-
Notifications
You must be signed in to change notification settings - Fork 0
/
kalman.m
39 lines (33 loc) · 1.12 KB
/
kalman.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
function kf = kalman(kf, dt)
% Ali Mohammadi_INS/GNSS
% kalman: Kalman filter algorithm.
%
% INPUT
% kf: data structure with at least the following fields:
% xp: 21x1 a posteriori state vector (old).
% z: 6x1 innovations vector.
% F: 21x21 state transition matrix.
% H: 6x21 observation matrix.
% Q: 12x12 process noise covariance.
% R: 6x6 observation noise covariance.
% Pp: 21x21 a posteriori error covariance.
% G: 21x12 control-input matrix.
% dt: sampling interval.
%
% OUTPUT
% kf: the following fields are updated:
% xi: 21x1 a priori state vector (updated).
% xp: 21x1 a posteriori state vector (updated).
% v: 6x1 innovation vector.
% A: 21x21 state transition matrix.
% K: 21x6 Kalman gain matrix.
% Qd: 21x6 discrete process noise covariance.
% Pi: 21x21 a priori error covariance.
% Pp: 21x21 a posteriori error covariance.
% S: 6x6 innovation (or residual) covariance.
%%
% PREDICTION STEP
kf = kf_prediction(kf, dt);
% UPDATE STEP
kf = kf_update(kf);
end