forked from wang-xinyu/tensorrtx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
decode.cu
227 lines (187 loc) · 7.68 KB
/
decode.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#include "decode.h"
#include "stdio.h"
namespace nvinfer1
{
DecodePlugin::DecodePlugin()
{
}
DecodePlugin::~DecodePlugin()
{
}
// create the plugin at runtime from a byte stream
DecodePlugin::DecodePlugin(const void* data, size_t length)
{
}
void DecodePlugin::serialize(void* buffer) const TRT_NOEXCEPT
{
}
size_t DecodePlugin::getSerializationSize() const TRT_NOEXCEPT
{
return 0;
}
int DecodePlugin::initialize() TRT_NOEXCEPT
{
return 0;
}
Dims DecodePlugin::getOutputDimensions(int index, const Dims* inputs, int nbInputDims) TRT_NOEXCEPT
{
//output the result to channel
int totalCount = 0;
totalCount += decodeplugin::INPUT_H / 8 * decodeplugin::INPUT_W / 8 * 2 * sizeof(decodeplugin::Detection) / sizeof(float);
totalCount += decodeplugin::INPUT_H / 16 * decodeplugin::INPUT_W / 16 * 2 * sizeof(decodeplugin::Detection) / sizeof(float);
totalCount += decodeplugin::INPUT_H / 32 * decodeplugin::INPUT_W / 32 * 2 * sizeof(decodeplugin::Detection) / sizeof(float);
return Dims3(totalCount + 1, 1, 1);
}
// Set plugin namespace
void DecodePlugin::setPluginNamespace(const char* pluginNamespace) TRT_NOEXCEPT
{
mPluginNamespace = pluginNamespace;
}
const char* DecodePlugin::getPluginNamespace() const TRT_NOEXCEPT
{
return mPluginNamespace;
}
// Return the DataType of the plugin output at the requested index
DataType DecodePlugin::getOutputDataType(int index, const nvinfer1::DataType* inputTypes, int nbInputs) const TRT_NOEXCEPT
{
return DataType::kFLOAT;
}
// Return true if output tensor is broadcast across a batch.
bool DecodePlugin::isOutputBroadcastAcrossBatch(int outputIndex, const bool* inputIsBroadcasted, int nbInputs) const TRT_NOEXCEPT
{
return false;
}
// Return true if plugin can use input that is broadcast across batch without replication.
bool DecodePlugin::canBroadcastInputAcrossBatch(int inputIndex) const TRT_NOEXCEPT
{
return false;
}
void DecodePlugin::configurePlugin(const PluginTensorDesc* in, int nbInput, const PluginTensorDesc* out, int nbOutput) TRT_NOEXCEPT
{
}
// Attach the plugin object to an execution context and grant the plugin the access to some context resource.
void DecodePlugin::attachToContext(cudnnContext* cudnnContext, cublasContext* cublasContext, IGpuAllocator* gpuAllocator) TRT_NOEXCEPT
{
}
// Detach the plugin object from its execution context.
void DecodePlugin::detachFromContext() TRT_NOEXCEPT {}
const char* DecodePlugin::getPluginType() const TRT_NOEXCEPT
{
return "Decode_TRT";
}
const char* DecodePlugin::getPluginVersion() const TRT_NOEXCEPT
{
return "1";
}
void DecodePlugin::destroy() TRT_NOEXCEPT
{
delete this;
}
// Clone the plugin
IPluginV2IOExt* DecodePlugin::clone() const TRT_NOEXCEPT
{
DecodePlugin *p = new DecodePlugin();
p->setPluginNamespace(mPluginNamespace);
return p;
}
__device__ float Logist(float data){ return 1./(1. + expf(-data)); };
__global__ void CalDetection(const float *input, float *output, int num_elem, int step, int anchor) {
int idx = threadIdx.x + blockDim.x * blockIdx.x;
if (idx >= num_elem) return;
int h = decodeplugin::INPUT_H / step;
int w = decodeplugin::INPUT_W / step;
int y = idx / w;
int x = idx % w;
const float *cls_reg = &input[2 * num_elem];
const float *bbox_reg = &input[4 * num_elem];
