-
Notifications
You must be signed in to change notification settings - Fork 11
/
evaluate_nus.py
168 lines (138 loc) · 5.98 KB
/
evaluate_nus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri May 8 21:56:19 2020
@author: akshitac8
"""
import torch
import torch.nn as nn
import torch.autograd as autograd
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import model as model
import util_nus as util
from config import opt
import numpy as np
import random
import time
import os
import socket
from torch.utils.data import DataLoader
import h5py
import pickle
import logging
if not os.path.exists("logs"):
os.mkdir("logs")
log_filename = os.path.join("logs",opt.SESSION + '.log')
logging.basicConfig(level=logging.INFO, filename=log_filename)
print(opt)
logging.info(opt)
#############################################
#setting up seeds
if opt.manualSeed is None:
opt.manualSeed = random.randint(1, 10000)
print("Random Seed: ", opt.manualSeed)
np.random.seed(opt.manualSeed)
random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
if opt.cuda:
torch.cuda.manual_seed(opt.manualSeed)
torch.cuda.manual_seed_all(opt.manualSeed)
torch.set_default_tensor_type('torch.FloatTensor')
cudnn.benchmark = True # For speed i.e, cudnn autotuner
########################################################
if torch.cuda.is_available() and not opt.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
data = util.DATA_LOADER(opt) ### INTIAL DATALOADER ###
print('===> Loading datasets')
print(opt.src)
print('===> Result path ')
print(opt.save_path)
print('===> total samples')
print(data.ntrain)
logging.info('===> Loading datasets')
logging.info(opt.src)
logging.info('===> total samples')
logging.info(data.ntrain)
model_test = model.BiAM(opt, dim_feature=[196,512])
print(model_test)
logging.info(model_test)
name='NUS_WIDE_{}'.format(opt.SESSION)
opt.save_path += '/'+name
if opt.cuda:
model_att = model_att.cuda()
data.vecs_81 = data.vecs_81.cuda()
data.vecs_925 = data.vecs_925.cuda()
gzsl_vecs = torch.cat([data.vecs_925,data.vecs_81],0)
test_start_time = time.time()
print("EVALUATION MODE")
logging.info("EVALUATION MODE")
model_path = os.path.join(opt.save_path, 'model_best.pth')
print(model_path)
logging.info(model_path)
util.load_checkpoint(model_test, model_path)
model_test.eval()
src = opt.src
test_loc = os.path.join(src, 'features', 'nus_wide_test.h5')
test_features = h5py.File(test_loc, 'r')
test_feature_keys = list(test_features.keys())
image_filenames = util.load_dict(os.path.join(src, 'test_img_names.pkl'))
test_image_filenames = image_filenames['img_names']
ntest = len(test_image_filenames)
test_batch_size = opt.test_batch_size
print(ntest)
logging.info(ntest)
prediction_81 = torch.empty(ntest,81)
prediction_1006 = torch.empty(ntest,1006)
lab_81 = torch.empty(ntest,81)
lab_1006 = torch.empty(ntest,1006)
for m in range(0, ntest, test_batch_size):
strt = m
endt = min(m+test_batch_size, ntest)
bs = endt-strt
c=m
c+=bs
features, labels_1006, labels_81 = np.empty((bs,512,196)), np.empty((bs,1006)), np.empty((bs,81))
for i, key in enumerate(test_image_filenames[strt:endt]):
features[i,:,:] = np.float32(test_features.get(key+'-features'))
labels_1006[i,:] = np.int32(test_features.get(key+'-labels'))
labels_81[i,:] = np.int32(test_features.get(key+'-labels_81'))
features = torch.from_numpy(features).float()
labels_1006 = torch.from_numpy(labels_1006).long()
labels_81 = torch.from_numpy(labels_81).long()
with torch.no_grad():
logits_81 = model_test(features.cuda(), data.vecs_81)
logits_1006 = model_test(features.cuda(), gzsl_vecs) ##seen-unseen
prediction_81[strt:endt,:] = logits_81
prediction_1006[strt:endt,:] = logits_1006
lab_81[strt:endt,:] = labels_81
lab_1006[strt:endt,:] = labels_1006
print(("completed calculating predictions over all {} images".format(c)))
logging.info(("completed calculating predictions over all {} images".format(c)))
logits_81_5 = prediction_81.clone()
ap_81 = util.compute_AP(prediction_81.cuda(), lab_81.cuda())
F1_3_81,P_3_81,R_3_81 = util.compute_F1(prediction_81.cuda(), lab_81.cuda(), 'overall', k_val=3)
F1_5_81,P_5_81,R_5_81 = util.compute_F1(logits_81_5.cuda(), lab_81.cuda(), 'overall', k_val=5)
print('ZSL AP',torch.mean(ap_81).item())
print('k=3',torch.mean(F1_3_81).item(),torch.mean(P_3_81).item(),torch.mean(R_3_81).item())
print('k=5',torch.mean(F1_5_81).item(),torch.mean(P_5_81).item(),torch.mean(R_5_81).item())
logging.info('ZSL AP: %.4f',torch.mean(ap_81).item())
logging.info('k=3: %.4f,%.4f,%.4f',torch.mean(F1_3_81).item(),torch.mean(P_3_81).item(),torch.mean(R_3_81).item())
logging.info('k=5: %.4f,%.4f,%.4f',torch.mean(F1_5_81).item(),torch.mean(P_5_81).item(),torch.mean(R_5_81).item())
logits_1006_5 = prediction_1006.clone()
ap_1006 = util.compute_AP(prediction_1006.cuda(), lab_1006.cuda())
F1_3_1006,P_3_1006,R_3_1006 = util.compute_F1(prediction_1006.cuda(), lab_1006.cuda(), 'overall', k_val=3)
F1_5_1006,P_5_1006,R_5_1006 = util.compute_F1(logits_1006_5.cuda(), lab_1006.cuda(), 'overall', k_val=5)
print('GZSL AP',torch.mean(ap_1006).item())
print('g_k=3',torch.mean(F1_3_1006).item(), torch.mean(P_3_1006).item(), torch.mean(R_3_1006).item())
print('g_k=5',torch.mean(F1_5_1006).item(), torch.mean(P_5_1006).item(), torch.mean(R_5_1006).item())
logging.info('GZSL AP:%.4f',torch.mean(ap_1006).item())
logging.info('g_k=3:%.4f,%.4f,%.4f',torch.mean(F1_3_1006).item(), torch.mean(P_3_1006).item(), torch.mean(R_3_1006).item())
logging.info('g_k=5:%.4f,%.4f,%.4f',torch.mean(F1_5_1006).item(), torch.mean(P_5_1006).item(), torch.mean(R_5_1006).item())
print("------------------------------------------------------------------")
print("TEST Time: {:.4f}".format(time.time()-test_start_time))
print("------------------------------------------------------------------")
logging.info("------------------------------------------------------------------")
logging.info("TEST Time: {:.4f}".format(time.time()-test_start_time))
logging.info("------------------------------------------------------------------")