-
Notifications
You must be signed in to change notification settings - Fork 3
/
R-benchmark-25.R
385 lines (358 loc) · 13 KB
/
R-benchmark-25.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
# R Benchmark 2.5 (06/2008) [Simon Urbanek]
# version 2.5: scaled to get roughly 1s per test, R 2.7.0 @ 2.6GHz Mac Pro
# R Benchmark 2.4 (06/2008) [Simon Urbanek]
# version 2.4 adapted to more recent Matrix package
# R Benchmark 2.3 (21 April 2004)
# Warning: changes are not carefully checked yet!
# version 2.3 adapted to R 1.9.0
# Many thanks to Douglas Bates (bates@stat.wisc.edu) for improvements!
# version 2.2 adapted to R 1.8.0
# version 2.1 adapted to R 1.7.0
# version 2, scaled to get 1 +/- 0.1 sec with R 1.6.2
# using the standard ATLAS library (Rblas.dll)
# on a Pentium IV 1.6 Ghz with 1 Gb Ram on Win XP pro
# revised and optimized for R v. 1.5.x, 8 June 2002
# Requires additionnal libraries: Matrix, SuppDists
# Author : Philippe Grosjean
# eMail : phgrosjean@sciviews.org
# Web : http://www.sciviews.org
# License: GPL 2 or above at your convenience (see: http://www.gnu.org)
#
# Several tests are adapted from the Splus Benchmark Test V. 2
# by Stephan Steinhaus (stst@informatik.uni-frankfurt.de)
# Reference for Escoufier's equivalents vectors (test III.5):
# Escoufier Y., 1970. Echantillonnage dans une population de variables
# aleatoires réelles. Publ. Inst. Statis. Univ. Paris 19 Fasc 4, 1-47.
#
# type source("c:/<dir>/R2.R") to start the test
runs <- 3 # Number of times the tests are executed
times <- rep(0, 15); dim(times) <- c(5,3)
require(Matrix) # Optimized matrix operations
require(SuppDists) # Optimized random number generators
#Runif <- rMWC1019 # The fast uniform number generator
Runif <- runif
# If you don't have SuppDists, you can use: Runif <- runif
#a <- rMWC1019(10, new.start=TRUE, seed=492166) # Init. the generator
#Rnorm <- rziggurat # The fast normal number generator
# If you don't have SuppDists, you can use: Rnorm <- rnorm
#b <- rziggurat(10, new.start=TRUE) # Init. the generator
Rnorm <- rnorm
remove("a", "b")
options(object.size=100000000)
cat("\n\n R Benchmark 2.5\n")
cat(" ===============\n")
cat(c("Number of times each test is run__________________________: ", runs))
cat("\n\n")
cat(" I. Matrix calculation\n")
cat(" ---------------------\n")
if (R.Version()$os == "Win32" || R.Version()$os == "mingw32") flush.console()
# (1)
cumulate <- 0; a <- 0; b <- 0
for (i in 1:runs) {
invisible(gc())
timing <- system.time({
a <- matrix(Rnorm(2500*2500)/10, ncol=2500, nrow=2500);
b <- t(a);
dim(b) <- c(1250, 5000);
a <- t(b)
})[3]
cumulate <- cumulate + timing
}
timing <- cumulate/runs
times[1, 1] <- timing
cat(c("Creation, transp., deformation of a 2500x2500 matrix (sec): ", timing, "\n"))
remove("a", "b")
if (R.Version()$os == "Win32" || R.Version()$os == "mingw32") flush.console()
# (2)
cumulate <- 0; b <- 0
for (i in 1:runs) {
a <- abs(matrix(Rnorm(2500*2500)/2, ncol=2500, nrow=2500));
invisible(gc())
timing <- system.time({
b <- a^1000
})[3]
cumulate <- cumulate + timing
}
timing <- cumulate/runs
times[2, 1] <- timing
cat(c("2400x2400 normal distributed random matrix ^1000____ (sec): ", timing, "\n"))
remove("a", "b")
if (R.Version()$os == "Win32" || R.Version()$os == "mingw32") flush.console()
# (3)
cumulate <- 0; b <- 0
for (i in 1:runs) {
a <- Rnorm(7000000)
invisible(gc())
