-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathscrabble.py
123 lines (108 loc) · 4.67 KB
/
scrabble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
from typing import List, Union
import torch
from torchtyping import TensorType
from tqdm import tqdm
from gflownet.proxy.base import Proxy
from gflownet.utils.common import tfloat, tint, tlong
from gflownet.utils.scrabble.utils import read_alphabet, read_vocabulary
class ScrabbleScorer(Proxy):
"""
Oracle to compute the Scrabble scores from words, that is the sum of the score of
each letter in a sequence of letters (word).
"""
def __init__(self, vocabulary_check: bool = False, **kwargs):
self.vocabulary_check = vocabulary_check
self.alphabet_dict = read_alphabet()
self.vocabulary_orig = read_vocabulary()
super().__init__(**kwargs)
def setup(self, env=None):
# Add pad_token to alphabet dict
if env and not hasattr(self, "pad_token"):
# Make a copy before modifying because the dictionary is global
self.alphabet_dict = self.alphabet_dict.copy()
self.pad_token = env.pad_token
self.alphabet_dict[self.pad_token] = 0
# Build scores tensor
if env and not hasattr(self, "scores"):
scores = [
self.alphabet_dict[env.idx2token[idx]]
for idx in range(len(env.idx2token))
]
self.scores = tlong(scores, device=self.device)
# Build index-based version of the vocabulary as a tensor
self.vocabulary = torch.zeros(
(len(self.vocabulary_orig), env.max_length),
dtype=torch.int16,
device=self.device,
)
for idx, word in enumerate(self.vocabulary_orig):
word = "".join([letter + " " for letter in word.upper()])[:-1]
self.vocabulary[idx] = tint(
env.readable2state(word), device=self.device, int_type=torch.int16
)
def __call__(
self, states: Union[List[str], TensorType["batch", "state_dim"]]
) -> TensorType["batch"]:
"""
Computes and returns the Scrabble score of sequence in a batch.
In principle and in general, the input states is a tensor, where each state
(row) is represented by the index of each token.
However, for debugging purposes, this proxy also works if the input states is a
list of:
- Strings
- List of string tokens
See: tests/gflownet/proxy/test_scrabble_proxy.py
Args
----
states : tensor or list
If a tensor: A batch of states, where each row is a state and each state
represents a sequence by the indices of the token, including the padding.
If a list: A batch of state, where each entry is either a string containing
the word or a list of letters.
Returns
-------
A vector with the score of each sequence in the batch.
"""
if torch.is_tensor(states):
output = torch.zeros(states.shape[0], device=self.device, dtype=self.float)
if self.vocabulary_check:
is_in_vocabulary = self._is_in_vocabulary(states)
else:
is_in_vocabulary = torch.ones_like(output, dtype=torch.bool)
output[is_in_vocabulary] = tfloat(
self.scores[states[is_in_vocabulary]].sum(dim=1),
float_type=self.float,
device=self.device,
)
return output
elif isinstance(states, list):
scores = []
for sample in states:
if (
self.vocabulary_check
and self._unpad_and_string(sample) not in self.vocabulary_orig
):
scores.append(0.0)
else:
scores.append(self._sum_scores(sample))
return tfloat(scores, device=self.device, float_type=self.float)
else:
raise NotImplementedError(
"The Scrabble proxy currently only supports input states as a tensor "
"of indices or as list of strings containing a token each"
)
def _sum_scores(self, sample: list) -> int:
return sum(map(lambda x: self.alphabet_dict[x], sample))
def _is_in_vocabulary(
self, states: TensorType["batch", "state_dim"]
) -> TensorType["batch"]:
"""
Returns the indices of the states that match any of the words in the
vocabulary.
See: https://stackoverflow.com/a/77419829/6194082
"""
return (self.vocabulary == states.unsqueeze(1)).all(-1).any(-1)
def _unpad_and_string(self, sample: list) -> str:
if self.pad_token in sample:
sample = sample[: sample.index(self.pad_token)]
return "".join(sample).lower()