This repository has been archived by the owner on Jul 12, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathTF_Lite_Object_Detection_Yolo.py
101 lines (80 loc) · 3.59 KB
/
TF_Lite_Object_Detection_Yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
TEST_FILE = './test.jpg'
TF_LITE_MODEL = './lite-model_yolo-v5-tflite_tflite_model_1.tflite'
LABEL_MAP = './labelmap.txt'
BOX_THRESHOLD = 0.5
CLASS_THRESHOLD = 0.5
LABEL_SIZE = 0.5
RUNTIME_ONLY = True
import cv2
import numpy as np
if RUNTIME_ONLY:
from tflite_runtime.interpreter import Interpreter
interpreter = Interpreter(model_path=TF_LITE_MODEL)
else:
import tensorflow as tf
interpreter = tf.lite.Interpreter(model_path=TF_LITE_MODEL)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
_, height, width, _ = interpreter.get_input_details()[0]['shape']
with open(LABEL_MAP, 'r') as f:
labels = [line.strip() for line in f.readlines()]
colors = np.random.randint(0, 255, size=(len(labels), 3), dtype='uint8')
img = cv2.imread(TEST_FILE, cv2.IMREAD_COLOR)
IMG_HEIGHT, IMG_WIDTH = img.shape[:2]
pad = round(abs(IMG_WIDTH - IMG_HEIGHT) / 2)
x_pad = pad if IMG_HEIGHT > IMG_WIDTH else 0
y_pad = pad if IMG_WIDTH > IMG_HEIGHT else 0
img_padded = cv2.copyMakeBorder(img, top=y_pad, bottom=y_pad, left=x_pad, right=x_pad,
borderType=cv2.BORDER_CONSTANT, value=(0, 0, 0))
IMG_HEIGHT, IMG_WIDTH = img_padded.shape[:2]
img_rgb = cv2.cvtColor(img_padded, cv2.COLOR_BGR2RGB)
img_resized = cv2.resize(img_rgb, (width, height), interpolation=cv2.INTER_AREA)
input_data = np.expand_dims(img_resized / 255, axis=0).astype('float32')
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
outputs = interpreter.get_tensor(output_details[0]['index'])[0]
boxes = []
box_confidences = []
classes = []
class_probs = []
for output in outputs:
box_confidence = output[4]
if box_confidence < BOX_THRESHOLD:
continue
class_ = output[5:].argmax(axis=0)
class_prob = output[5:][class_]
if class_prob < CLASS_THRESHOLD:
continue
cx, cy, w, h = output[:4] * np.array([IMG_WIDTH, IMG_HEIGHT, IMG_WIDTH, IMG_HEIGHT])
x = round(cx - w / 2)
y = round(cy - h / 2)
w, h = round(w), round(h)
boxes.append([x, y, w, h])
box_confidences.append(box_confidence)
classes.append(class_)
class_probs.append(class_prob)
indices = cv2.dnn.NMSBoxes(boxes, box_confidences, BOX_THRESHOLD, BOX_THRESHOLD - 0.1)
for indice in indices:
x, y, w, h = boxes[indice]
class_name = labels[classes[indice]]
score = box_confidences[indice] * class_probs[indice]
color = [int(c) for c in colors[classes[indice]]]
text_color = (255, 255, 255) if sum(color) < 144 * 3 else (0, 0, 0)
cv2.rectangle(img_padded, (x, y), (x + w, y + h), color, 2)
label = f'{class_name}: {score*100:.2f}%'
labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, LABEL_SIZE, 2)
cv2.rectangle(img_padded,
(x, y + baseLine), (x + labelSize[0], y - baseLine - labelSize[1]),
color, cv2.FILLED)
cv2.putText(img_padded, label, (x, y), cv2.FONT_HERSHEY_SIMPLEX, LABEL_SIZE, text_color, 1)
img_show = img_padded[y_pad: IMG_HEIGHT - y_pad, x_pad: IMG_WIDTH - x_pad]
cv2.namedWindow('Object detection', cv2.WINDOW_NORMAL)
cv2.resizeWindow('Object detection',
1024 if IMG_WIDTH > IMG_HEIGHT else round(1024 * IMG_WIDTH / IMG_HEIGHT),
1024 if IMG_HEIGHT > IMG_WIDTH else round(1024 * IMG_HEIGHT / IMG_WIDTH))
cv2.imshow('Object detection', img_show)
cv2.imwrite('./result.jpg', img_show)
cv2.imwrite('./result_yolo.jpg', img_show)
cv2.waitKey(0)
cv2.destroyAllWindows()