timing <- system.time({
b <- sort(a, method="quick") # Sort is modified in v. 1.5.x
# And there is now a quick method that better competes with other packages!!!
})[3]
cumulate <- cumulate + timing
}
timing <- cumulate/runs
times[3, 1] <- timing
cat(c("Sorting of 7,000,000 random values__________________ (sec): ", timing, "\n"))
remove("a", "b")
if (R.Version()$os == "Win32" || R.Version()$os == "mingw32") flush.console()
# (4)
cumulate <- 0; b <- 0
for (i in 1:runs) {
a <- Rnorm(2800*2800); dim(a) <- c(2800, 2800)
invisible(gc())
timing <- system.time({
b <- crossprod(a) # equivalent to: b <- t(a) %*% a
})[3]
cumulate <- cumulate + timing
}
timing <- cumulate/runs
times[4, 1] <- timing
cat(c("2800x2800 cross-product matrix (b = a' * a)_________ (sec): ", timing, "\n"))
remove("a", "b")
if (R.Version()$os == "Win32" || R.Version()$os == "mingw32") flush.console()
# (5)
cumulate <- 0; c <- 0; qra <-0
for (i in 1:runs) {
a <- new("dgeMatrix", x = Rnorm(2000*2000), Dim = as.integer(c(2000,2000)))
b <- as.double(1:2000)
invisible(gc())
timing <- system.time({
c <- solve(crossprod(a), crossprod(a,b))
})[3]
cumulate <- cumulate + timing
# This is the old method
#a <- Rnorm(600*600); dim(a) <- c(600,600)
#b <- 1:600
#invisible(gc())
#timing <- system.time({
# qra <- qr(a, tol = 1e-7);
# c <- qr.coef(qra, b)
# #Rem: a little faster than c <- lsfit(a, b, inter=F)$coefficients
#})[3]
#cumulate <- cumulate + timing
}
timing <- cumulate/runs
times[5, 1] <- timing
cat(c("Linear regr. over a 3000x3000 matrix (c = a \\ b')___ (sec): ", timing, "\n"))
remove("a", "b", "c", "qra")
if (R.Version()$os == "Win32" || R.Version()$os == "mingw32") flush.console()
times[ , 1] <- sort(times[ , 1])
cat(" --------------------------------------------\n")
cat(c(" Trimmed geom. mean (2 extremes eliminated): ", exp(mean(log(times[2:4, 1]))), "\n\n"))
cat(" II. Matrix functions\n")
cat(" --------------------\n")
if (R.Version()$os == "Win32") flush.console()
# (1)
cumulate <- 0; b <- 0
for (i in 1:runs) {
a <- Rnorm(2400000)
invisible(gc())
timing <- system.time({
b <- fft(a)
})[3]
cumulate <- cumulate + timing
}
timing <- cumulate/runs
times[1, 2] <- timing
cat(c("FFT over 2,400,000 random values____________________ (sec): ", timing, "\n"))
remove("a", "b")
if (R.Version()$os == "Win32" || R.Version()$os == "mingw32") flush.console()
# (2)
cumulate <- 0; b <- 0
for (i in 1:runs) {
a <- array(Rnorm(600*600), dim = c(600, 600))
# Only needed if using eigen.Matrix(): Matrix.class(a)
invisible(gc())
timing <- system.time({
b <- eigen(a, symmetric=FALSE, only.values=TRUE)$Value
# Rem: on my machine, it is faster than:
# b <- La.eigen(a, symmetric=F, only.values=T, method="dsyevr")$Value
# b <- La.eigen(a, symmetric=F, only.values=T, method="dsyev")$Value
# b <- eigen.Matrix(a, vectors = F)$Value
})[3]
cumulate <- cumulate + timing
}
timing <- cumulate/runs
times[2, 2] <- timing
cat(c("Eigenvalues of a 640x640 random matrix______________ (sec): ", timing, "\n"))
remove("a", "b")
if (R.Version()$os == "Win32" || R.Version()$os == "mingw32") flush.console()
# (3)
cumulate <- 0; b <- 0
for (i in 1:runs) {
a <- Rnorm(2500*2500); dim(a) <- c(2500, 2500)
#Matrix.class(a)
invisible(gc())
timing <- system.time({
#b <- determinant(a, logarithm=F)
