forked from ultralytics/yolov3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
val.py
630 lines (552 loc) · 29.9 KB
/
val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
# Ultralytics YOLOv3 🚀, AGPL-3.0 license
"""
Validate a trained YOLOv3 detection model on a detection dataset.
Usage:
$ python val.py --weights yolov5s.pt --data coco128.yaml --img 640
Usage - formats:
$ python val.py --weights yolov5s.pt # PyTorch
yolov5s.torchscript # TorchScript
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s_openvino_model # OpenVINO
yolov5s.engine # TensorRT
yolov5s.mlmodel # CoreML (macOS-only)
yolov5s_saved_model # TensorFlow SavedModel
yolov5s.pb # TensorFlow GraphDef
yolov5s.tflite # TensorFlow Lite
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
yolov5s_paddle_model # PaddlePaddle
"""
import argparse
import json
import os
import subprocess
import sys
from pathlib import Path
import numpy as np
import torch
from tqdm import tqdm
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv3 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from models.common import DetectMultiBackend
from utils.callbacks import Callbacks
from utils.dataloaders import create_dataloader
from utils.general import (
LOGGER,
TQDM_BAR_FORMAT,
Profile,
check_dataset,
check_img_size,
check_requirements,
check_yaml,
coco80_to_coco91_class,
colorstr,
increment_path,
non_max_suppression,
print_args,
scale_boxes,
xywh2xyxy,
xyxy2xywh,
)
from utils.metrics import ConfusionMatrix, ap_per_class, box_iou
from utils.plots import output_to_target, plot_images, plot_val_study
from utils.torch_utils import select_device, smart_inference_mode
def save_one_txt(predn, save_conf, shape, file):
"""
Saves detection results in a text format, including labels and optionally confidence scores.
Args:
predn (torch.Tensor): A tensor containing normalized prediction results in the format (x1, y1, x2, y2, conf, cls).
save_conf (bool): A flag indicating whether to save confidence scores.
shape (tuple[int, int]): Original image shape in the format (height, width).
file (str | Path): Path to the file where the results will be saved.
Returns:
None
Example:
```python
from pathlib import Path
import torch
predn = torch.tensor([
[10, 20, 100, 200, 0.9, 1],
[30, 40, 150, 250, 0.8, 0],
])
save_conf = True
shape = (416, 416)
file = Path("results.txt")
save_one_txt(predn, save_conf, shape, file)
```
Notes:
- The function normalizes bounding box coordinates before saving.
- Each line in the output file will contain class, x-center, y-center, width, height and optionally confidence score.
- The format is compatible with YOLO training dataset format.
"""
gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
for *xyxy, conf, cls in predn.tolist():
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
with open(file, "a") as f:
f.write(("%g " * len(line)).rstrip() % line + "\n")
def save_one_json(predn, jdict, path, class_map):
"""
Save detection results in JSON format containing image_id, category_id, bbox, and score per detection.
Args:
predn (torch.Tensor): Normalized prediction tensor of shape (N, 6) where N is the number of detections.
Each detection should contain (x1, y1, x2, y2, confidence, class).
jdict (list): List to store the JSON serializable detections.
path (Path): Path object representing the image file path.
class_map (dict[int, int]): Dictionary mapping class indices to their respective category IDs.
Returns:
None
Example:
```python
predn = torch.tensor([[50, 30, 200, 150, 0.9, 0], [30, 20, 180, 150, 0.8, 1]])
jdict = []
path = Path('images/000001.jpg')
class_map = {0: 1, 1: 2}
save_one_json(predn, jdict, path, class_map)
```
Notes:
- The image_id is extracted from the image file path.
- Bounding boxes are converted from xyxy format to xywh format.
- The JSON output format is compatible with COCO dataset evaluation.
"""
image_id = int(path.stem) if path.stem.isnumeric() else path.stem
box = xyxy2xywh(predn[:, :4]) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
for p, b in zip(predn.tolist(), box.tolist()):
jdict.append(
{
"image_id": image_id,
"category_id": class_map[int(p[5])],
"bbox": [round(x, 3) for x in b],
"score": round(p[4], 5),
}
)
def process_batch(detections, labels, iouv):
"""
Computes correct prediction matrix for detections against ground truth labels at various IoU thresholds.
Args:
detections (np.ndarray): Array of detections with shape (N, 6), where each detection contains [x1, y1, x2, y2,
confidence, class].
labels (np.ndarray): Array of ground truth labels with shape (M, 5), where each label contains [class, x1, y1, x2, y2].
iouv (np.ndarray): Array of IoU thresholds to use for evaluation.