const float *lmk_reg = &input[12 * num_elem];
const float *mask_reg = &input[36 * num_elem];
for (int k = 0; k < 2; ++k) {
float conf = cls_reg[idx + k * num_elem];
if (conf < 0.5) continue;
float *res_count = output;
int count = (int)atomicAdd(res_count, 1);
char* data = (char *)res_count + sizeof(float) + count * sizeof(decodeplugin::Detection);
decodeplugin::Detection* det = (decodeplugin::Detection*)(data);
float prior[4];
prior[0] = 7.5 + (float)(x * step);
prior[1] = 7.5 + (float)(y * step);
prior[2] = anchor * 2 / (k + 1);
prior[3] = prior[2];
//Location
det->bbox[0] = prior[0] + bbox_reg[idx + k * num_elem * 4] * prior[2];
det->bbox[1] = prior[1] + bbox_reg[idx + k * num_elem * 4 + num_elem] * prior[3];
det->bbox[2] = prior[2] * expf(bbox_reg[idx + k * num_elem * 4 + num_elem * 2]);
det->bbox[3] = prior[3] * expf(bbox_reg[idx + k * num_elem * 4 + num_elem * 3]);
det->bbox[0] -= (det->bbox[2] - 1) / 2;
det->bbox[1] -= (det->bbox[3] - 1) / 2;
det->bbox[2] += det->bbox[0];
det->bbox[3] += det->bbox[1];
det->class_confidence = conf;
for (int i = 0; i < 10; i += 2) {
det->landmark[i] = prior[0] + lmk_reg[idx + k * num_elem * 10 + num_elem * i] * 0.2 * prior[2];
det->landmark[i+1] = prior[1] + lmk_reg[idx + k * num_elem * 10 + num_elem * (i + 1)] * 0.2 * prior[3];
}
det->mask_confidence = mask_reg[idx + k * num_elem];;
}
}
void DecodePlugin::forwardGpu(const float *const * inputs, float * output, cudaStream_t stream, int batchSize)
{
int num_elem = 0;
int base_step = 8;
int base_anchor = 16;
int thread_count;
cudaMemset(output, 0, sizeof(float));
for (unsigned int i = 0; i < 3; ++i)
{
num_elem = decodeplugin::INPUT_H / base_step * decodeplugin::INPUT_W / base_step;
thread_count = (num_elem < thread_count_) ? num_elem : thread_count_;
CalDetection<<< (num_elem + thread_count - 1) / thread_count, thread_count>>>
(inputs[i], output, num_elem, base_step, base_anchor);
base_step *= 2;
base_anchor *= 4;
}
}
int DecodePlugin::enqueue(int batchSize, const void*const * inputs, void*TRT_CONST_ENQUEUE* outputs, void* workspace, cudaStream_t stream) TRT_NOEXCEPT
{
//assert(batchSize == 1);
//GPU
//CUDA_CHECK(cudaStreamSynchronize(stream));
forwardGpu((const float *const *)inputs,(float *)outputs[0],stream,batchSize);
return 0;
};
PluginFieldCollection DecodePluginCreator::mFC{};
std::vector<PluginField> DecodePluginCreator::mPluginAttributes;
DecodePluginCreator::DecodePluginCreator()
{
mPluginAttributes.clear();
mFC.nbFields = mPluginAttributes.size();
mFC.fields = mPluginAttributes.data();
}
const char* DecodePluginCreator::getPluginName() const TRT_NOEXCEPT
{
return "Decode_TRT";
}
const char* DecodePluginCreator::getPluginVersion() const TRT_NOEXCEPT
{
return "1";
}
const PluginFieldCollection* DecodePluginCreator::getFieldNames() TRT_NOEXCEPT
{
return &mFC;
}
IPluginV2IOExt* DecodePluginCreator::createPlugin(const char* name, const PluginFieldCollection* fc) TRT_NOEXCEPT
{
DecodePlugin* obj = new DecodePlugin();
obj->setPluginNamespace(mNamespace.c_str());
return obj;
}
IPluginV2IOExt* DecodePluginCreator::deserializePlugin(const char* name, const void* serialData, size_t serialLength) TRT_NOEXCEPT
{
// This object will be deleted when the network is destroyed, which will
// call PReluPlugin::destroy()
DecodePlugin* obj = new DecodePlugin(serialData, serialLength);
obj->setPluginNamespace(mNamespace.c_str());
return obj;
}
}