-
Notifications
You must be signed in to change notification settings - Fork 18
/
show_rally.py
120 lines (106 loc) · 4.86 KB
/
show_rally.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import os
import cv2
import json
import parse
import argparse
import numpy as np
import pandas as pd
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from dataset import Badminton_Dataset
from utils import *
parser = argparse.ArgumentParser()
parser.add_argument('--model_file', type=str, default='TrackNetV2/model_best.pt')
parser.add_argument('--frame_dir', type=str, default='')
parser.add_argument('--batch_size', type=int, default=4)
parser.add_argument('--tolerance', type=float, default=4)
parser.add_argument('--output_mode', type=str, default='frame', choices=['frame', 'heatmap', 'both'])
parser.add_argument('--save_dir', type=str, default='pred_result')
args = parser.parse_args()
model_file = args.model_file
frame_dir = args.frame_dir
batch_size = args.batch_size
tolerance = args.tolerance
output_mode = args.output_mode
save_dir = args.save_dir
checkpoint = torch.load(model_file)
param_dict = checkpoint['param_dict']
model_name = param_dict['model_name']
num_frame = param_dict['num_frame']
input_type = param_dict['input_type']
_, match_id, rally_id = parse.parse('{}/match{}/frame/{}', frame_dir)
output_file = f'{save_dir}/m{match_id}_v{rally_id}.mp4'
if not os.path.exists(save_dir):
os.makedirs(save_dir)
# Load dataset
dataset = Badminton_Dataset(frame_dir=frame_dir, mode=input_type, num_frame=num_frame, slideing_step=num_frame)
data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=batch_size, drop_last=False)
# Load model
model = get_model(model_name, num_frame, input_type).cuda()
model.load_state_dict(checkpoint['model_state_dict'])
model.eval()
# Video output configuration
FPS = 5
file_names = dataset.frame_files
h, w, _ = cv2.imread(file_names[0][0]).shape
ratio = h / HEIGHT
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
if output_mode == 'both':
out = cv2.VideoWriter(output_file, fourcc, FPS, (w*2, h))
else:
out = cv2.VideoWriter(output_file, fourcc, FPS, (w, h))
data_prob = tqdm(data_loader)
for step, (i, x, y, c) in enumerate(data_prob):
x = x.float().cuda() #(N, 3*F, H, W)
with torch.no_grad():
y_pred = model(x)
x, y = x.detach().cpu().numpy(), y.numpy()
x = frame_first_RGB(x, input_type)
y_pred = y_pred.detach().cpu().numpy()
h_pred = y_pred > 0.5
y_pred = y_pred * 255.
h_pred = h_pred * 255.
y_pred = y_pred.astype('uint8')
h_pred = h_pred.astype('uint8')
for b in range(y.shape[0]):
for f in range(num_frame):
cx_pred, cy_pred = get_object_center(h_pred[b][f])
cx_pred, cy_pred = int(ratio*cx_pred), int(ratio*cy_pred)
cx, cy = int(ratio*c[b][f][0]), int(ratio*c[b][f][1])
pred_type = get_pred_type(cx_pred, cy_pred, cx, cy, ratio*tolerance)
if output_mode == 'frame':
file_path = file_names[step*batch_size + b][f]
img = cv2.imread(file_path)
if cx_pred != 0 or cy_pred != 0:
cv2.circle(img, (cx_pred, cy_pred), 5, (0, 0, 255), -1)
if cx != 0 or cy != 0:
cv2.circle(img, (cx, cy), 4, (218, 255, 51), -1)
cv2.putText(img, pred_type, (40, 80), cv2.FONT_HERSHEY_DUPLEX, 2, (255, 255, 255), 3, cv2.LINE_AA)
elif output_mode == 'heatmap':
img = np.repeat(h_pred[b][f][:, :, None], 3, axis=2)
img = cv2.resize(img, (w, h), interpolation=cv2.INTER_AREA)
if cx_pred != 0 or cy_pred != 0:
cv2.circle(img, (cx_pred, cy_pred), 5, (0, 0, 255), -1)
if cx != 0 or cy != 0:
cv2.circle(img, (cx, cy), 4, (218, 255, 51), -1)
cv2.putText(img, pred_type, (40, 80), cv2.FONT_HERSHEY_DUPLEX, 2, (255, 255, 255), 3, cv2.LINE_AA)
else:
# both
file_path = file_names[step*batch_size + b][f]
_, _, frame_id = parse.parse('{}/frame/{}/{}.png', file_path)
frame = cv2.imread(file_path)
heatmap = np.repeat(y_pred[b][f][:, :, None], 3, axis=2)
heatmap = cv2.resize(heatmap, (w, h), interpolation=cv2.INTER_AREA)
if cx_pred != 0 or cy_pred != 0:
cv2.circle(frame, (cx_pred, cy_pred), 3, (0, 0, 255), -1)
cv2.circle(heatmap, (cx_pred, cy_pred), 2, (0, 0, 255), -1)
if cx != 0 or cy != 0:
cv2.circle(frame, (cx, cy), 2, (0, 255, 0), -1)
cv2.circle(heatmap, (cx, cy), 2, (0, 255, 0), -1)
cv2.putText(frame, frame_id, (40, 80), cv2.FONT_HERSHEY_DUPLEX, 2, (255, 255, 255), 3, cv2.LINE_AA)
cv2.putText(heatmap, pred_type, (40, 80), cv2.FONT_HERSHEY_DUPLEX, 2, (255, 255, 255), 3, cv2.LINE_AA)
img = cv2.hconcat([frame, heatmap])
out.write(img)
data_prob.set_description(f'Evaluation')
out.release()