# Rem: the following is slower on my computer!
# b <- det.default(a)
b <- det(a)
})[3]
cumulate <- cumulate + timing
}
timing <- cumulate/runs
times[3, 2] <- timing
cat(c("Determinant of a 2500x2500 random matrix____________ (sec): ", timing, "\n"))
remove("a", "b")
if (R.Version()$os == "Win32" || R.Version()$os == "mingw32") flush.console()
# (4)
cumulate <- 0; b <- 0
for (i in 1:runs) {
a <- crossprod(new("dgeMatrix", x = Rnorm(3000*3000),
Dim = as.integer(c(3000, 3000))))
invisible(gc())
#a <- Rnorm(900*900); dim(a) <- c(900, 900)
#a <- crossprod(a, a)
timing <- system.time({
b <- chol(a)
})[3]
cumulate <- cumulate + timing
}
timing <- cumulate/runs
times[4, 2] <- timing
cat(c("Cholesky decomposition of a 3000x3000 matrix________ (sec): ", timing, "\n"))
remove("a", "b")
if (R.Version()$os == "Win32" || R.Version()$os == "mingw32") flush.console()
# (5)
cumulate <- 0; b <- 0
for (i in 1:runs) {
a <- new("dgeMatrix", x = Rnorm(1600*1600), Dim = as.integer(c(1600, 1600)))
invisible(gc())
#a <- Rnorm(400*400); dim(a) <- c(400, 400)
timing <- system.time({
# b <- qr.solve(a)
# Rem: a little faster than
b <- solve(a)
})[3]
cumulate <- cumulate + timing
}
timing <- cumulate/runs
times[5, 2] <- timing
cat(c("Inverse of a 1600x1600 random matrix________________ (sec): ", timing, "\n"))
remove("a", "b")
if (R.Version()$os == "Win32" || R.Version()$os == "mingw32") flush.console()
times[ , 2] <- sort(times[ , 2])
cat(" --------------------------------------------\n")
cat(c(" Trimmed geom. mean (2 extremes eliminated): ", exp(mean(log(times[2:4, 2]))), "\n\n"))
cat(" III. Programmation\n")
cat(" ------------------\n")
if (R.Version()$os == "Win32" || R.Version()$os == "mingw32") flush.console()
# (1)
cumulate <- 0; a <- 0; b <- 0; phi <- 1.6180339887498949
for (i in 1:runs) {
a <- floor(Runif(3500000)*1000)
invisible(gc())
timing <- system.time({
b <- (phi^a - (-phi)^(-a))/sqrt(5)
})[3]
cumulate <- cumulate + timing
}
timing <- cumulate/runs
times[1, 3] <- timing
cat(c("3,500,000 Fibonacci numbers calculation (vector calc)(sec): ", timing, "\n"))
remove("a", "b", "phi")
if (R.Version()$os == "Win32" || R.Version()$os == "mingw32") flush.console()
# (2)
cumulate <- 0; a <- 3000; b <- 0
for (i in 1:runs) {
invisible(gc())
timing <- system.time({
b <- rep(1:a, a); dim(b) <- c(a, a);
b <- 1 / (t(b) + 0:(a-1))
# Rem: this is twice as fast as the following code proposed by R programmers
# a <- 1:a; b <- 1 / outer(a - 1, a, "+")
})[3]
cumulate <- cumulate + timing
}
timing <- cumulate/runs
times[2, 3] <- timing
cat(c("Creation of a 3000x3000 Hilbert matrix (matrix calc) (sec): ", timing, "\n"))
remove("a", "b")
if (R.Version()$os == "Win32" || R.Version()$os == "mingw32") flush.console()
# (3)
cumulate <- 0; c <- 0
gcd2 <- function(x, y) {if (sum(y > 1.0E-4) == 0) x else {y[y == 0] <- x[y == 0]; Recall(y, x %% y)}}
for (i in 1:runs) {
a <- ceiling(Runif(400000)*1000)
b <- ceiling(Runif(400000)*1000)
invisible(gc())
timing <- system.time({
c <- gcd2(a, b) # gcd2 is a recursive function
})[3]
cumulate <- cumulate + timing
}
timing <- cumulate/runs
times[3, 3] <- timing
cat(c("Grand common divisors of 400,000 pairs (recursion)__ (sec): ", timing, "\n"))
remove("a", "b", "c", "gcd2")
if (R.Version()$os == "Win32" || R.Version()$os == "mingw32") flush.console()
# (4)
cumulate <- 0; b <- 0
for (i in 1:runs) {
b <- rep(0, 500*500); dim(b) <- c(500, 500)
invisible(gc())