Returns:
np.ndarray: Boolean array of shape (N, len(iouv)), indicating correct predictions at each IoU threshold.
Notes:
- This function compares detections and ground truth labels to establish matches based on IoU and class.
- It supports multiple IoU thresholds to evaluate prediction accuracy flexibly.
Example:
```python
detections = np.array([[50, 50, 150, 150, 0.8, 0],
[30, 30, 120, 120, 0.7, 1]])
labels = np.array([[0, 50, 50, 150, 150],
[1, 30, 30, 120, 120]])
iouv = np.array([0.5, 0.6, 0.7])
correct = process_batch(detections, labels, iouv)
```
"""
correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
iou = box_iou(labels[:, 1:], detections[:, :4])
correct_class = labels[:, 0:1] == detections[:, 5]
for i in range(len(iouv)):
x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match
if x[0].shape[0]:
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou]
if x[0].shape[0] > 1:
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
# matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
correct[matches[:, 1].astype(int), i] = True
return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
@smart_inference_mode()
def run(
data,
weights=None, # model.pt path(s)
batch_size=32, # batch size
imgsz=640, # inference size (pixels)
conf_thres=0.001, # confidence threshold
iou_thres=0.6, # NMS IoU threshold
max_det=300, # maximum detections per image
task="val", # train, val, test, speed or study
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
workers=8, # max dataloader workers (per RANK in DDP mode)
single_cls=False, # treat as single-class dataset
augment=False, # augmented inference
verbose=False, # verbose output
save_txt=False, # save results to *.txt
save_hybrid=False, # save label+prediction hybrid results to *.txt
save_conf=False, # save confidences in --save-txt labels
save_json=False, # save a COCO-JSON results file
project=ROOT / "runs/val", # save to project/name
name="exp", # save to project/name
exist_ok=False, # existing project/name ok, do not increment
half=True, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
model=None,
dataloader=None,
save_dir=Path(""),
plots=True,
callbacks=Callbacks(),
compute_loss=None,
):
"""
Validates a trained YOLO model on a dataset and saves detection results in specified formats.
Args:
data (str | dict): Path to the dataset configuration file (.yaml) or a dictionary containing the dataset paths.
weights (str | list, optional): Path to the trained model weights file(s). Default is None.
batch_size (int, optional): Batch size for inference. Default is 32.
imgsz (int, optional): Input image size for inference in pixels. Default is 640.
conf_thres (float, optional): Confidence threshold for object detection. Default is 0.001.
iou_thres (float, optional): IoU threshold for Non-Maximum Suppression (NMS). Default is 0.6.
max_det (int, optional): Maximum number of detections per image. Default is 300.
task (str, optional): Task type, can be 'train', 'val', 'test', 'speed', or 'study'. Default is 'val'.
device (str, optional): Device for computation, e.g., '0' for GPU or 'cpu' for CPU. Default is "".
workers (int, optional): Number of dataloader workers. Default is 8.
single_cls (bool, optional): Whether to treat the dataset as a single-class dataset. Default is False.
augment (bool, optional): Whether to apply augmented inference. Default is False.
verbose (bool, optional): Whether to output verbose information. Default is False.
save_txt (bool, optional): Whether to save detection results in text format (*.txt). Default is False.
save_hybrid (bool, optional): Whether to save hybrid results (labels+predictions) in text format (*.txt). Default is False.
save_conf (bool, optional): Whether to save confidence scores in text format labels. Default is False.
save_json (bool, optional): Whether to save detection results in COCO JSON format. Default is False.
project (str | Path, optional): Directory path to save validation results. Default is ROOT / 'runs/val'.
name (str, optional): Directory name to save validation results. Default is 'exp'.
exist_ok (bool, optional): Whether to overwrite existing project/name directory. Default is False.
half (bool, optional): Whether to use half-precision (FP16) for inference. Default is True.
dnn (bool, optional): Whether to use OpenCV DNN for ONNX inference. Default is False.
model (torch.nn.Module, optional): Existing model instance. Default is None.
dataloader (torch.utils.data.DataLoader, optional): Existing dataloader instance. Default is None.
save_dir (Path, optional): Path to directory to save results. Default is Path("").
plots (bool, optional): Whether to generate plots for visual results. Default is True.
callbacks (Callbacks, optional): Callbacks instance for event handling. Default is Callbacks().
compute_loss (Callable, optional): Loss function for computing training loss. Default is None.
