_params)
{
const ICudaEngine &engine = context.getEngine();
// Pointers to input and output device buffers to pass to engine.
// Engine requires exactly IEngine::getNbBindings() number of buffers.
assert(engine.getNbBindings() == 2);
void *buffers[2];
// In order to bind the buffers, we need to know the names of the input and output tensors.
// Note that indices are guaranteed to be less than IEngine::getNbBindings()
const int inputIndex = engine.getBindingIndex(INPUT_NAME);
const int outputIndex = engine.getBindingIndex(OUTPUT_NAME);
// Create GPU buffers on device
CHECK(cudaMalloc(&buffers[inputIndex], batchSize * 3 * global_params.input_h * global_params.input_w * sizeof(float)));
CHECK(cudaMalloc(&buffers[outputIndex], batchSize * global_params.num_classes * sizeof(float)));
// Create stream
cudaStream_t stream;
CHECK(cudaStreamCreate(&stream));
// DMA input batch data to device, infer on the batch asynchronously, and DMA output back to host
CHECK(cudaMemcpyAsync(buffers[inputIndex], input, batchSize * 3 * global_params.input_h * global_params.input_w * sizeof(float), cudaMemcpyHostToDevice, stream));
context.enqueue(batchSize, buffers, stream, nullptr);
CHECK(cudaMemcpyAsync(output, buffers[outputIndex], batchSize * global_params.num_classes * sizeof(float), cudaMemcpyDeviceToHost, stream));
cudaStreamSynchronize(stream);
// Release stream and buffers
cudaStreamDestroy(stream);
CHECK(cudaFree(buffers[inputIndex]));
CHECK(cudaFree(buffers[outputIndex]));
}
bool parse_args(int argc, char **argv, std::string &wts, std::string &engine, std::string &backbone)
{
if (std::string(argv[1]) == "-s" && argc == 5)
{
wts = std::string(argv[2]);
engine = std::string(argv[3]);
backbone = std::string(argv[4]);
}
else if (std::string(argv[1]) == "-d" && argc == 4)
{
engine = std::string(argv[2]);
backbone = std::string(argv[3]);
}
else
{
return false;
}
return true;
}
int main(int argc, char **argv)
{
std::string wtsPath = "";
std::string engine_name = "";
std::string backbone = "";
if (!parse_args(argc, argv, wtsPath, engine_name, backbone))
{
std::cerr << "arguments not right!" << std::endl;
std::cerr << "./efficientnet -s [.wts] [.engine] [b0 b1 b2 b3 ... b7] // serialize model to engine file" << std::endl;
std::cerr << "./efficientnet -d [.engine] [b0 b1 b2 b3 ... b7] // deserialize engine file and run inference" << std::endl;
return -1;
}
GlobalParams global_params = global_params_map[backbone];
// create a model using the API directly and serialize it to a stream
if (!wtsPath.empty())
{
IHostMemory *modelStream{nullptr};
APIToModel(MAX_BATCH_SIZE, &modelStream, wtsPath, block_args_list, global_params);
assert(modelStream != nullptr);
std::ofstream p(engine_name, std::ios::binary);
if (!p)
{
std::cerr << "could not open plan output file" << std::endl;
return -1;
}
p.write(reinterpret_cast<const char *>(modelStream->data()), modelStream->size());
modelStream->destroy();
return 1;
}
char *trtModelStream{nullptr};
size_t size{0};
std::ifstream file(engine_name, std::ios::binary);
if (file.good())
{
file.seekg(0, file.end);
size = file.tellg();
file.seekg(0, file.beg);
trtModelStream = new char[size];
assert(trtModelStream);
file.read(trtModelStream, size);
file.close();
}
else
{
std::cerr << "could not open plan file" << std::endl;
return -1;
}
// dummy input
float *data = new float[3 * global_params.input_h * global_params.input_w];
for (int i = 0; i < 3 * global_params.input_h * global_params.input_w; i++)
data[i] = 0.1;
IRuntime *runtime = createInferRuntime(gLogger);
assert(runtime != nullptr);
ICudaEngine *engine = runtime->deserializeCudaEngine(trtModelStream, size, nullptr);
assert(engine != nullptr);
IExecutionContext *context = engine->createExecutionContext();
assert(context != nullptr);
delete[] trtModelStream;
// Run inference
float *prob = new float[global_params.num_classes];
for (int i = 0; i < 100; i++)
{
auto start = std::chrono::system_clock::now();
doInference(*context, data, prob, 1, global_params);
auto end = std::chrono::system_clock::now();
std::cout << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << "ms" << std::endl;
}
for (unsigned int i = 0; i < 20; i++)
{
std::cout << prob[i] << ", ";
}
std::cout << std::endl;
// Destroy the engine
context->destroy();
engine->destroy();
runtime->destroy();
delete data;
delete prob;
return 0;
}