-
Notifications
You must be signed in to change notification settings - Fork 204
/
Copy pathinference_for_demo_video.py
248 lines (213 loc) · 7.36 KB
/
inference_for_demo_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import argparse
import json
import os
import shutil
import subprocess
import numpy as np
import torch
import torchaudio
from scipy.io import loadmat
from transformers import Wav2Vec2Processor
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2Model
from configs.default import get_cfg_defaults
from core.networks.diffusion_net import DiffusionNet
from core.networks.diffusion_util import NoisePredictor, VarianceSchedule
from core.utils import (
crop_src_image,
get_pose_params,
get_video_style_clip,
get_wav2vec_audio_window,
)
from generators.utils import get_netG, render_video
@torch.no_grad()
def get_diff_net(cfg, device):
diff_net = DiffusionNet(
cfg=cfg,
net=NoisePredictor(cfg),
var_sched=VarianceSchedule(
num_steps=cfg.DIFFUSION.SCHEDULE.NUM_STEPS,
beta_1=cfg.DIFFUSION.SCHEDULE.BETA_1,
beta_T=cfg.DIFFUSION.SCHEDULE.BETA_T,
mode=cfg.DIFFUSION.SCHEDULE.MODE,
),
)
checkpoint = torch.load(cfg.INFERENCE.CHECKPOINT, map_location=device)
model_state_dict = checkpoint["model_state_dict"]
diff_net_dict = {
k[9:]: v for k, v in model_state_dict.items() if k[:9] == "diff_net."
}
diff_net.load_state_dict(diff_net_dict, strict=True)
diff_net.eval()
return diff_net
@torch.no_grad()
def get_audio_feat(wav_path, output_name, wav2vec_model):
audio_feat_dir = os.path.dirname(audio_feat_path)
pass
@torch.no_grad()
def inference_one_video(
cfg,
audio_path,
style_clip_path,
pose_path,
output_path,
diff_net,
device,
max_audio_len=None,
sample_method="ddim",
ddim_num_step=10,
):
audio_raw = audio_data = np.load(audio_path)
if max_audio_len is not None:
audio_raw = audio_raw[: max_audio_len * 50]
gen_num_frames = len(audio_raw) // 2
audio_win_array = get_wav2vec_audio_window(
audio_raw,
start_idx=0,
num_frames=gen_num_frames,
win_size=cfg.WIN_SIZE,
)
audio_win = torch.tensor(audio_win_array).to(device)
audio = audio_win.unsqueeze(0)
# the second parameter is "" because of bad interface design...
style_clip_raw, style_pad_mask_raw = get_video_style_clip(
style_clip_path, "", style_max_len=256, start_idx=0
)
style_clip = style_clip_raw.unsqueeze(0).to(device)
style_pad_mask = (
style_pad_mask_raw.unsqueeze(0).to(device)
if style_pad_mask_raw is not None
else None
)
gen_exp_stack = diff_net.sample(
audio,
style_clip,
style_pad_mask,
output_dim=cfg.DATASET.FACE3D_DIM,
use_cf_guidance=cfg.CF_GUIDANCE.INFERENCE,
cfg_scale=cfg.CF_GUIDANCE.SCALE,
sample_method=sample_method,
ddim_num_step=ddim_num_step,
)
gen_exp = gen_exp_stack[0].cpu().numpy()
pose_ext = pose_path[-3:]
pose = None
pose = get_pose_params(pose_path)
# (L, 9)
selected_pose = None
if len(pose) >= len(gen_exp):
selected_pose = pose[: len(gen_exp)]
else:
selected_pose = pose[-1].unsqueeze(0).repeat(len(gen_exp), 1)
selected_pose[: len(pose)] = pose
gen_exp_pose = np.concatenate((gen_exp, selected_pose), axis=1)
np.save(output_path, gen_exp_pose)
return output_path
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="inference for demo")
parser.add_argument("--wav_path", type=str, default="", help="path for wav")
parser.add_argument("--image_path", type=str, default="", help="path for image")
parser.add_argument("--disable_img_crop", dest="img_crop", action="store_false")
parser.set_defaults(img_crop=True)
parser.add_argument(
"--style_clip_path", type=str, default="", help="path for style_clip_mat"
)
parser.add_argument("--pose_path", type=str, default="", help="path for pose")
parser.add_argument(
"--max_gen_len",
type=int,
default=1000,
help="The maximum length (seconds) limitation for generating videos",
)
parser.add_argument(
"--cfg_scale",
type=float,
default=1.0,
help="The scale of classifier-free guidance",
)
parser.add_argument(
"--output_name",
type=str,
default="test",
)
parser.add_argument(
"--device",
type=str,
default="cuda",
)
args = parser.parse_args()
if args.device == "cuda" and not torch.cuda.is_available():
print("CUDA is not available, set --device=cpu to use CPU.")
exit(1)
device = torch.device(args.device)
cfg = get_cfg_defaults()
cfg.CF_GUIDANCE.SCALE = args.cfg_scale
cfg.freeze()
tmp_dir = f"tmp/{args.output_name}"
os.makedirs(tmp_dir, exist_ok=True)
# get audio in 16000Hz
wav_16k_path = os.path.join(tmp_dir, f"{args.output_name}_16K.wav")
command = f"ffmpeg -y -i {args.wav_path} -async 1 -ac 1 -vn -acodec pcm_s16le -ar 16000 {wav_16k_path}"
subprocess.run(command.split())
# get wav2vec feat from audio
wav2vec_processor = Wav2Vec2Processor.from_pretrained(
"jonatasgrosman/wav2vec2-large-xlsr-53-english"
)
wav2vec_model = (
Wav2Vec2Model.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-english")
.eval()
.to(device)
)
speech_array, sampling_rate = torchaudio.load(wav_16k_path)
audio_data = speech_array.squeeze().numpy()
inputs = wav2vec_processor(
audio_data, sampling_rate=16_000, return_tensors="pt", padding=True
)
with torch.no_grad():
audio_embedding = wav2vec_model(
inputs.input_values.to(device), return_dict=False
)[0]
audio_feat_path = os.path.join(tmp_dir, f"{args.output_name}_wav2vec.npy")
np.save(audio_feat_path, audio_embedding[0].cpu().numpy())
# get src image
src_img_path = os.path.join(tmp_dir, "src_img.png")
if args.img_crop:
crop_src_image(args.image_path, src_img_path, 0.4)
else:
shutil.copy(args.image_path, src_img_path)
with torch.no_grad():
# get diff model and load checkpoint
diff_net = get_diff_net(cfg, device).to(device)
# generate face motion
face_motion_path = os.path.join(tmp_dir, f"{args.output_name}_facemotion.npy")
inference_one_video(
cfg,
audio_feat_path,
args.style_clip_path,
args.pose_path,
face_motion_path,
diff_net,
device,
max_audio_len=args.max_gen_len,
)
# get renderer
renderer = get_netG("checkpoints/renderer.pt", device)
# render video
output_video_path = f"output_video/{args.output_name}.mp4"
render_video(
renderer,
src_img_path,
face_motion_path,
wav_16k_path,
output_video_path,
device,
fps=25,
no_move=False,
)
# add watermark
# if you want to generate videos with no watermark (for evaluation), remove this code block.
no_watermark_video_path = f"{output_video_path}-no_watermark.mp4"
shutil.move(output_video_path, no_watermark_video_path)
os.system(
f'ffmpeg -y -i {no_watermark_video_path} -vf "movie=media/watermark.png,scale= 120: 36[watermask]; [in] [watermask] overlay=140:220 [out]" {output_video_path}'
)
os.remove(no_watermark_video_path)