-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathin_context_pipeline.py
307 lines (272 loc) · 11 KB
/
in_context_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import re
import torch
import numpy as np
from diffusers import FluxPipeline, FluxInpaintPipeline, FluxFillPipeline
from PIL import Image
__all__ = ['InContextPipeline']
class InContextPipeline:
def __init__(
self,
model_name_or_path='black-forest-labs/FLUX.1-dev',
lora_name_or_path=None,
fill_model_name_or_path=None,
dtype=torch.bfloat16,
device=torch.device('cuda:0')
):
self.model_name_or_path = model_name_or_path
self.lora_name_or_path = lora_name_or_path
self.fill_model_name_or_path = fill_model_name_or_path
self.dtype = dtype
self.device = device
# generation pipeline
self.pipe = FluxPipeline.from_pretrained(model_name_or_path, torch_dtype=dtype).to(device)
if lora_name_or_path:
self.pipe.load_lora_weights(lora_name_or_path)
# fill pipeline
if fill_model_name_or_path is None:
self.inpaint_pipe = FluxInpaintPipeline(
scheduler=self.pipe.scheduler,
vae=self.pipe.vae,
text_encoder=self.pipe.text_encoder,
tokenizer=self.pipe.tokenizer,
text_encoder_2=self.pipe.text_encoder_2,
tokenizer_2=self.pipe.tokenizer_2,
transformer=self.pipe.transformer
)
else:
self.inpaint_pipe = FluxFillPipeline.from_pretrained(fill_model_name_or_path, torch_dtype=dtype).to(device)
def __call__(
self,
prompt,
prompt_2=None,
images=[],
num_outputs=1,
height=None,
width=None,
num_inference_steps=28,
guidance_scale=None,
generator=None,
latents=None,
max_sequence_length=512,
preprocess_type='resize_and_pad',
reformat_prompt=False,
border_size=0,
border_color='black'
):
# check prompt
if prompt_2 is None:
prompt_2 = prompt
# check input and output counts
num_inputs = len(images)
assert num_outputs >= 1
num_panels = num_inputs + num_outputs
# check size
if height is None:
height = 1024
if width is None:
width = 1024
# check guidance scale
if guidance_scale is None:
if len(images) == 0:
guidance_scale = 3.5
elif isinstance(self.inpaint_pipe, FluxFillPipeline):
guidance_scale = 30
else:
guidance_scale = 7.0
# check preprocess_type
assert preprocess_type in ('resize_and_pad', 'resize_and_crop')
preprocess_fn = {
'resize_and_pad': self._resize_and_pad,
'resize_and_crop': self._resize_and_crop
}[preprocess_type]
# optimize panel layout
if num_panels == 1:
rows, cols = 1, 1
else:
rows, cols, prompt, prompt_2 = self._optimize_panel_layout(
num_panels, height, width, prompt, prompt_2, reformat_prompt
)
# inference
if num_inputs == 0:
if latents is not None:
latents = latents.to(self.pipe.device)
grid = self.pipe(
prompt=prompt,
prompt_2=prompt_2,
height=height * rows,
width=width * cols,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
generator=generator,
latents=latents,
output_type='pil',
max_sequence_length=max_sequence_length
).images[0]
else:
if latents is not None:
latents = latents.to(self.inpaint_pipe.device)
# create the concatenated big image
panels = [preprocess_fn(
u.convert('RGB'), height, width, border_size, border_color
) for u in images]
panels += [Image.new('RGB', (width, height), (127, 127, 127))] * num_outputs
grid = self._make_grid(panels, rows, cols)
# create the big mask
mask = Image.new('L', grid.size, 255)
for i in range(num_inputs):
row, col = i // cols, i % cols
mask.paste(Image.new('L', (width, height), 0), (width * col, height * row))
# inference
kwargs = {'strength': 1.0} if isinstance(self.inpaint_pipe, FluxInpaintPipeline) else {}
grid = self.inpaint_pipe(
prompt=prompt,
prompt_2=prompt_2,
image=grid,
mask_image=mask,
height=height * rows,
width=width * cols,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
generator=generator,
output_type='pil',
max_sequence_length=max_sequence_length,
**kwargs
).images[0]
# postprocess
if num_panels == 1:
panels = [grid]
else:
panels = self._split_grid(grid, rows, cols)
return panels[-num_outputs:]
def _optimize_panel_layout(self, num_panels, height, width, prompt, prompt_2, reformat_prompt):
# check num_panels
assert num_panels >= 1 and num_panels <= 12, 'Current we only support num_panels between 1 and 12'