Returns:
(tuple): A tuple containing:
- metrics (torch.Tensor): Dictionary containing metrics such as precision, recall, mAP, F1 score, etc.
- times (dict): Dictionary containing times for different parts of the pipeline (e.g., preprocessing, inference, NMS).
- samples (torch.Tensor): Torch tensor containing validation samples.
Example:
```python
metrics, times, samples = run(
data='data/coco.yaml',
weights='yolov5s.pt',
batch_size=32,
imgsz=640,
conf_thres=0.001,
iou_thres=0.6,
max_det=300,
task='val',
device='cpu'
)
```
"""
# Initialize/load model and set device
training = model is not None
if training: # called by train.py
device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
half &= device.type != "cpu" # half precision only supported on CUDA
model.half() if half else model.float()
else: # called directly
device = select_device(device, batch_size=batch_size)
# Directories
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
(save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Load model
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
imgsz = check_img_size(imgsz, s=stride) # check image size
half = model.fp16 # FP16 supported on limited backends with CUDA
if engine:
batch_size = model.batch_size
else:
device = model.device
if not (pt or jit):
batch_size = 1 # export.py models default to batch-size 1
LOGGER.info(f"Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models")
# Data
data = check_dataset(data) # check
# Configure
model.eval()
cuda = device.type != "cpu"
is_coco = isinstance(data.get("val"), str) and data["val"].endswith(f"coco{os.sep}val2017.txt") # COCO dataset
nc = 1 if single_cls else int(data["nc"]) # number of classes
iouv = torch.linspace(0.5, 0.95, 10, device=device) # iou vector for mAP@0.5:0.95
niou = iouv.numel()
# Dataloader
if not training:
if pt and not single_cls: # check --weights are trained on --data
ncm = model.model.nc
assert ncm == nc, (
f"{weights} ({ncm} classes) trained on different --data than what you passed ({nc} "
f"classes). Pass correct combination of --weights and --data that are trained together."
)
model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz)) # warmup
pad, rect = (0.0, False) if task == "speed" else (0.5, pt) # square inference for benchmarks
task = task if task in ("train", "val", "test") else "val" # path to train/val/test images
dataloader = create_dataloader(
data[task],
imgsz,
batch_size,
stride,
single_cls,
pad=pad,
rect=rect,
workers=workers,
prefix=colorstr(f"{task}: "),
)[0]
seen = 0
confusion_matrix = ConfusionMatrix(nc=nc)
names = model.names if hasattr(model, "names") else model.module.names # get class names
if isinstance(names, (list, tuple)): # old format
names = dict(enumerate(names))
class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
s = ("%22s" + "%11s" * 6) % ("Class", "Images", "Instances", "P", "R", "mAP50", "mAP50-95")
tp, fp, p, r, f1, mp, mr, map50, ap50, map = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
dt = Profile(), Profile(), Profile() # profiling times
loss = torch.zeros(3, device=device)
jdict, stats, ap, ap_class = [], [], [], []
callbacks.run("on_val_start")
pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT) # progress bar
for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
callbacks.run("on_val_batch_start")
with dt[0]:
if cuda:
im = im.to(device, non_blocking=True)
targets = targets.to(device)
im = im.half() if half else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
nb, _, height, width = im.shape # batch size, channels, height, width
# Inference
with dt[1]:
preds, train_out = model(im) if compute_loss else (model(im, augment=augment), None)
# Loss
if compute_loss:
loss += compute_loss(train_out, targets)[1] # box, obj, cls
# NMS
targets[:, 2:] *= torch.tensor((width, height, width, height), device=device) # to pixels
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
with dt[2]:
preds = non_max_suppression(
preds, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls, max_det=max_det
)
# Metrics
for si, pred in enumerate(preds):
labels = targets[targets[:, 0] == si, 1:]
nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions
path, shape = Path(paths[si]), shapes[si][0]
correct = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init
seen += 1
if npr == 0:
if nl:
stats.append((correct, *torch.zeros((2, 0), device=device), labels[:, 0]))
if plots:
confusion_matrix.process_batch(detections=None, labels=labels[:, 0])
continue
# Predictions
if single_cls:
pred[:, 5] = 0
predn = pred.clone()
scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred
# Evaluate
if nl:
tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
correct = process_batch(predn, labelsn, iouv)
if plots:
confusion_matrix.process_batch(predn, labelsn)
