-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdatacard_to_json.py
213 lines (185 loc) · 8.18 KB
/
datacard_to_json.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import json
import logging
import sys
from typing import Any
log = logging.getLogger(__name__)
def json_str(obj: Any) -> str:
return json.dumps(obj, sort_keys=True, indent=4)
def restructure_observations(observations: list) -> list:
"""build list of dictionaries with observed yields"""
obs_dict_list = []
# not clear how multi-bin channels are specified here
for i_ch, channel in enumerate(observations[0].split()[1:]):
obs = float(observations[1].split()[1:][i_ch]) # could use int for data
obs_dict_list.append({"data": [obs], "name": channel})
log.debug(f"\nobs dict:\n{json_str(obs_dict_list)}\n")
return obs_dict_list
def restructure_channels(samples: list) -> list:
"""build list of channels with samples and their observed yields"""
ch_dict_list = []
# this assumes order bin - process - process - rate
# loop over channels
channel_names = samples[0].split()[1:]
sample_names = samples[1].split()[1:]
yields = [float(y) for y in samples[3].split()[1:]]
# loop over channels
for ch in sorted(set(channel_names)):
# get indices of current channel
ch_idx = [i for i, c in enumerate(channel_names) if c == ch]
sample_dict_list = []
for i_sam, sample in enumerate([sample_names[i] for i in ch_idx]):
# include a placeholder for sample modifiers
sample_dict_list.append(
{"name": sample, "data": [yields[ch_idx[i_sam]]], "modifiers": []}
)
ch_dict_list.append({"name": ch, "samples": sample_dict_list})
log.debug(f"\nch dict:\n{json_str(ch_dict_list)}\n")
return ch_dict_list
def restructure_modifiers(
modifiers: list, channel_names: list, channel_yields: list, sample_names: list
) -> dict:
"""build a dictionary with modifiers per sample from datacard"""
n_processes = len(sample_names)
# placeholder collecting modifiers per channel and sample, list of dicts
# example: modifier_dict[ch_name][sam_name] is list of modifiers
modifier_dict = {}
for ch in channel_names:
modifier_dict.update({ch: {}})
for s in sample_names:
modifier_dict[ch].update({s: []})
for line in modifiers:
# parse each modifier
line_split = line.split()
syst_name = line_split[0]
syst_type = line_split[1]
if syst_type == "gmN":
# additional entry needed for gammas
# currently unclear how extrapolation factor enters
n_evts_CR = int(line_split[2])
# see https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#a-simple-counting-experiment
stat_unc = 1 / (1 + n_evts_CR) ** 0.5
norm_effects = line_split[3 : 3 + n_processes]
# override extrapolation factors with rel. stat unc
norm_effects = [stat_unc if n != "-" else n for n in norm_effects]
else:
norm_effects = line_split[2 : 2 + n_processes]
norm_effects = [float(n) if n != "-" else 0.0 for n in norm_effects]
log.debug(f"syst {syst_name} with type {syst_type} and effects {norm_effects}")
for i, norm_effect in enumerate(norm_effects):
# go through each sample affected by a modifier
if norm_effect == 0.0:
continue # no effect, skip
channel_name = channel_names[i]
sample_name = sample_names[i]
log.debug(
f" - norm effect {norm_effect} for {sample_name} in {channel_name}"
)
if syst_type == "lnN":
modifier_dict[channel_name][sample_name].append(
{
"name": syst_name,
"type": "normsys",
"data": {"hi": norm_effect, "lo": 1 / norm_effect},
}
)
elif syst_type == "gmN":
# this needs access to channel yields to calculate absolute stat. unc.
abs_stat_unc = norm_effect * channel_yields[i]
modifier_dict[channel_name][sample_name].append(
{"name": syst_name, "type": "staterror", "data": [abs_stat_unc]}
)
else:
raise NotImplementedError
log.debug(f"\nmodifier dict:\n{json_str(modifier_dict)}\n")
return modifier_dict
def get_sections_dict(datacard: list) -> dict:
"""extract info from datacard into dictionary"""
sections_list = []
current_section = []
for line in datacard:
line_stripped = line.strip()
if len(line_stripped) == 0 or (
len(line_stripped) > 0 and line_stripped[0] == "#"
):
# skip comments and empty lines
continue
if line_stripped[0] == "-":
# end of section
sections_list.append(current_section)
current_section = []
else:
current_section.append(line_stripped)
if line == datacard[-1]:
# append last section
sections_list.append(current_section)
sections_dict = {}
# find "general" section with imax etc.
# seems to be first usually
# not clear yet that this is needed
sections_dict.update({"general": sections_list.pop(0)})
# data yields, identified by "observation"
idx = next(
i
for i, s in enumerate(sections_list)
if any(["observation" in l[0:11] for l in s])
)
sections_dict.update({"observations": sections_list.pop(idx)})
# sample yields, identified by "rate"
idx = next(
i for i, s in enumerate(sections_list) if any(["rate" in l[0:4] for l in s])
)
sections_dict.update({"channels": sections_list.pop(idx)})
# systematics, last in list (need better identifier)
sections_dict.update({"modifiers": sections_list.pop(-1)})
# full list of channels and samples from datacard (including duplications)
channel_names = sections_dict["channels"][0].split()[1:]
channel_yields = [float(y) for y in sections_dict["channels"][3].split()[1:]]
sample_names = sections_dict["channels"][1].split()[1:]
# convert observations into dict
sections_dict["observations"] = restructure_observations(
sections_dict["observations"]
)
# convert channel information (sample yields) into dict
sections_dict["channels"] = restructure_channels(sections_dict["channels"])
# convert modifier information into dict
# needs access to full lists of channels (+ yields) and sample names
sections_dict["modifiers"] = restructure_modifiers(
sections_dict["modifiers"], channel_names, channel_yields, sample_names
)
return sections_dict
def sections_dict_to_workspace(sections_dict: dict) -> dict:
"""convert dictionary with info from datacard into workspace"""
ws = {}
# need to add signal POI manually, assuming signal is first process
for channel in sections_dict["channels"]:
for i, sample in enumerate(channel["samples"]):
# attache modifiers to this sample for this channel
sample["modifiers"] = sections_dict["modifiers"][channel["name"]][
sample["name"]
]
if i == 0:
# this should be signal, attach normfactor
sample["modifiers"].append(
{"data": None, "name": "r", "type": "normfactor"}
)
ws.update({"channels": sections_dict["channels"]})
ws.update(
{"measurements": [{"config": {"parameters": [], "poi": "r"}, "name": "meas"}]}
)
ws.update({"observations": sections_dict["observations"]})
ws.update({"version": "1.0.0"})
return ws
def datacard_to_json(datacard: list) -> dict:
sections_dict = get_sections_dict(datacard)
ws = sections_dict_to_workspace(sections_dict)
log.debug(f"HistFactory workspace in JSON:\n{json_str(ws)}\n")
return ws
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO, format="%(levelname)s - %(message)s")
with open(sys.argv[-1]) as f:
datacard = f.readlines()
ws = datacard_to_json(datacard)
ws_name = ".".join(sys.argv[-1].split(".")[0:-1]) + ".json"
log.info(f"saving workspace as {ws_name}")
with open(ws_name, "w") as f:
f.write(json_str(ws))