forked from wang-xinyu/tensorrtx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
RpnDecode.cu
executable file
·144 lines (123 loc) · 5.7 KB
/
RpnDecode.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#include <thrust/device_ptr.h>
#include <thrust/sequence.h>
#include <thrust/execution_policy.h>
#include <thrust/gather.h>
#include <thrust/tabulate.h>
#include <thrust/count.h>
#include <thrust/find.h>
#include <algorithm>
#include <cstdint>
#include "RpnDecodePlugin.h"
#include "./cuda_utils.h"
#include "macros.h"
#ifdef CUDA_11
#include <cub/device/device_radix_sort.cuh>
#include <cub/iterator/counting_input_iterator.cuh>
#else
#include <thrust/system/cuda/detail/cub/device/device_radix_sort.cuh>
#include <thrust/system/cuda/detail/cub/iterator/counting_input_iterator.cuh>
namespace cub = thrust::cuda_cub::cub;
#endif
namespace nvinfer1 {
int rpnDecode(int batch_size,
const void *const *inputs, void *TRT_CONST_ENQUEUE*outputs,
size_t height, size_t width, size_t image_height, size_t image_width, float stride,
const std::vector<float> &anchors, int top_n,
void *workspace, size_t workspace_size, cudaStream_t stream) {
size_t num_anchors = anchors.size() / 4;
int scores_size = num_anchors * height * width;
if (!workspace || !workspace_size) {
// Return required scratch space size cub style
workspace_size = get_size_aligned<float>(anchors.size()); // anchors
workspace_size += get_size_aligned<int>(scores_size); // indices
workspace_size += get_size_aligned<int>(scores_size); // indices_sorted
workspace_size += get_size_aligned<float>(scores_size); // scores_sorted
size_t temp_size_sort = 0;
if (scores_size > top_n) {
cub::DeviceRadixSort::SortPairsDescending(
static_cast<void*>(nullptr), temp_size_sort,
static_cast<float*>(nullptr),
static_cast<float*>(nullptr),
static_cast<int*>(nullptr),
static_cast<int*>(nullptr), scores_size);
workspace_size += temp_size_sort;
}
return workspace_size;
}
auto anchors_d = get_next_ptr<float>(anchors.size(), workspace, workspace_size);
cudaMemcpyAsync(anchors_d, anchors.data(), anchors.size() * sizeof *anchors_d, cudaMemcpyHostToDevice, stream);
auto on_stream = thrust::cuda::par.on(stream);
auto indices = get_next_ptr<int>(scores_size, workspace, workspace_size);
// TODO: how to generate sequence on gpu directly?
std::vector<int> indices_h(scores_size);
for (int i = 0; i < scores_size; i++)
indices_h[i] = i;
cudaMemcpyAsync(indices, indices_h.data(), scores_size * sizeof * indices, cudaMemcpyHostToDevice, stream);
auto indices_sorted = get_next_ptr<int>(scores_size, workspace, workspace_size);
auto scores_sorted = get_next_ptr<float>(scores_size, workspace, workspace_size);
for (int batch = 0; batch < batch_size; batch++) {
auto in_scores = static_cast<const float *>(inputs[0]) + batch * scores_size;
auto in_boxes = static_cast<const float *>(inputs[1]) + batch * scores_size * 4;
auto out_scores = static_cast<float *>(outputs[0]) + batch * top_n;
auto out_boxes = static_cast<float4 *>(outputs[1]) + batch * top_n;
// Only keep top n scores
int num_detections = scores_size;
auto indices_filtered = indices;
if (num_detections > top_n) {
cub::DeviceRadixSort::SortPairsDescending(workspace, workspace_size,
in_scores, scores_sorted, indices, indices_sorted, scores_size, 0, sizeof(*scores_sorted) * 8, stream);
indices_filtered = indices_sorted;
num_detections = top_n;
}
// Gather boxes
bool has_anchors = !anchors.empty();
thrust::transform(on_stream, indices_filtered, indices_filtered + num_detections,
thrust::make_zip_iterator(thrust::make_tuple(out_scores, out_boxes)),
[=] __device__(int i) {
int x = i % width;
int y = (i / width) % height;
int a = (i / height / width) % num_anchors;
float4 box = float4{
in_boxes[((a * 4 + 0) * height + y) * width + x],
in_boxes[((a * 4 + 1) * height + y) * width + x],
in_boxes[((a * 4 + 2) * height + y) * width + x],
in_boxes[((a * 4 + 3) * height + y) * width + x]
};
if (has_anchors) {
// Add anchors offsets to deltas
float x = (i % width) * stride;
float y = ((i / width) % height) * stride;
float *d = anchors_d + 4 * a;
float x1 = x + d[0];
float y1 = y + d[1];
float x2 = x + d[2];
float y2 = y + d[3];
float w = x2 - x1;
float h = y2 - y1;
float pred_ctr_x = box.x * w + x1 + 0.5f * w;
float pred_ctr_y = box.y * h + y1 + 0.5f * h;
float pred_w = exp(box.z) * w;
float pred_h = exp(box.w) * h;
// TODO: set image size as parameter
box = float4{
max(0.0f, pred_ctr_x - 0.5f * pred_w),
max(0.0f, pred_ctr_y - 0.5f * pred_h),
min(pred_ctr_x + 0.5f * pred_w, static_cast<float>(image_width)),
min(pred_ctr_y + 0.5f * pred_h, static_cast<float>(image_height))
};
}
// filter empty boxes
if (box.z - box.x <= 0.0f || box.w - box.y <= 0.0f)
return thrust::make_tuple(-FLT_MAX, box);
else
return thrust::make_tuple(in_scores[i], box);
});
// Zero-out unused scores
if (num_detections < top_n) {
thrust::fill(on_stream, out_scores + num_detections,
out_scores + top_n, -FLT_MAX);
}
}
return 0;
}
} // namespace nvinfer1