stats.append((correct, pred[:, 4], pred[:, 5], labels[:, 0])) # (correct, conf, pcls, tcls)
# Save/log
if save_txt:
save_one_txt(predn, save_conf, shape, file=save_dir / "labels" / f"{path.stem}.txt")
if save_json:
save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary
callbacks.run("on_val_image_end", pred, predn, path, names, im[si])
# Plot images
if plots and batch_i < 3:
plot_images(im, targets, paths, save_dir / f"val_batch{batch_i}_labels.jpg", names) # labels
plot_images(im, output_to_target(preds), paths, save_dir / f"val_batch{batch_i}_pred.jpg", names) # pred
callbacks.run("on_val_batch_end", batch_i, im, targets, paths, shapes, preds)
# Compute metrics
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)] # to numpy
if len(stats) and stats[0].any():
tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
nt = np.bincount(stats[3].astype(int), minlength=nc) # number of targets per class
# Print results
pf = "%22s" + "%11i" * 2 + "%11.3g" * 4 # print format
LOGGER.info(pf % ("all", seen, nt.sum(), mp, mr, map50, map))
if nt.sum() == 0:
LOGGER.warning(f"WARNING ⚠️ no labels found in {task} set, can not compute metrics without labels")
# Print results per class
if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
for i, c in enumerate(ap_class):
LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
# Print speeds
t = tuple(x.t / seen * 1e3 for x in dt) # speeds per image
if not training:
shape = (batch_size, 3, imgsz, imgsz)
LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}" % t)
# Plots
if plots:
confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
callbacks.run("on_val_end", nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix)
# Save JSON
if save_json and len(jdict):
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else "" # weights
anno_json = str(Path("../datasets/coco/annotations/instances_val2017.json")) # annotations
if not os.path.exists(anno_json):
anno_json = os.path.join(data["path"], "annotations", "instances_val2017.json")
pred_json = str(save_dir / f"{w}_predictions.json") # predictions
LOGGER.info(f"\nEvaluating pycocotools mAP... saving {pred_json}...")
with open(pred_json, "w") as f:
json.dump(jdict, f)
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
check_requirements("pycocotools>=2.0.6")
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
anno = COCO(anno_json) # init annotations api
pred = anno.loadRes(pred_json) # init predictions api
eval = COCOeval(anno, pred, "bbox")
if is_coco:
eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files] # image IDs to evaluate
eval.evaluate()
eval.accumulate()
eval.summarize()
map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
except Exception as e:
LOGGER.info(f"pycocotools unable to run: {e}")
# Return results
model.float() # for training
if not training:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ""
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
maps = np.zeros(nc) + map
for i, c in enumerate(ap_class):
maps[c] = ap[i]
return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
def parse_opt():
"""
Parses and returns command-line options for dataset paths, model parameters, and inference settings.
Args:
--data (str): Path to the dataset YAML file. Default is 'data/coco128.yaml'.
--weights (list[str]): Paths to one or more model files. Default is 'yolov3-tiny.pt'.
--batch-size (int): Number of images per batch during inference. Default is 32.
--imgsz (int): Inference size (pixels). Default is 640.
--conf-thres (float): Confidence threshold for object detection. Default is 0.001.
--iou-thres (float): IoU threshold for non-max suppression (NMS). Default is 0.6.
--max-det (int): Maximum number of detections per image. Default is 300.
--task (str): Task to perform: 'train', 'val', 'test', 'speed', or 'study'. Default is 'val'.
--device (str): CUDA device identifier (e.g., '0' or '0,1,2,3') or 'cpu' for using CPU. Default is "".
--workers (int): Maximum number of dataloader workers (per RANK in DDP mode). Default is 8.
--single-cls (bool): Treat the dataset as a single-class dataset. Default is False.
--augment (bool): Apply test-time augmentation during inference. Default is False.
--verbose (bool): Print mAP by class. Default is False.
--save-txt (bool): Save detection results in '.txt' format. Default is False.
--save-hybrid (bool): Save hybrid results containing both label and prediction in '.txt' format. Default is False.
--save-conf (bool): Save confidence scores in the '--save-txt' labels. Default is False.
--save-json (bool): Save detection results in COCO JSON format. Default is False.
--project (str): Project directory to save results. Default is 'runs/val'.
--name (str): Name of the experiment to save results. Default is 'exp'.
