-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_training.py
91 lines (62 loc) · 2.67 KB
/
run_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import sys
import gc
from termcolor import colored
import matplotlib.pyplot as plt
import torch
from torch.optim.lr_scheduler import MultiStepLR
from imageclassification.kvs import GlobalKVS
from imageclassification.training import utilities
from imageclassification.training import session
from imageclassification.training import dataset as ds
import imageclassification.training.metrics as metrics
import cv2
cv2.ocl.setUseOpenCL(False)
cv2.setNumThreads(0)
print(sys.version, sys.platform, sys.executable)
DEBUG = sys.gettrace() is not None
print('Debug: ', DEBUG)
if __name__ == "__main__":
kvs = GlobalKVS()
session.init_session()
ds.init_metadata()
dataset, dataset_length = ds.init_dataset(kvs['args'].dataset_root, kvs['args'].dataset_name)
session.init_data_processing(dataset)
writers = session.init_folds()
for fold_id in kvs['cv_split_train']:
kvs.update('cur_fold', fold_id)
kvs.update('prev_model', None)
print(colored('====> ', 'blue') + f'Training fold {fold_id}...')
train_index, val_index = kvs['cv_split_train'][fold_id]
train_loader, val_loader = session.init_loaders(dataset, kvs['metadata'].iloc[train_index],
kvs['metadata'].iloc[val_index])
net = utilities.init_model()
print(net)
optimizer = utilities.init_optimizer(net.parameters())
print(optimizer)
print('Learning rate drop schedule: ', kvs['args'].lr_drop)
scheduler = MultiStepLR(optimizer, milestones=kvs['args'].lr_drop, gamma=kvs['args'].learning_rate_decay)
train_losses = []
val_losses = []
for epoch in range(kvs['args'].n_epochs):
kvs.update('cur_epoch', epoch)
print(colored('====> ', 'red') + 'Learning rate: ', str(scheduler.get_lr())[1:-1])
train_loss = utilities.train_epoch(net, optimizer, train_loader)
val_out = utilities.validate_epoch(net, val_loader)
val_loss, preds, gt, val_acc = val_out
print('Epoch: ', epoch)
print('Acc: ', val_acc)
metrics.log_metrics(writers[fold_id], train_loss, val_loss, gt, preds)
session.save_checkpoint(net, 'val_loss', 'lt') # lt, less than
scheduler.step()
gc.collect()
train_losses.append(train_loss)
val_losses.append(val_loss)
plt.plot(train_losses, label='Training loss')
plt.plot(val_losses, label='Validation loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.show()
del net
torch.cuda.empty_cache()
gc.collect()