timing <- system.time({
# Rem: there are faster ways to do this
# but here we want to time loops (220*220 'for' loops)!
for (j in 1:500) {
for (k in 1:500) {
b[k,j] <- abs(j - k) + 1
}
}
})[3]
cumulate <- cumulate + timing
}
timing <- cumulate/runs
times[4, 3] <- timing
cat(c("Creation of a 500x500 Toeplitz matrix (loops)_______ (sec): ", timing, "\n"))
remove("b", "j", "k")
if (R.Version()$os == "Win32" || R.Version()$os == "mingw32") flush.console()
# (5)
cumulate <- 0; p <- 0; vt <- 0; vr <- 0; vrt <- 0; rvt <- 0; RV <- 0; j <- 0; k <- 0;
x2 <- 0; R <- 0; Rxx <- 0; Ryy <- 0; Rxy <- 0; Ryx <- 0; Rvmax <- 0
# Calculate the trace of a matrix (sum of its diagonal elements)
Trace <- function(y) {sum(c(y)[1 + 0:(min(dim(y)) - 1) * (dim(y)[1] + 1)], na.rm=FALSE)}
for (i in 1:runs) {
x <- abs(Rnorm(45*45)); dim(x) <- c(45, 45)
invisible(gc())
timing <- system.time({
# Calculation of Escoufier's equivalent vectors
p <- ncol(x)
vt <- 1:p # Variables to test
vr <- NULL # Result: ordered variables
RV <- 1:p # Result: correlations
vrt <- NULL
for (j in 1:p) { # loop on the variable number
Rvmax <- 0
for (k in 1:(p-j+1)) { # loop on the variables
x2 <- cbind(x, x[,vr], x[,vt[k]])
R <- cor(x2) # Correlations table
Ryy <- R[1:p, 1:p]
Rxx <- R[(p+1):(p+j), (p+1):(p+j)]
Rxy <- R[(p+1):(p+j), 1:p]
Ryx <- t(Rxy)
rvt <- Trace(Ryx %*% Rxy) / sqrt(Trace(Ryy %*% Ryy) * Trace(Rxx %*% Rxx)) # RV calculation
if (rvt > Rvmax) {
Rvmax <- rvt # test of RV
vrt <- vt[k] # temporary held variable
}
}
vr[j] <- vrt # Result: variable
RV[j] <- Rvmax # Result: correlation
vt <- vt[vt!=vr[j]] # reidentify variables to test
}
})[3]
cumulate <- cumulate + timing
}
times[5, 3] <- timing
cat(c("Escoufier's method on a 45x45 matrix (mixed)________ (sec): ", timing, "\n"))
remove("x", "p", "vt", "vr", "vrt", "rvt", "RV", "j", "k")
remove("x2", "R", "Rxx", "Ryy", "Rxy", "Ryx", "Rvmax", "Trace")
if (R.Version()$os == "Win32" || R.Version()$os == "mingw32") flush.console()
times[ , 3] <- sort(times[ , 3])
cat(" --------------------------------------------\n")
cat(c(" Trimmed geom. mean (2 extremes eliminated): ", exp(mean(log(times[2:4, 3]))), "\n\n\n"))
cat(c("Total time for all 15 tests_________________________ (sec): ", sum(times), "\n"))
cat(c("Overall mean (sum of I, II and III trimmed means/3)_ (sec): ", exp(mean(log(times[2:4, ]))), "\n"))
remove("cumulate", "timing", "times", "runs", "i")
cat(" --- End of test ---\n\n")