if num_panels == 1:
return 1, 1, prompt, prompt_2
# optimize panel layout to achieve an aspect ratio closest to 1.0
best_aspect_ratio = float('inf')
best_layout = None
for rows in range(1, num_panels + 1):
if num_panels % rows == 0:
cols = num_panels // rows
grid_height, grid_width = height * rows, width * cols
aspect_ratio = max(grid_height / grid_width, grid_width / grid_height)
if aspect_ratio < best_aspect_ratio:
best_aspect_ratio = aspect_ratio
best_layout = (rows, cols)
rows, cols = best_layout
# reformat prompts
if reformat_prompt:
assert num_panels <= 12, 'Only supports reformat_prompt=True with <= 12 panels'
# semantic names
number_to_name = {
2: 'TWO',
3: 'THREE',
4: 'FOUR',
5: 'FIVE',
6: 'SIX',
7: 'SEVEN',
8: 'EIGHT',
9: 'NINE',
10: 'TEN',
11: 'ELEVEN',
12: 'TWELVE'
}
rows_to_names = {
2: ['TOP', 'BOTTOM'],
3: ['TOP', 'MIDDLE', 'BOTTOM'],
}
cols_to_names = {
2: ['LEFT', 'RIGHT'],
3: ['LEFT', 'MIDDLE', 'RIGHT']
}
# target panel names
target_names = [number_to_name[num_panels] + '-PANEL']
if rows <= 3 and cols <= 3:
if rows == 1:
target_names += cols_to_names[cols]
elif cols == 1:
target_names += rows_to_names[rows]
else:
for row_name in rows_to_names[rows]:
for col_name in cols_to_names[cols]:
target_names.append(f'{row_name}-{col_name}')
else:
target_names += [f'PANEL-{i + 1}' for i in range(num_panels)]
# name patterns
pattern = r'\[((?:TWO|THREE|FOUR|FIVE|SIX|SEVEN|EIGHT|NINE|TEN|ELEVEN|TWELVE|MULTI|PANEL|[0-9]|-)+)\]'
# process prompt
source_names = re.findall(pattern, prompt)
assert len(source_names) == len(target_names) == 1 + num_panels
for src_name, tar_name in zip(source_names, target_names):
prompt = prompt.replace(src_name, tar_name)
# process prompt_2
source_names = re.findall(pattern, prompt_2)
assert len(source_names) == len(target_names) == 1 + num_panels
for src_name, tar_name in zip(source_names, target_names):
prompt_2 = prompt_2.replace(src_name, tar_name)
return rows, cols, prompt, prompt_2
def _make_grid(self, panels, rows, cols):
assert [u.size == panels[0].size for u in panels]
assert len(panels) == rows * cols and rows >= 1 and cols >= 1
# init blank grid
width, height = panels[0].size
grid = Image.new(panels[0].mode, (width * cols, height * rows))
# paste panels
for i, panel in enumerate(panels):
row, col = i // cols, i % cols
grid.paste(panel, (width * col, height * row))
return grid
def _split_grid(self, grid, rows, cols):
height = grid.height // rows
width = grid.width // cols
panels = []
for i in range(rows):
for j in range(cols):
panels.append(grid.crop((
j * width,
i * height,
(j + 1) * width,
(i + 1) * height
)))
return panels
def _resize_and_pad(self, image, height, width, border_size=0, border_color='black'):
# resize
scale = min(height / image.height, width / image.width)
image = image.resize((int(image.width * scale), int(image.height * scale)), Image.LANCZOS)
# pad (with average color)
color = tuple(np.mean(np.array(image), axis=(0, 1)).astype(int))
pad_image = Image.new(image.mode, (width, height), color)
pad_image.paste(image, ((width - image.width) // 2, (height - image.height) // 2))
image = pad_image
# add borders
if border_size > 0:
new_image = Image.new(image.mode, image.size, border_color)
new_image.paste(
image.crop((border_size, border_size, image.width - border_size, image.height - border_size)),
(border_size, border_size)
)
image = new_image
return image
def _resize_and_crop(self, image, height, width, border_size=0, border_color='black'):
# resize
scale = max(height / image.height, width / image.width)
image = image.resize((int(image.width * scale), int(image.height * scale)), Image.LANCZOS)
# center crop
image = image.crop((
(image.width - width) // 2,
(image.height - height) // 2,
(image.width - width) // 2 + width,
(image.height - height) // 2 + height
))
# add borders
if border_size > 0:
new_image = Image.new(image.mode, image.size, border_color)
new_image.paste(
image.crop((border_size, border_size, image.width - border_size, image.height - border_size)),
(border_size, border_size)
)
image = new_image
return image