--exist-ok (bool): Whether to overwrite existing project/name without incrementing. Default is False.
--half (bool): Use FP16 half-precision during inference. Default is False.
--dnn (bool): Use OpenCV DNN backend for ONNX inference. Default is False.
Returns:
opt (argparse.Namespace): Parsed command-line options.
Notes:
- The function uses `argparse` to handle command-line options.
- It also modifies some options based on specific conditions, such as appending additional flags for saving
in JSON format and checking for the `coco.yaml` dataset.
Example:
Use the following command to run validation with custom settings:
```python
$ python val.py --weights yolov5s.pt --data coco128.yaml --img 640
```
"""
parser = argparse.ArgumentParser()
parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="dataset.yaml path")
parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov3-tiny.pt", help="model path(s)")
parser.add_argument("--batch-size", type=int, default=32, help="batch size")
parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="inference size (pixels)")
parser.add_argument("--conf-thres", type=float, default=0.001, help="confidence threshold")
parser.add_argument("--iou-thres", type=float, default=0.6, help="NMS IoU threshold")
parser.add_argument("--max-det", type=int, default=300, help="maximum detections per image")
parser.add_argument("--task", default="val", help="train, val, test, speed or study")
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)")
parser.add_argument("--single-cls", action="store_true", help="treat as single-class dataset")
parser.add_argument("--augment", action="store_true", help="augmented inference")
parser.add_argument("--verbose", action="store_true", help="report mAP by class")
parser.add_argument("--save-txt", action="store_true", help="save results to *.txt")
parser.add_argument("--save-hybrid", action="store_true", help="save label+prediction hybrid results to *.txt")
parser.add_argument("--save-conf", action="store_true", help="save confidences in --save-txt labels")
parser.add_argument("--save-json", action="store_true", help="save a COCO-JSON results file")
parser.add_argument("--project", default=ROOT / "runs/val", help="save to project/name")
parser.add_argument("--name", default="exp", help="save to project/name")
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")
opt = parser.parse_args()
opt.data = check_yaml(opt.data) # check YAML
opt.save_json |= opt.data.endswith("coco.yaml")
opt.save_txt |= opt.save_hybrid
print_args(vars(opt))
return opt
def main(opt):
"""
Executes model tasks including training, validation, and speed or study benchmarks based on specified options.
Args:
opt (argparse.Namespace): Parsed command-line options for dataset paths, model parameters, and inference settings.
Returns:
None
Note:
This function orchestrates different tasks based on the user input provided through command-line arguments. It supports tasks
like `train`, `val`, `test`, `speed`, and `study`. Depending on the task, it validates the model on a dataset, performs speed
benchmarks, or runs mAP benchmarks.
Examples:
To validate a trained YOLOv3 model:
```bash
$ python val.py --weights yolov3.pt --data coco.yaml --img 640 --task val
```
For running speed benchmarks:
```bash
$ python val.py --task speed --data coco.yaml --weights yolov3.pt --batch-size 1
```
Links:
For more information, visit the official repository: https://github.com/ultralytics/ultralytics
"""
check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))
if opt.task in ("train", "val", "test"): # run normally
if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466
LOGGER.info(f"WARNING ⚠️ confidence threshold {opt.conf_thres} > 0.001 produces invalid results")
if opt.save_hybrid:
LOGGER.info("WARNING ⚠️ --save-hybrid will return high mAP from hybrid labels, not from predictions alone")
run(**vars(opt))
else:
weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
opt.half = torch.cuda.is_available() and opt.device != "cpu" # FP16 for fastest results
if opt.task == "speed": # speed benchmarks
# python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt...
opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
for opt.weights in weights:
run(**vars(opt), plots=False)
elif opt.task == "study": # speed vs mAP benchmarks
# python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt...
for opt.weights in weights:
f = f"study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt" # filename to save to
x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis
for opt.imgsz in x: # img-size
LOGGER.info(f"\nRunning {f} --imgsz {opt.imgsz}...")
r, _, t = run(**vars(opt), plots=False)
y.append(r + t) # results and times
np.savetxt(f, y, fmt="%10.4g") # save
subprocess.run(["zip", "-r", "study.zip", "study_*.txt"])
plot_val_study(x=x) # plot
else:
raise NotImplementedError(f'--task {opt.task} not in ("train", "val", "test", "speed", "study")')
if __name__ == "__main__":
opt = parse_opt()
main(opt)