-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimdb_list_to_csv.py
121 lines (97 loc) · 4.01 KB
/
imdb_list_to_csv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import requests
from bs4 import BeautifulSoup
import pandas as pd
from string import ascii_letters, digits
import argparse
# from tqdm import tqdm
def make_soup(url, headers=None, features='lxml'):
result = requests.get(url, headers=headers)
src = result.content
soup = BeautifulSoup(src, features=features)
return soup
def format_filename(s):
valid_chars = f"-_.() {ascii_letters}{digits}"
filename = ''.join(c for c in s if c in valid_chars)
filename = filename.replace(' ', '_')
return f"{filename}.csv"
def check(x):
if x:
return x.text.strip()
else:
return ""
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Export an IMDb list as .csv')
parser.add_argument('url', type=str, help='URL to the IMDb list. Format: https://www.imdb.com/list/lsXXXXXXXXX/')
args = parser.parse_args()
# Paste link / check title "https://www.imdb.com/list/ls006660717/"
url = args.url
headers = {"Accept-Language": "en-US,en;q=0.5"}
soup = make_soup(url, headers=headers)
print('------------------------------------------------------------------')
print(soup.title.text)
print('------------------------------------------------------------------')
# Prepare dataframe
df = pd.DataFrame(columns=["Title", "Certificate", "Runtime", "Genres", "IMDb-rating", "Metascore",
"Description", "Directors", "Stars", "Votes", "Gross"])
# File name (list title)
list_title = soup.find('h1', class_='header list-name')
file = format_filename(list_title.text.strip())
continue_ = True
page = 1
# for all pages
while (continue_):
# make request
url_temp = f"{url}?page={page}"
print(url_temp)
soup = make_soup(url_temp, headers=headers)
# check if there is a next page
next_ = soup.find('a', class_="flat-button lister-page-next next-page")
if next_ is None:
continue_ = False
else:
page += 1
# find all list items
items = soup.find_all('div', class_='lister-item-content')
for item in items:
# title, certificate, runtime, genres, rating, metascore
title = check(item.h3.a)
certificate = check(item.find('span', class_='certificate'))
runtime = check(item.find('span', class_='runtime'))
genres = check(item.find('span', class_='genre'))
rating = check(item.find('span', class_='ipl-rating-star__rating'))
metascore = check(item.find('span', class_="metascore favorable"))
# description, directors, stars
p = item.find_all('p')
description = check(p[1])
splitted = p[2].text.split('|')
try:
directors, stars = splitted
except ValueError:
if splitted[0].startswith('Director:'):
directors = splitted[0]
stars = ""
elif splitted[0].startswith('Stars:'):
stars = splitted[0]
directors = ""
else:
stars = ""
directors = ""
directors = directors.strip()[10:].replace("\n", "")
stars = stars.strip()[6:].replace("\n", "")
# votes, gross
p3_spans = p[3].find_all('span')
try:
votes = p3_spans[1]['data-value']
except IndexError:
votes = ""
try:
gross = p3_spans[4]['data-value'].replace(",", "")
except IndexError:
gross = ""
fields = [title, certificate, runtime, genres, rating,
metascore, description, directors, stars, votes, gross]
data = pd.Series(fields, index=df.columns)
df = df.append(data, ignore_index=True)
df.to_csv(file, index=False)
print('------------------------------------------------------------------')
print(f"Done! Saved as {file}")