-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProcess_&_Upload.py
105 lines (85 loc) · 4.53 KB
/
Process_&_Upload.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import pandas as pd
from datetime import datetime, timedelta
import numpy as np
import os.path
import gspread
from oauth2client.service_account import ServiceAccountCredentials
#Read input data
csv1 = pd.read_csv("Input/eegIDRecord.csv")
csv_hr = pd.read_csv("Input/heart_input.csv")
#Create Output Folder
yourpath="Output"
parent_dir = os.path.abspath(os.path.join(yourpath, os.pardir))
path = os.path.join(parent_dir, yourpath)
try:
os.makedirs(path, exist_ok = True)
print("Directory '%s' created successfully" % yourpath)
except OSError as error:
print("Directory '%s' can not be created" % yourpath)
#Initialize a DataFrame
df = pd.DataFrame(columns= ['timestampMs','date','time','date_time'])
# df = pd.DataFrame(columns= ['timestampMs','date','time','second'])
#Copy timestamp from EEG data to DataFrame
df['timestampMs'] = pd.to_datetime(csv1['timestampMs'], unit='ms')
# print (df)
#Convert timestamp to UTC date and time
df['timestampMs'] = pd.to_datetime(df.timestampMs)
## Adding Hours
hours_to_add = 6 #Defining the time zone UTC+06
df['timestampMs'] = df['timestampMs'] + timedelta(hours = hours_to_add) #Converting to local time zone
df['date'] = df['timestampMs'].dt.strftime('%m/%d/%Y')
df['time'] = df['timestampMs'].dt.strftime('%H:%M')
# print ( df['time'].dtypes)
#Convert timestamp to UTC date and time
csv1['timestampMs'] = pd.to_datetime(csv1['timestampMs'], unit='ms')
csv1['timestampMs'] = csv1['timestampMs'] + timedelta(hours = hours_to_add)
# print (csv1.head())
#Merge temporary dataframe with EEG data
merged_data_eeg = pd.DataFrame
merged_data_eeg = csv1.merge(df,on=["timestampMs"])
# print(merged_data_eeg)
#Matching the date format in Heart Rate data
csv_hr['date'] = pd.to_datetime(csv_hr.date)
csv_hr['date'] = csv_hr['date'].dt.strftime('%m/%d/%Y')
print (csv_hr.head())
#Merge all data on same date and time
merged_data_all = pd.DataFrame
merged_data_all = merged_data_eeg.merge(csv_hr,on=["date","time"])
#Create Timestamp in nano second
merged_data_all['timestampMs'] = merged_data_all['timestampMs'] - timedelta(hours = hours_to_add) #Converting to UTC
merged_data_all['timestampMs'] = merged_data_all.timestampMs.values.astype(np.int64) #Converting to Timestamp ns
merged_data_all.rename(columns = {'timestampMs':'timestampNs'}, inplace = True)
merged_data_all['date_time'] = merged_data_all['time'] + " " + merged_data_all['date']
print(merged_data_all.dtypes)
# print(merged_data_all)
#Create new .csv files for processing
merged_data_all.to_csv("Output/heart_rate.csv", index= None, columns=['date_time','heartRate'])
merged_data_all.to_csv("Output/alpha.csv", index= None, columns=['date_time','alphaLow','alphaHigh'])
merged_data_all.to_csv("Output/beta.csv", index= None, columns=['date_time','betaLow','betaHigh'])
merged_data_all.to_csv("Output/model_input.csv", index= "Index", columns=['timestampNs','attention','meditation','blinkStrength','delta','theta','alphaLow','alphaHigh','betaLow','betaHigh','gammaLow','gammaMid','heartRate'])
merged_data_all.to_csv("Flask/user.csv", index= None, columns=['timestampNs','poorSignal','heartRate','alphaLow','alphaHigh','betaLow','betaHigh','attention','meditation','blinkStrength'])
heart_merge = pd.read_csv("Output/heart_rate.csv")
hrlist=[];
for x in range(len(heart_merge)-1):
if heart_merge['heartRate'].iloc[x] == heart_merge['heartRate'].iloc[x+1]:
hrlist.append(x+1)
heart_merge.drop(index=heart_merge.index[hrlist]).to_csv("Output/heart_rate.csv", index= None, columns=['date_time','heartRate'])
#Initialize the connection with google sheet
scope = ["https://spreadsheets.google.com/feeds", 'https://www.googleapis.com/auth/spreadsheets',
"https://www.googleapis.com/auth/drive.file", "https://www.googleapis.com/auth/drive"]
credentials = ServiceAccountCredentials.from_json_keyfile_name('Intelli helmet.json', scope)
client = gspread.authorize(credentials)
#Open Google sheet files
spreadsheet_heart = client.open('heart_rate')
spreadsheet_alpha = client.open('sheet_alpha')
spreadsheet_beta = client.open('sheet_beta')
#Upload csv data to google sheet
with open('Output/heart_rate.csv', 'r') as file_obj:
content = file_obj.read()
client.import_csv(spreadsheet_heart.id, data=content)
with open('Output/alpha.csv', 'r') as file_obj:
content = file_obj.read()
client.import_csv(spreadsheet_alpha.id, data=content)
with open('Output/beta.csv', 'r') as file_obj:
content = file_obj.read()
client.import_csv(spreadsheet_beta.id, data=content)