-
Notifications
You must be signed in to change notification settings - Fork 30
/
export_to_tensorflow.py
58 lines (45 loc) · 2.5 KB
/
export_to_tensorflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import argparse
import os
import onnx
import torch
import torch.onnx
from models import dist_model as dm
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--model', choices=['net-lin', 'net'], default='net-lin', help='net-lin or net')
parser.add_argument('--net', choices=['squeeze', 'alex', 'vgg'], default='alex', help='squeeze, alex, or vgg')
parser.add_argument('--version', type=str, default='0.1')
parser.add_argument('--image_height', type=int, default=64)
parser.add_argument('--image_width', type=int, default=64)
args = parser.parse_args()
model = dm.DistModel()
model.initialize(model=args.model, net=args.net, use_gpu=False, version=args.version)
print('Model [%s] initialized' % model.name())
dummy_im0 = torch.Tensor(1, 3, args.image_height, args.image_width) # image should be RGB, normalized to [-1, 1]
dummy_im1 = torch.Tensor(1, 3, args.image_height, args.image_width)
cache_dir = os.path.expanduser('~/.lpips')
os.makedirs(cache_dir, exist_ok=True)
onnx_fname = os.path.join(cache_dir, '%s_%s_v%s.onnx' % (args.model, args.net, args.version))
# export model to onnx format
torch.onnx.export(model.net, (dummy_im0, dummy_im1), onnx_fname, verbose=True)
# load and change dimensions to be dynamic
model = onnx.load(onnx_fname)
for dim in (0, 2, 3):
model.graph.input[0].type.tensor_type.shape.dim[dim].dim_param = '?'
model.graph.input[1].type.tensor_type.shape.dim[dim].dim_param = '?'
# needs to be imported after all the pytorch stuff, otherwise this causes a segfault
from onnx_tf.backend import prepare
tf_rep = prepare(model, device='CPU')
producer_version = tf_rep.graph.graph_def_versions.producer
pb_fname = os.path.join(cache_dir, '%s_%s_v%s_%d.pb' % (args.model, args.net, args.version, producer_version))
tf_rep.export_graph(pb_fname)
input0_name, input1_name = [tf_rep.tensor_dict[input_name].name for input_name in tf_rep.inputs]
(output_name,) = [tf_rep.tensor_dict[output_name].name for output_name in tf_rep.outputs]
# ensure these are the names of the 2 inputs, since that will be assumed when loading the pb file
assert input0_name == '0:0'
assert input1_name == '1:0'
# ensure that the only output is the output of the last op in the graph, since that will be assumed later
(last_output_name,) = [output.name for output in tf_rep.graph.get_operations()[-1].outputs]
assert output_name == last_output_name
if __name__ == '__main__':
main()